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In response to the rapid urbanization and housing demands, there has been a shift from 

traditional courtyards to multi-story city structures. Unfortunately, this transition can 

significantly affect the local climate and overall comfort due to increased heat. To overcome 

these challenges, our proposed approach suggests implementing multi-objective optimization 

techniques to strike a balance between various competing goals. These goals may encompass 

outdoor thermal comfort, energy efficiency, and urban sustainability when designing urban 

courtyard blocks. This study has many potential benefits for sustainable living and aligns with 

several Sustainable Development Goals (SDGs) like Energy Efficiency (SDG 7 - Affordable 

and Clean Energy), Sustainable Cities and Communities (SDG 11 - Sustainable Cities and 

Communities) and Good Health - Well-being (SDG 3 - Good Health and Well-being). The 

outcomes from this paper will help reduce the effects of climate change by making a positive 

contribution to sustainable development. This research aims to anticipate the cooling load per 

unit area (cooling/m2) of buildings in hot arid zones based on building features such as overall 

height, orientation, and other considerations of buildings. The deep learning algorithms used 

are MLP Regressor, RNN LSTM, and RBFN. This research aims to create a model to properly 

forecast cooling load per unit area and provide insights into the best building design for 

lowering cooling loads in hot arid zones. RBFN outperformed MLP Regressors and RNN 

LSTM in forecasting cooling rates in urban courtyard blocks, according to the findings.  
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1. INTRODUCTION

Because of the increasing urbanization and the growing 

demand for energy-efficient and sustainable urban design, the 

optimization of modern courtyard blocks in dry and tropical 

locations has received much attention. Urban areas in hot arid 

regions confront significant problems, such as high 

temperatures and increased energy demand for cooling, 

making it critical to create design solutions that provide 

acceptable living conditions while reducing energy 

consumption [1]. 

There has been an extraordinary surge of urbanization in 

these locations, leading to a considerable increase in housing 

demand. This urban expansion has resulted in the replacement 

of traditional courtyards with high-rise structures, which has 

had a significant impact on the local temperature and outdoor 

comfort. For example, figures show that typical energy usage 

for cooling in these areas has increased by 20-30% 

approximately in the last decade alone. Similarly, urbanization 

has reduced traditional courtyard spaces by 10-20%, 

worsening the problem of outdoor thermal comfort [2]. In 

recent years, the use of multi-objective optimization 

techniques and deep learning in modern courtyard design has 

grown in popularity. Authors Ibrahim et al. [2] have made 

significant advances in applying multi-objective optimization 

to balance competing design goals. Our research expands on 

this by diving into the specific context of predicting cooling 

rates and the unique parameters on which they depend. 

Our study will test the following hypothesis: “By 

optimizing the design elements of contemporary courtyard 

sections, it is possible to achieve a balance between thermal 

comfort in hot desert environments." We want to find the best 

combinations of factors like, direction, wall and roof area, 

overall height, age, and cooling load per unit area of the 

building by using deep learning algorithms to improve living 

conditions while lowering energy consumption. By exploring 

diverse design parameters, designers can use this deep learning 

model to identify the optimal combination that maximizes 

these objectives. Deep learning algorithms use an optimisation 

algorithm that helps the network maximize or minimize an 

objective function depending on the use case [3]. This study 

focuses on the large area of urban courtyard blocks and their 

optimization. By comprehensively analyzing existing research 

in the field of cooling optimization within urban courtyard 

blocks, this study plays a vital role in the following ways: 

Guiding Urban Planners and Designers: Urban planners and 

designers take responsibility for shaping the cities of 

tomorrow. They focus on creating urban environments that are 

not only functional but also resilient to the challenges posed 

by a changing climate [4]. 

Advancing Strategies for Thermal Comfort and Energy 

Efficiency: It is very important to make cities cool and energy 

efficient. In this research various publications were studied to 

filter the ones that were most relevant to courtyard 

optimization. This can help researchers and architects to create 

constructions in a way that consumes less energy and is better 
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for the environment [5].  

Identifying Research Gaps and Fostering Collaboration: 

The problems caused by urban heat are a lot and complex, and 

hence, this study carefully identifies the areas where more 

research is required. These areas are opportunities for further 

exploration of new ideas, innovation, and creativity. If such 

identified research gaps are looked upon in a collaborative 

manner, solving problems related to urban heat and efficiency 

would become easier [6]. 

Contributing to Cooler, More Sustainable Urban 

Environments: It is very important to propose evidence-based 

studies on critical issues where the cities face adverse effects 

of climate change every day. These strategies should be 

proposed so that urban environments are not only cooler but 

also comfortable [7]. We, in this research, focus on such 

strategies. The basic correlation of the previous description is 

explained in Figure 1. 

 

 
 

Figure 1. Significance of study 

 

Through this research, we hope to provide valuable insight 

to the design and optimization of courtyard segments, 

ultimately leading to enhanced thermal comfort, lower energy 

usage, and significant economic and environmental benefits in 

these difficult environments.  

 

 

2. KEY CONCEPTS AND RELATED WORK 

 

The optimization of courtyard blocks in high temperature 

regions presents a complex undertaking that involves 

balancing multiple competing design objectives. Recent 

research has shown the effectiveness of deep learning 

techniques in enhancing design goals, heating performance, 

and energy efficacy in urban courtyard blocks. These proposed 

frameworks based on deep learning have exhibited promising 

outcomes, holding the potential to transform urban planning 

practices in hot and arid zones. Nonetheless, further 

investigation is necessary to assess the reliability and 

scalability of these methodologies in the real-world.  

Before searching for a comprehensive assessment of the 

existing literature related to city courtyard cooling, it's 

essential to set up a clean knowledge of key principles in this 

area. 

1) Thermal Comfort: The concept of thermal comfort is 

fundamental to our discussion. It characterizes the 

psychological state of individuals about their 

satisfaction or dissatisfaction with the thermal 

environment in which they are situated. Factors 

contributing to thermal comfort include temperature, 

humidity, wind speed, and the interaction between 

these variables [8]. Ensuring thermal comfort is very 

important as it directly affects the overall well-being 

and productivity of the inhabitants of urban spaces. 

2) Sustainable Design: Sustainable urban courtyard 

design aims to create environments that strike a 

balance between human habitation and 

environmental conservation. Its main objectives are 

to minimize the consumption of resources, reduce the 

ecological footprint, and raise the overall quality of 

life for the urban population. Sustainable design 

involves a multifaceted strategy, including 

optimizing energy efficiency, minimizing emissions, 

and promoting environmentally friendly practices [9]. 

The ultimate goal is to create urban courtyards that 

are environmentally responsible, economically 

viable, and socially rich. 

3) Energy Efficiency: Energy efficiency constitutes a 

central tenet within the realm of urban courtyard 

design. This theory revolves around efforts to reduce 

energy consumption without compromising the 

functionality or performance of designed spaces. In 

the context of urban courtyards, achieving energy 

efficiency involves a careful analysis of building 

guidelines, material selection, and spatial layout. By 

reducing heating and cooling loads through judicious 

design decisions, energy-efficient urban courtyards 

can significantly contribute to sustainability goals, 

reduce urban heat island effects, and reduce pressure 

on energy resources [10]. 

The interconnectivity of these important key concepts is 

shown in Figure 2. 

 

 
 

Figure 2. Interconnectivity of key concepts 

 

Guedouh and Zemmouri [11] investigate the courtyard's 

impact on building morphology in the thermal and dazzling 

surroundings in hot and arid regions. They stress the 

importance of design aspects in increasing energy efficiency 

and occupant comfort through their study. Their findings show 

the potential of courtyard buildings in creating beneficial 

microclimates in arid environments, and they suggest that 

further improvements in the study can help to have accurate 

results. 

Xu et al. [12] also use genetic deep learning algorithms to 

optimize the urban layout for improved microclimate 

performance in a cold region of China. The research considers 

optimization parameters that include courtyard design 

variables, building location, simulation settings, mechanical 

system, and thermal characteristics. They were able to 

optimize the microclimatic conditions by up to 80 percent. 

This happens because the optimized design creates more wind 

corridors and reduces the amount of heat that is trapped in the 

urban area. 

Hasehzadeh Haseh, Khakzand, and Ojaghlou [13] 

investigate the best thermal characteristics of courtyards in the 

hot and desert climates of Isfahan. The authors investigate the 

effect of the courtyard design features on thermal 

performance, considering parameters such as shading, 
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ventilation, and surface materials. The study provides valuable 

insights for architects and urban planners to enhance the heat 

comfort of courtyard spaces in arid regions. In a recent study, 

the authors M’Saouri El Bat et al. [14] propose a methodology 

to optimize the form of urban courtyards by combinaning 

outdoor zonal approach and building energy modeling. Their 

study demonstrates the possibility for combining multiple 

computational methodologies to enhance the efficacy of 

energy and thermal performance comfort of urban courtyard 

designs. The findings help to design sustainable urban 

planning techniques in arid regions, but this model doesn’t 

give us the exact magnitude of cooling rates or loads required 

in a courtyard if designed.  

Khan et al. [15] focuses on the optimization of courtyard 

house design for passive cooling in hot, dry regions. Their 

study investigates the impact of design parameters, such as 

courtyard size, shape, and orientation, on cooling 

performance. By employing computer simulations and 

performance metrics, they offer design guidelines for 

achieving energy-efficient and comfortable living 

environments in arid climates. Ibrahim et al. [16] address the 

multi-objective optimization of city courtyard blocks in hot 

arid zones. The authors propose an optimization framework 

taking into account aspects such as thermal comfort, 

daylighting, and energy consumption. By further research and 

employing simulation techniques and genetic algorithms, they 

provide insights into designing sustainable and adaptive 

courtyard blocks in arid regions.  

The papers examined within this research explore the use of 

optimization methods aimed at enhancing the thermal comfort 

of urban courtyards in diverse climatic contexts. These queries 

use a variety of optimization algorithms, including genetic 

algorithms, multi-objective evolutionary algorithms, and 

artificial neural networks. In addition, a range of datasets, 

including measurements, simulation-generated data, and 

historical records, serve as the foundation for these 

investigations. Findings from these studies underscore the 

effectiveness of optimization techniques for improving the 

thermal comfort experienced within urban courtyards. 

 

 

3. EQUATIONS 

 

3.1 Multilayer Perceptron (MLP) 

 

Single hidden layer MLP with vector x as input, hidden 

layer activations h, output activations y, weight matrices W, 

and biases b where f1 shows the activation function for the 

layer that is hidden, f2 shows the activation function for the 

layer that is responsible for output, and * denotes matrix 

multiplication. These activation functions will decide whether 

or not to fire the neuron, and hence their inclusion is necessary. 

 

h = f1(W1 * x + b1) (1) 

 

y = f2(W2 * h + b2) (2) 

 

3.2 Long Short-Term Memory (LSTM) 

 

Long Short-Term Memory (LSTM): A single LSTM cell 

with input x, previously hidden state h(t-1), and hidden state h(t). 

Here, σ is the sigmoid activation function, * is matrix 

multiplication, [h(t-1), x] denotes the concatenation of h(t-1) and 

x along the feature dimension, and Wf, Wi, bf, bi represent the 

weight matrices and biases for the different gates and 

activations in the LSTM cell.  

The forget gate is a neural network component that 

determines what information from the cell state should be 

discarded or retained for the current time step based on the 

input and previous hidden state. Following is the equation for 

the same.  

 

Forget gate: f(t) = σ (Wf * [h(t-1), x] + bf) (3) 

 

The input gate is a neural network component that decides 

what new information should be added to the cell state for the 

current time step based on the input and previous hidden state. 

Following is the equation for the same. 

  

Input gate: i(t) = σ (Wi * [h(t-1), x] + bi) (4) 

 

The output gate is a neural network component that 

determines what information from the cell state should be 

exposed as the output for the current time step based on the 

input and previous hidden state. Following is the equation for 

the same. 

 

Output gate: o(t) = σ (Wo * [h(t-1), x] + bo) (5) 

 

3.3 Radial Basis Function Network (RBFN) 

 

In these equations for the Radial Basis Function Network 

(RBFN) algorithm, φ(x) represents the radial basis function 

used to gauge the similarity between an input data point 'x' and 

a chosen center point 'μ' based on their Euclidean distance and 

the spread parameter 'σ.' 'Hi' signifies the output of an 

individual hidden neuron and is determined by applying the 

radial basis function to the input 'x' concerning the specific 

center 'μ.' The final network output, denoted as 'Output,' is 

obtained by taking a weighted sum of these hidden neuron 

outputs using weights 'Wi.' These weights learned during 

training, control the contribution of each hidden neuron to the 

network's ultimate prediction or response to the input data 'x'. 

A Radial Basis Function (RBF) is an activation function that 

assigns higher output values for inputs closer to a center point 

in a high-dimensional space using a radial basis kernel. 

Following is the equation: 

 

Radial basis function φ(x) = exp(-(||x - μ||2) / (2σ2)) (6) 

 

The output of a hidden neuron in a neural network 

represents the weighted sum of its inputs passed through an 

activation function, which introduces non-linearity. Following 

is the equation for the same. 

 

Hidden neuron output Hi = φ(||x - μ||) (7) 

 

The output here is the product sum for the weighted inputs 

and hidden neuron output. Following is the equation for the 

same. 

 

Output = Σ(Wi * Hi) (8) 
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4. METHODS 

 

4.1 Dataset description 

 
The dataset has been sourced via the University of Bath, 

United Kingdom [17]. This dataset contains several 

observations of hot and desert zone urban courtyard blocks. 

The columns of data indicate the geometric features of the 

blocks: elongation, distances, and orientation. The height of 

the block is represented by the following nine columns: 

southwest, southeast, west, east, northwest, northeast, south, 

north, and the average height. The last column reflects the 

blocks' cooling per square meter (cooling/m2). The size of this 

dataset is substantially large, containing about 708 rows and 

13 columns, respectively. The dataset can be used to optimize 

multi-objective urban courtyard blocks for hot and arid zones 

to predict cooling per square meter while keeping the required 

FAR (Floor Aspect Ratio) and geometric and height aspects of 

the blocks. The dataset contains a variety of values for various 

geometric and height features that can be used to construct and 

optimize urban courtyard blocks in hot and arid climates. 

Table 1 below displays various building design 

characteristics, in a hot arid zone, including elongation, 

distances, orientation, height, FAR, and cooling load per unit 

area. 

 
Table 1. Design parameters with description 

 
Design Parameters Description 

Elongation [E] 
The ratio of the longer side of the 

building to the shorter side 

Distances [D] 
The distance between the building and 

adjacent buildings or roads 

Orientation [O] The orientation of the building 

Height [H](SW) 
The height of the building on the 

southwest side 

Height [H](SE) 
The height of the building on the 

southeast side 

Height [H](W) 
The height of the building on the west 

side 

Height [H](E) 
The height of the building on the east 

side 

Height [H](NW) 
The height of the building on the 

northwest side 

Height [H](NE) 
The height of the building on the 

northeast side 

Height [H](S) 
The height of the building on the south 

side 

Height [H](N) 
The height of the building on the north 

side 

FAR 
The ratio of the total floor area of the 

building to the area of the site 

Cooling/m2 (c/m2) 
Cooling load per unit area of the 

building (Target variable) 

 
4.2 Proposed work 

 
The aim of our methodology is to predict the cooling 

rates/m2 with the help of other variables as specified in the 

dataset description. To achieve this, we are using three 

algorithms, namely, RBFN (Radial Basis Function Network 

(RBFN), MLP Regressor, and RNN LSTM (Long Short Term 

Memory). 

These algorithms are used in contrast to other prominent 

Deep Learning algorithms like CNN (Convolutional Neural 

Network) and ANN (Artificial Neural Network) because the 

algorithms we choose work efficiently on the type of data we 

are using. Additionally, the performance of these algorithms 

was relatively better. The entire code was run on Google 

Colab. Figure 3 shows the basic diagram to depict the 

workflow of our methodology.  

 

 
 

Figure 3. Proposed methodology 

 

4.2.1 Algorithm 1: MLP Regressor 

MLP Regressor is a computational model based on neural 

networks and backpropagation. This is applied for training 

purposes. This methodology is designed to address regression 

tasks using supervised learning techniques [18]. 

The following Table 2 represents the libraries that are 

imported for the successful implementation of algorithms: 

 

Table 2. Libraries used for MLPRegressor 

 
Library Purpose 

numpy Numerical computations 

pandas Data manipulation 

matplotlib.pyplot Data visualization 

sklearn Machine learning tools 

MLPRegressor Multi-Layer Perceptron Regressor 

train_test_split 
Data splitting for training and 

validation 

MinMaxScaler Feature scaling 

mean_squared_error 
Mean Squared Error (MSE) 

calculation 

root_mean_squared_err

or 

Root Mean Squared Error (RMSE) 

calculation 

mean_absolute_error 
Mean Absolute Error (MAE) 

calculation 
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The proposed strategy involves a series of sequential steps:  

1. Data Preprocessing: The dataset is loaded. Feature 

scaling is applied to normalize the input features. The dataset 

is divided into training and validation subsets (80% training 

and 20% validation). 

2. Model Architecture: An MLP (Multi-Layer Perceptron) 

regressor model is constructed. The architecture consists of 

two hidden layers with 50 and 25 units, respectively, followed 

by a ReLU activation function. 

3. Training: The MLP model is trained with a maximum of 

1000 iterations. The random state is set to 42 for 

reproducibility. 

4. Evaluation: The model's performance is evaluated on the 

validation set. Evaluation metrics include MSE, RMSE, and 

MAE. 

5. Prediction: The trained MLP model is used to make 

predictions on new data. Table 3 represents the parameters 

used in MLP Regressor Algorithm. 

 

Table 3. Parameters used for MLPRegressor 

 
Parameter Value 

Model MLP Regressor 

Hidden Layers 50, 25 

Optimizer Adam 

Activation Relu 

Epochs 100 

Random State 42 

 

4.2.2 Algorithm 2: RNN Long Short Term Memory 

LSTMs are RNNs that can learn long-term dependencies by 

selectively retaining or discarding input via a gating 

mechanism [19]. 

The following Table 4 shows the libraries that are used in 

this algorithm for successful implementation: 

 

Table 4. Libraries used for RNN LSTM 

 
Library Purpose 

numpy Numerical computations 

pandas Data manipulation 

matplotlib.pyplot Data visualization 

sklearn Machine learning tools 

tensorflow.keras Deep learning framework 

tensorflow Deep learning library for TensorFlow 

train_test_split Data splitting for training and validation 

MinMaxScaler Feature scaling 

LSTM 
Long Short-Term Memory layer for 

RNNs 

Dense Dense layer for neural networks 

Adam Adam optimizer for gradient descent 

mean_squared_error Mean Squared Error (MSE) calculation 

mean_absolute_error Mean Absolute Error (MAE) calculation 

 

The following phases are included in the proposed 

methodology for this architecture: 

1. Data Preprocessing: The dataset is loaded, consisting of 

features and the target variable, cooling/m2. Feature scaling is 

performed to normalize the input features. The dataset is split 

into training and validation sets (80% training and 20% 

validation). 

2. Model Architecture: An RNN LSTM (Recurrent Neural 

Network with Long Short-Term Memory) model is 

constructed. The architecture comprises a single LSTM layer 

with 50 units, followed by a dense layer with ReLU activation. 

The model uses the Adam optimizer to minimize the loss 

function. 

3. Training: The model is being trained for 50 epochs with 

a batch size of 32. During training, the Mean Squared Error 

(MSE) is used as the loss function to minimize the prediction 

error. 

4. Evaluation: The model's performance is assessed on the 

validation set. Evaluation metrics include MSE, Root Mean 

Squared Error (RMSE), and Mean Absolute Error (MAE). 

5. Prediction: The trained model is used to make predictions 

on new data. Parameters used for RNN LSTM algorithm are 

shown in Table 5.  

 

Table 5. Parameters used for RNN LSTM 

 
Parameter Value 

Model RNN LSTM 

Hidden Layers 50 

Optimizer Adam 

Activation Relu 

Epochs 50 

Batch size 32 

 

4.2.3 Algorithm 3: RBFN 

The Radial Basis Function Network (RBFN) is another 

computational model used for regression tasks based on neural 

networks. It is distinct from the more common feedforward 

neural networks (such as multilayer perceptrons) in its 

architecture and activation functions. RBFNs are particularly 

useful when dealing with problems that involve nonlinear 

relationships in the data [20]. The libraries included in this 

model are shown in the Table 6: 

 

Table 6. Libraries used for RBFN 

 
Library Purpose 

numpy Numerical computations 

pandas Data manipulation 

matplotlib.pyplot Data visualization 

sklearn Machine learning tools 

MinMaxScaler Feature scaling 

mean_squared_error Mean Squared Error (MSE) calculation 

root_mean_squared_er

ror 

Root Mean Squared Error (RMSE) 

calculation 

mean_absolute_error 
Mean Absolute Error (MAE) 

calculation 

 

The following steps were implemented here:  

1. Data Preprocessing: The same dataset is used for the 

RNN LSTM and MLP model. Feature scaling is applied to 

normalize the input features. The dataset is divided into 

training and validation subsets (80% training 20% validation). 

2. Model Architecture: An RBFN model is constructed. The 

architecture consists of Radial Basis Functions (RBF) as 

activation functions. The number of RBF neurons is 

determined based on the dataset or prior knowledge. 

3.Training: The RBFN model is being trained. The center 

points and widths of the RBF neurons are typically learned 

during training. The training process aims to minimize the 

error between the RBFN model's predictions and the actual 

target values. 

4. Evaluation: The model's performance is evaluated on the 

validation set. Evaluation metrics include Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), and Mean 

Absolute Error (MAE). These metrics help assess the accuracy 
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and performance of the RBFN model.  Parameters used for this 

algorithm are shown in an effective manner in Table 7. 

5. Prediction: The trained RBFN model makes predictions 

on new or unseen data. The model applies the learned RBF 

activations to the input data to produce predictions. 

 

Table 7. Parameters used for RBFN 

 
Parameter Value 

Model RBFN 

Hidden Layers 3 

Optimizer Adam 

Activation Relu 

Epochs 100 

Batch size 32 

 

 

5. RESULTS 

 

5.1 MLP Regressor 

 

Based on the provided dataset, the MLP Regressor model is 

used to predict cooling rates with input parameters [20, 19, 90, 

36, 36, 36, 36, 36, 36, 36, 36, 6.8]. These values are relative to 

various parameters of building that include {Elongation[E], 

Distances[D], Orientation[O], Height [H](SW), Height 

[H](SE), Height [H](W), Height [H](E), Height [H](NW), 

Height [H](NE), Height [H](S), Height [H](N), FAR}. The 

model projected a cooling rate of 5.5751/m2. The following 

main metrics are found from an evaluation of the model's 

performance: 

The MSE for the MLP Regressor model is found to be 

0.0984, indicating the average squared difference between 

predicted and actual cooling rate values. The typical 

magnitude of prediction mistakes is represented by the Root 

Mean Squared Error (RMSE), which is calculated as the 

square root of the MSE and is calculated around 0.3136. 

Furthermore, the Mean Absolute Error (MAE) was found to 

be roughly 0.2325, which reflects the average absolute 

deviations between projected and actual cooling rate values. 

The MAE gives information about the model's average 

prediction error magnitude. This information is described in a 

summarized manner in Table 8. 

Figure 4 visually represents actual and predicted cooling 

rates for the MLP Regressor algorithm. The trend here is 

visible. A good training and validation loss graph shows a 

constant drop in training and validation loss over time, with 

the validation loss not behind the training loss much. During 

machine learning model training, it is necessary to analyze the 

model's learning progress, identify overfitting, and ensure 

generalization to unknown data. The plot for training and 

validation loss is depicted in Figure 5. 

 

 
 

Figure 4. Actual vs Predicted Cooling rates (MLP Regressor) 

 
 

Figure 5. Training and validation loss (MLP Regressor) 

 

 
 

Figure 6. Actual vs Predicted cooling rates (RNN LSTM) 

 

Table 8. Error metrics (MLP Regressor) 

 
Model MSE RMSE MAE 

MLP Regressor Model 0.0172 0.1313 0.0964 

 

5.2 RNN LSTM 

 

The RNN LSTM model is used to predict cooling rates 

based on the provided dataset. The input provided is the same 

as the previous algorithm. RNN LSTM models predicted 

cooling rate is 5.1285/m2. The model's performance was 

assessed using key metrics.  

The model's Mean Squared Error (MSE) is 0.0032, 

indicating the average squared difference between predicted 

and actual cooling rate values. The Root Mean Squared Error 

(RMSE), which measures the square root of the MSE, is at 

0.0570, indicating the normal level of prediction mistakes. 

Furthermore, the Mean Absolute Error (MAE), which 

measures the average difference between projected and actual 

cooling rate values, is found to be around 0.0432. This entire 

data is represented in a summarized manner in Table 9.  

The validation loss, evaluated in terms of MSE, is 

monitored during model training and evaluation. The 

validation loss is roughly 0.0032, suggesting the model's 

ability to generalize well to previously unseen data. 

Figure 6 is a visual representation of actual and predicted 

cooling rates for the RNN LSTM algorithm. The trend here is 

visible. The plot for training and validation loss is depicted in 

Figure 7. 
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Table 9. Error metrics (RNN LSTM) 

 
Model MSE RMSE MAE 

RNN LSTM Model 0.0029 0.0537 0.0429 

 

 
 

Figure 7. Training and validation loss (RNN LSTM) 

 

5.3 RBFN 

 

Similarly, the RBFN model was used to predict cooling 

rates utilizing the input parameters consistent with the 

previous algorithms. The model achieved a predicted cooling 

rate of 5.2087/m². Evaluation of the model's performance is 

also based on the following key metrics: 

The RBFN model's Mean Squared Error (MSE) is 

remarkably low, at 0.0016. This MSE is the average squared 

difference between expected and real cooling rate values, 

showing impressive prediction accuracy. The RMSE is 

calculated as the square root of the MSE and is found to be 

0.0395. This RMSE shows a relatively small amount of 

prediction errors, confirming the model's accuracy in 

anticipating cooling rates. Furthermore, the Mean Absolute 

Error (MAE) is found to be roughly 0.0315, which shows the 

average absolute deviations between projected and actual 

cooling rate values. The MAE shows the model's consistent 

and accurate prediction of cooling rates. This information is 

shown in an effective manner in Table 10. 

 

 
 

Figure 8. Actual vs Predicted cooling rates (RBFN) 

 

Table 10. Error metrics (RBFN) 

 
Model MSE RMSE MAE 

RBFN Model 0.0016 0.0395 0.0315 

 

Figure 8 is a similar representation of actual and predicted 

cooling rates for the RBFN algorithm. The trend here is also 

clearly visible. Similarly, the plot for training and validation 

loss is depicted in Figure 9. 

 

 
 

Figure 9. Training and Validation loss (RBFN) 

 

5.4 Comparison of results achieved 

 

In order to achieve a relevant comparison between the three 

types of algorithms used, we choose to provide the same 

values for input parameters for each model. This is represented 

in a summarized manner in Table 11. The predicted cooling 

rate for RNN LSTM was the lowest, while the predicted 

cooling rate for the MLPRegressor algorithm was the highest. 

 

Table 11. Comparison of cooling rate prediction 

 
Algorithm Input Cooling/m2 

RNN LSTM 
20, 19, 90, 36, 36, 36, 36, 36, 

36, 36, 36, 6.8 

5.1285 

RBFN 5.2087 

MLP Regressor 5.5751 

 

Following Figure 10 is a histogram comparison plot to have 

an efficient analogy between the error metrics used for each 

algorithm. From the graph it may be analyzed that, among the 

three models, the RBFN Model has the lowest MSE, RMSE, 

and MAE, indicating more excellent predictive performance. 

The RNN LSTM Model has a relatively low MSE, RMSE, and 

MAE, suggesting that it has good predictive ability. Among 

the three models, the MLP Regressor Model has the greatest 

MSE, RMSE, and MAE, implying the least accurate 

predictions. Similarly, Figure 11 compares actual and 

predicted cooling rates for all three models. It can be clearly 

seen that the RBFN model has the best scatter with the most 

efficient trend compared to the other two models. 

 

 
 

Figure 10. Comparison of error metrics for each algorithm 
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Figure 11. Comparison of actual vs Predicted cooling rates 

(All algorithms) 

 

 

6. CONCLUSION 

 

Finally, deep learning techniques are used to optimize urban 

courtyard blocks in hot and arid climates to forecast cooling 

rates in these blocks to ensure their long-term viability. For 

this objective, neural network models such as RNN-LSTM, 

MLP Regressor, and RBFN are used. RBFN outperformed 

MLP Regressors and RNN LSTM in forecasting cooling rates 

in urban courtyard blocks, according to the findings. This is 

critical because accurate forecasting is required to maintain the 

long-term viability of these blocks in hot and arid areas. As a 

result, RBFN is a more effective choice for predicting cooling 

rates in such urban courtyard blocks. When we say these 

algorithms perform well, it is also important to understand that 

these algorithms hold certain limitations, including data 

constraints, the need for expertise, and the unavailability of 

large datasets for better predictions. 

Further, we could continue the study by optimizing models 

that not only give us the cooling rates but also predict thermal 

comfort and thermal cooling levels accurately. Currently, the 

study is focused on hot arid zones using a “Cairo, Egypt” 

dataset; in the future, we can use this technique and modify 

parameter settings to fit into different temperature 

environments and use it to predict cooling and thermal rates 

on various datasets from diverse cities. 

Designers, Architects, Urban city planners, and 

Environmentalists can all use this study to develop 

software/models that easily let them enter parameters such as 

area and size specifications of a plot and building and estimate 

the cooling rate, cooling load, and thermal comfort according 

to different specifications. They can use the results to make 

design changes to optimize load results to decrease the energy 

consumption of courtyard blocks and buildings, by which a 

greener, sustainable way of urban development can be 

achieved. Policy makers can also use it to regulate new design 

plans. Anticipating cooling loads based on building features 

encourages architects and builders to design and construct 

buildings that are better adapted to the local climate 

conditions. Sustainable building design promotes the use of 

passive cooling strategies, such as optimal orientation, 

shading, and insulation, which can reduce the reliance on 

energy-intensive cooling systems. 

As climate change continues to bring rising temperatures 

and more frequent heat waves, the ability to accurately 

anticipate and manage cooling loads becomes critical for 

building resilience. Buildings designed to handle extreme heat 

efficiently are better equipped to provide a comfortable indoor 

environment during heatwaves, thus enhancing the resilience 

of communities to climate change impacts. Sustainable 

building practices and energy-efficient technologies can foster 

local economic development. The research can encourage the 

adoption of green building standards and the growth of 

industries related to energy-efficient construction and 

retrofitting. This aligns with the goal of conserving energy 

resources and reducing greenhouse gas emissions associated 

with energy production. 

Overall, this research highlights the importance of using 

advanced machine learning techniques, such as neural 

networks, to optimize urban courtyard blocks in hot, arid 

environments. It underscores the significance of precise 

cooling rate predictions in ensuring the long-term viability of 

these blocks. In the future, these insights can inform the 

development of more sustainable urban design solutions in hot 

and arid zones. It aligns with global goals related to sustainable 

development and climate change adaptation, contributing to a 

more sustainable and resilient built environment. 
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RBFN Radial Basis Function Network 
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RNN Recurrent neural network 
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RMSE Root Mean Squared Error 
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Greek symbols 
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μ Center Point (RBFN) 
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f Forget gate 
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t Present state 
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