
Brain Tumor Detection Using Advanced Deep Learning Implementations

Lalit Shrotriya1* , Govinda Agarwal1 , Kushagra Mishra1 , Sashikala Mishra1 , Ranjeet Vasant Bidwe1 ,

Gagandeep Kaur2

1 Symbiosis Institute of Technology, Pune, Symbiosis International (Deemed) University (SIU), Lavale, Pune 412115,

Maharashtra, India
2 Symbiosis Institute of Technology, Nagpur, Symbiosis International (Deemed) University (SIU), Lavale, Pune 412115,

Maharashtra, India

Corresponding Author Email: ranjeetbidwe@hotmail.com

https://doi.org/10.18280/ts.400508 ABSTRACT

Received: 16 February 2023

Revised: 10 July 2023

Accepted: 8 August 2023

Available online: 30 October 2023

Modern technological advancements are concentrated on the development of intelligent

machines or software that mimic and respond like humans. Today's Artificial Intelligence

computing activities encompass language processing, perception, learning, planning, and

problem-solving. Early cancer detection is essential to saving as many lives as possible. A

recent report from the "World Health Organization" (WHO) in February 2018 highlighted

mortality associated with brain tumors or the "CNS" (Central Nervous System). This paper

primarily aims to detect and predict the presence of brain tumors in individuals using "MRI"

(Magnetic Resonance Imaging) brain scan images. This is achieved through machine

learning techniques in classification. A model for identifying brain tumors is created using

a deep learning algorithm and a dataset comprising thousands of images. "Convolutional

Neural Networks" (CNNs) are employed to identify and predict the likelihood of the

presence of a brain tumor in an individual, based on the provided MRI scan image. This

work explores several potential mechanisms for using deep learning techniques to construct

models for brain tumor detection. The objective is to discover more effective methods to

detect brain tumors based on MRI scans, thereby enabling neurologists to make decisions

with increased ease, accuracy, and speed. Manual classification of brain tumors using only

MRI images can be time-consuming, potentially delaying necessary treatment for the

affected individual. Therefore, the assistive use of machine learning technology can help

healthcare professionals enhance their work in combating brain tumors, a severe medical

condition.

Keywords:

brain tumor, healthcare, convolutional

neural networks, artificial neural networks,

classification, deep learning, MRI, transfer

learning

1. INTRODUCTION

The brain, one of the most crucial organs in the human body,

is responsible for transmitting signals to various parts of the

body via neurons. A tumor is a cluster of abnormal cells that

proliferate uncontrollably. A tumor occurring in the brain is

known as a brain tumor and typically presents as two types:

low-grade and high-grade brain tumors. A low-grade tumor,

which is non-cancerous, does not have the ability to spread to

other body parts or grow further. In contrast, high-grade brain

tumors can quickly spread without defined boundaries and

potentially lead to immediate death [1, 2]. Brain tumors are

among the most aggressive diseases in both adults and children.

They constitute about 85% to 90% of all primary "Central

Nervous System" (CNS) tumors. Statistics indicate that

approximately 11,700 people globally are diagnosed with

brain cancer each year.

Only about 34% of men and 36% of women survive beyond

the 5-year mark after being diagnosed with brain cancer or a

CNS tumor. To improve life expectancy, it is crucial to

implement appropriate treatment strategies along with

accurate diagnostic techniques. Conventionally, MRI scans

are evaluated by a radiologist, a process that is susceptible to

errors due to human involvement [3]. Given this complexity,

it is vital to develop a cloud-based system that can assist

radiologists and other healthcare professionals in accurately

detecting and identifying brain tumors. Our goal is to create an

algorithm using machine learning classification techniques

that can predict and identify common brain tumor patterns in

MRI scans, and determine whether a given MRI scan image

shows the presence of potentially hazardous brain tumor cells.

To achieve this, we are employing "Convolutional Neural

Networks (CNN)" or "Artificial Neural Networks (ANN),"

which are subsets of Deep Learning.

The use of deep transfer learning, a specific branch of deep

learning techniques, has been increasingly adopted in studies

for visual data classification, object recognition, and

classification of various forms of unstructured data records [4].

The challenge in classifying tumor images stems from the

heterogeneous nature of neoplastic tissue in terms of spatial

and imaging profiles, and its overlap with normal tissues in

some imaging techniques [5].

2. LITERATURE REVIEW

Deepak and Ameer [6] demonstrated the effectiveness of

their Convolutional Neural Network (CNN) model, which

uses transfer learning for detecting and classifying brain tumor

images. The authors focused on the most prevalent brain

Traitement du Signal
Vol. 40, No. 5, October, 2023, pp. 1869-1880

Journal homepage: http://iieta.org/journals/ts

1869

https://orcid.org/0000-0001-9288-1172
https://orcid.org/0000-0001-6150-8324
https://orcid.org/0000-0003-1833-8651
https://orcid.org/0000-0002-5433-4917
https://orcid.org/0000-0002-6801-3102
https://orcid.org/0000-0003-1480-1899
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400508&domain=pdf

tumors: glioma, meningioma, and pituitary tumors. Their

system utilized GoogLeNet to extract features from MRI-

derived images, which were then classified using models built

on these extracted features. A five-fold cross-validation was

performed on the dataset, resulting in an accuracy of

approximately 92.3% with the standalone model employing

deep transfer learning. When Support Vector Machine (SVM)

and K-Nearest Neighbors (KNN) were applied to the extracted

features from CNN for classification, KNN achieved a higher

accuracy than SVM.

Zulpe and Pawar [7] employed the Gray-Level Co-

occurrence Matrix (GLCM) to analyze textures by detecting

relationships between pixels in unique representations. The

frequency or prominence of a particular pair of pixels in an

image occurring in a specific spatial arrangement was

calculated and represented in matrix form using MATLAB's

gray comatrix function. For data preprocessing, the authors

used a Gaussian filter to enhance image quality by suppressing

noise, enhancing contrast, equalizing intensity, and

eliminating outliers. For classification, a two-layer feed-

forward neural network was designed with 44 inputs, 10

neurons in the hidden layers, and four output neurons for

classification output. A sigmoid activation function was used.

The Levenberg-Marquardt algorithm was implemented for

model training, with a total of 15 epochs run, achieving a

classification rate of 97.5%.

Sharma et al. [8] proposed a model that first preprocesses

the data to remove noise from images by applying binarization

(from RGB to Gray) and a median filter. This is crucial as

image noise can result in incorrect feature extraction, as pixels

may contain unwanted data that needs to be cleaned using

noise removal techniques. They then used an intelligent edge

detection technique to identify the edges of the image, which

is necessary for image segmentation. The image was

segmented to simplify the algorithms' analysis. Gray-Level

Co-occurrence Matrix (GLCM), Multi-Layer Perceptron

(MLP), and Naive Bayes were used for texture extraction and

image classification. Both MLP and Naive Bayes achieved

accuracies of 98.6% and 91.6%, respectively.

Mohsen et al. [9] utilized deep learning neural networks to

classify MRI images depicting three types of brain tumors:

Glioblastoma, Sarcoma, and Metastatic bronchogenic

carcinoma. Image segmentation was employed to distinguish

brain tissues for improved algorithm performance, achieved

through the 'Fuzzy C' clustering technique, which segmented

the image into five sections. The 'Multilevel Discrete Wavelet'

transform was used to extract 1024 wavelet features, and

principal component analysis was used to approximate the

original extracted features with lower-dimension feature

vectors. The 'Deep Neural Network' achieved a high accuracy

of 96.67%. The classification algorithms used included KNN

(with K values of 1 and 3), using WEKA and PCA; Sequential

Minimal Optimization (SMO)-SVM was also implemented for

classification purposes. However, Deep Neural Networks

achieved the best performance, with a classification rate of

around 96.97%.

Bauer et al. [10] utilized bio-physio-mechanical modeling

of tumor growth to investigate the sequential growth cycle in

individuals diagnosed with brain tumors. The tumors were

initially grown in an atlas, which served as the foundation for

a new multi-scale, multi-physics model. This model

encompassed development starting from the cellular level and

moving up to the bio-mechanical layer. The method integrated

discrete and continuous techniques to create a tumor growth

model that differentiated images containing tumors based on

atlas-based recognition. However, this approach had a

significantly high computation time. The discrete model was

applied to biological phenomena at the cellular level,

providing substantial information about tumor cell evolution.

Still, it assumed that the tumor expands or contracts in a

conformal manner due to the lack of information about

preferential growth directions. To address this, a bio-

mechanical model was employed to provide context using

pressure gradient information. Values for Young's modulus

and Poisson's ratio were used to conduct stress and strain

analysis on the atlas using Lagrange's formula for structural

mechanics. While this method offered profound insights into

brain tumors through analysis, it required substantial

computation time—ranging from 10 to 36 hours—given the

large equations that needed iterative solving.

Islam et al. [11] applied the advanced AdaBoost

classification method and a new multi-fractal feature

extraction technique to identify and segment images likely to

contain brain tumors. The texture was treated as a feature and

extracted using MultiFD, PTPSA, and texton schemes. Each

pixel represented a set of feature values, including intensity,

MultiFD and texton, PTPSA features. The authors followed a

data-driven approach to machine learning for fusing features

extracted from MRI images. Subsequently, an AdaBoost

ensemble classifier was used to classify images into those with

and without tumors.

In study [2], a Convolutional Neural Network (CNN) was

used to identify and segment images containing brain tumors,

sourced from the RadioPedia and Brain Tumor Image

Segmentation Benchmark (BRATS) 2015 datasets. Gradient

descent was employed in the calculation of the loss function.

The proposed CNN model eliminated the need for separate

feature extraction, reducing both the computation time and

model complexity. The results demonstrated that the model

achieved an accuracy exceeding 96%, which was higher than

the accuracy achieved using Support Vector Machines (SVM)

and Deep Neural Networks (DNN).

Deniz et al. [12] developed a classifier for breast cancer

images using histopathologic data. The final validation was

conducted using AlexNet. Given just two output classes -

benign and malignant - the last three layers of AlexNet were

tailored specifically for breast cancer detection. Deep feature

extraction was performed using VGG16 and AlexNet. On the

fully connected first and second layers of VGG16, feature

extraction was carried out using activation functions, resulting

in around 4096 features or attributes. Ultimately, a Support

Vector Machine (SVM) classifier was utilized to classify the

features into either benign or malignant classes using L2

regularization. The highest accuracy, around 91.30%, was

achieved by fine-tuning the AlexNet model.

Hussein et al. [13] explored the use of a learning model for

lung and pancreatic tumor classification. They employed a 3D

Convolutional Neural Network (CNN) architecture based on

transfer learning, which demonstrated superior accuracy

compared to various handcrafted machine learning models.

The fully connected layers of the CNN model, comprising

4096 input features, formed the basis for the multitask learning

model's concept of malignancy. The accelerated proximal

gradient method was used for optimization. Fine-tuning was

conducted with 10-fold cross-validation, and the highest

accuracy achieved was 91.26% using a 3D convolutional

network with multitask learning.

In their work on glioma grading from MRI images, Yang et

1870

al. [14] found that AlexNet outperformed GoogLeNet.

Accurate glioma grading is critical before initiating surgical

treatment. Given the proven high performance of CNN in

medical research, they hypothesized that a deep neural

network might yield higher accuracy in distinguishing

between WHO low and high-grade gliomas. For image

segmentation, a rectangular region of interest containing 80%

of the tumor was used, and approximately 20% were

partitioned for use as test data. Both GoogLeNet and AlexNet

underwent initial training, and fine-tuning was carried out

using models previously trained on vast databases of real-

world images. Classification evaluation was conducted using

five-fold cross-validation. This approach achieved

approximately 93.9% test AUC, 90.9% test accuracy, and

86.7% validation accuracy.

Natarajan et al. [15] proposed using a threshold operation to

identify brain tumors in MRI brain scans. The images were

first converted to grayscale, then the contrast was equalized

using histogram equalization. This technique redistributes the

most frequently occurring intensity values, enabling areas of

lower contrast to become areas of higher contrast. The images

were sharpened using a high pass filter, which highlights fine

details from the image, thereby facilitating edge detection. A

high contrast overlay emphasizes the image edges, making it

easier to detect the edges by analyzing the contrast values

using a different operator for edge detection and structure. A

median filter was used for noise removal to enhance the

model's results, achieved by filtering each image signal and

replacing it with the median of neighboring signals. Image

segmentation was then performed to simplify the signal

representation into a more recognizable and analyzable form.

Morphological operations were carried out, followed by image

subtraction. As a result, they successfully condensed the image

to focus solely on the area containing the tumor.

In their work, Joshi et al. [16] developed a system that

isolated the tumor portion from the image and extracted the

tumor's texture to be used as a feature through the "Gray Level

Co-occurrence Matrix" (GLCM). The classification was then

performed using a neuro-fuzzy classifier. Initially, the images

were segmented into regions containing tumors and those

without, using histogram equalization. Binarization was

achieved through thresholding, resulting in a gray value of 1

for images containing the tumor and a gray value of 0 for the

background. Texture feature extraction was accomplished

using GLCM, and a Neuro Fuzzy Classifier, an "Artificial

Neural Network," was employed to classify the results into

various tumor grades.

Amin and Megeed [17] utilized "Principal Component

Analysis" (PCA) to automatically detect tumors from brain

MRI scan images. In the second stage, a "Multi-Layer

Perceptron" (MLP) was used to categorize the extracted

features of the images, achieving an average recognition rate

between 88.2% and 96.7%.

Goswami and Bhaiya [18] applied an unsupervised machine

learning technique of neural networks for classification using

MRI brain scan images. Preprocessing was performed through

noise filtering on MRI brain images, followed by edge

detection and tumor extraction via segmentation. Feature

extraction was conducted using the "Gray-Level Co-

occurrence Matrix" (GLCM). Finally, "Self-Organizing

Maps" were utilized to classify images with and without brain

tumors.

George and Karnan [19] proposed a technique for

enhancing MRI images using histogram equalization and

"Center Weighted Median" (CWM).

3. RESEARCH METHODOLOGY

Data Collection:

- The data was sourced from the Kaggle dataset named

“Brain Tumor Detection 2020,” which contains three folders,

yes, no, and pred, that contain a collective of 3060 images.

Table 1 provides details of it.

Table 1. Images used for the analysis

S. No.

Metrics of Count in Each Folder

Particulars about Dataset: Brain

Tumor Detection 2020

Total 3 Folders Namely:

“Yes”, “No”, “Pred”
Total Count in Each Folder

1. Yes 1500 Images

2. No 1500 Images

3. Pred 60 Images

The methodology followed resembles the following

sequence:

1. Importing packages and libraries.

2. Setting the path of data.

3. Importing and shuffling of data.

4. Visualization.

5. Training and testing data splitting.

6. Generation of data from images without

diversification.

7. CNN model for non-diversification.

a. Defining model structure.

b. Model compiling.

c. Model fitting.

8. Efficient Net B4 Model Fitment.

9. Checking model fit with graphs.

10. Prediction score & Confusion Matrix & Evaluation.

The methodology starts with importing necessary libraries

into the environment. Then the next step is to set the paths for

addressing the data imported into the drive. The process was

carried out on Google’s Colab service, which provided the

integration of Google Drive to import and use large datasets.

Since the dataset exceeded the maximum limit allowed to be

uploaded in the runtime, we had to mount google drive and

import the data from there by specifying a path. Next comes

the shuffling step so that the data for Yes and No (images

containing tumor and not containing the tumor, respectively)

do not group when training or testing the model. Then, the data

is visualized using the imshow function from matplotlib,

which allows us to read an image. The sample images of the

dataset used for comparative implementation methodology is

shown in Figure 1.

Figure 1. Dataset images of brain CT, MRI

1871

Figure 2. Architecture diagram for non-diversified

dataset based CNN

Figure 3. Architecture for diversified dataset based CNN

The next step was to split the data into training and testing.

The training data size was 90%, with a random state seed value

of 42. The next step was to generate data from images without

diversification. From here on out, the proceeding methodology

is divided into two sections, each following the same steps for

diversified and non-diversified image data. The data was

hence generated from the images. Next, as per Figure 2, the

CNN model was to be developed for non-diversification.

Firstly, the model structure was defined by having 4 2D

convolutional layers with ReLU activation functions. Each

was followed by a later 2 by 2 2D pooling and a dropout layer

that removes any record with less than 20% recognition.

Finally, a flattened layer was added with a dropout rate of 50%

and two dense layers with ReLU and SoftMax activation

functions, respectively. The model was then compiled using a

loss rate of 0.001 and “Categorial Cross Entropy” as the loss

function on the accuracy metric. Then the model fitting was

carried out for 30 epochs with 120 steps each. The accuracy

and other metrics were then checked by plotting them using

matplotlib functions. Finally, the prediction score was

calculated, and the prediction process was carried out.

Next, the data was generated from images with

diversification as per Figure 3. All the steps were the same

except for the structure of the CNN model, where we had 4

layers last time. We had 5 2D convolutional layers with ReLU

activation function and only a pooling layer of 2 by 2 for each

2D convolutional layer. The dropout layer was put in at the

end, along with dense layers. The flattening layer was added,

followed by a dropout layer of 50% and two dense layers with

ReLU and SoftMax activation functions, respectively. The rest

of the process also remains identical to the previous section

with only changes in the model fitting section, where we used

50 epochs with 122 steps in each epoch this time.

𝑪𝒐𝒏𝒗𝑶𝒖𝒕𝒑𝒖𝒕 (𝒙, 𝒚) = (𝐹𝐾 ∗ 𝐼𝑁𝑃) (𝑥, 𝑦) =
∑∑𝐹𝐾(𝑖, 𝑗) ∗ 𝐼𝑁𝑃 (𝑥 + 𝑖, 𝑦 + 𝑗)

(1)

𝑷𝒐𝒐𝒍𝒊𝒏𝒈𝑶𝒖𝒕𝒑𝒖𝒕 (𝒙, 𝒚) = 𝑃𝑜𝑜(𝐼𝑁𝑃[𝑥 ∗
𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒 : (𝑥 + 1)𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒 , 𝑦 ∗ 𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒 : (𝑦 +

1)𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒])

(2)

𝑫𝒆𝒏𝒔𝒆𝑶𝒖𝒕𝒑𝒖𝒕 = 𝐴𝑐𝑡𝐹𝑢𝑛[(𝑊𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑡𝑟𝑖𝑥 ∗
𝐼𝑁𝑃) + 𝑏𝑖𝑎𝑠]

(3)

whereas,

• 𝑪𝒐𝒏𝒗𝑶𝒖𝒕𝒑𝒖𝒕(𝒙, 𝒚) = Output of the Convolution

layer, new generated feature map after operation.

• 𝑷𝒐𝒐𝒍𝒊𝒏𝒈𝑶𝒖𝒕𝒑𝒖𝒕(𝒙, 𝒚) =Output of Pooling layer,

downsampled feature map after operation.

• 𝑭𝑲 =Convolutional Filter.

• 𝑰𝑵𝑷 =Feature Map of Input Image.

• (𝒙, 𝒚) =Spatial Coordinates of Feature Map.

• (𝒊, 𝒋) =Spatial Coordinates of Filter Kernel.

• 𝑨𝒄𝒕𝑭𝒖𝒏 = Activation Function of Learnable

Parameters.

• 𝑾𝒆𝒊𝒈𝒉𝒕𝑴𝒂𝒕𝒓𝒊𝒙 = Matrix with Learnable

Parameters.

• 𝒃𝒊𝒂𝒔 =a bias value.

• 𝑺𝒐𝒇𝒕𝑴𝒂𝒙 =the last layer in a network, the Softmax

layer produces predictions about the input data.

• 𝑭𝒍𝒂𝒕𝒕𝒆𝒏 =It reshapes the tensor into 1-dimentional

vector.

𝐶𝑁𝑁𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝐷𝑒𝑛𝑠𝑒
(𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝐷𝑒𝑛𝑠𝑒(𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷

(𝐶𝑜𝑛𝑣2𝐷(𝐼𝑁𝑃))))))))
(4)

Table 2. Architecture configuration of diversified and non-

diversified CNN’s

Implementation

Details

Description (Model Architecture-

Diversified & Non-Diversified CNN)

Convolutional

Layers

Several convolutional layers with different

filter sizes (32, 64, 128, 256) and “ReLu”

activation.

Max Pooling

Layers

Max pooling layers with pool size (2, 2) to

down sample feature maps.

Dropout Layers
Dropout layers with a dropout rate of 0.2 for

regularization and preventing overfitting.

Flatten Layer
Converts 2D feature maps to a 1D feature

vector.

Dense Layers
Dense layers for classification after the

flatten layer.

Loss Function
Categorical Crossentropy, suitable for multi-

class classification problems.

Batch Size
Fit Function is Used. (Non-Diversified

CNN). Batch size is 20 (Diversified CNN).

Training
Training is performed using the fit function

with training data and validation data.

Steps per Epoch

120 steps per epoch, indicating the training

data is divided into batches and processed

accordingly.

1872

Figure 4. Workflow diagram for complete process of model architecture based on CNN-(diversified & non-diversified),

EfficientNetB4, VGG-16 pre-processed Keras model

Table 3. Structure of developed model

Layer Description

Base Model EfficientNetB4 with pre-trained weights from ImageNet, excluding the top layer. Input shape: img_shape

Batch Normalization Normalizes the activations of the base model to improve training stability.

Dense Layer Units: 256; Regularization: Kernel L2 (0.016), Activation L1 (0.006), Bias L1 (0.006); Activation: ReLU

Dropout Regularization Rate: 0.45; Randomly drops out a fraction of units during training to prevent overfitting.

Output Layer Dense layer with units equal to class_count (number of classes). Activation: Softmax

Model Instantiation Inputs: base model input; Outputs: output layer

Model Compilation Optimizer: Adamax; Learning Rate: 0.001; Loss: Categorical Cross-Entropy; Metric: Accuracy

Table 2 outlines architecture configurations for diversified

and non-diversified CNN models.

The TensorFlow Keras callbacks Reduce the Learning Rate

on Plateau, Early Stopping, and Model Checkpoint are

combined in the EfficientNetB4 [20]. Architecture, but some

of their drawbacks are also addressed [21]. The base model

used is EfficientNetB4 from the TensorFlow Keras

applications. It is loaded with pre-trained weights from the

ImageNet dataset and has its top layer (fully connected layer)

excluded. The input shape of the model is specified as

img_shape, which represents the shape of the input images.

The output of the base model is passed through batch

normalization, which helps normalize the activations and

improve training stability. A Dense layer with 256 units is

added using kernel regularization (L2 regularization with a

coefficient of 0.016), activity regularization (L1 regularization

with a coefficient of 0.006), and bias regularization (L1

regularization with a coefficient of 0.006). The activation

function used for this layer is ReLU. Dropout regularization

with a rate of 0.45 is applied to the previous layer, which helps

prevent overfitting by randomly dropping out a fraction of the

units during training.

The final output layer is a Dense layer with the number of

units equal to class_count, representing the number of classes

in the classification task. The activation function used is

softmax, which produces probability distributions over the

classes. The model is instantiated using the Model class, with

the inputs set to the input of the base model and the outputs set

to the output layer. The model is compiled using the Adamax

optimizer with a learning rate 0.001. The loss function used is

categorical cross-entropy, suitable for multi-class

classification tasks. The accuracy metric is also specified for

evaluation during training. The specific sizes of the

convolution kernels in the EfficientNetB4 model are not

explicitly specified. The EfficientNetB4 architecture consists

of multiple convolutional layers with different kernel sizes

defined internally within the EfficientNetB4 model

implementation. The details of the mentioned model are given

below in Table 3.

Additionally, it offers a summary of the model’s

performance after each epoch that is simpler to understand.

Further, it includes a valuable feature that allows us to select

how many epochs we want to train for before receiving a

message asking us to input H to cease training on the current

epoch or an integer to define how many epochs we want to

train for before hearing the message again. This is useful if we

are developing a model and find that the metrics are suitable,

and we want to halt the model training early. Remember that

the callback always gives our model weights that have been

changed to represent the epoch with the highest performance

on the monitored metric (accuracy or validation accuracy).

Figure 4 depicts a comprehensive workflow diagram

encompassing the entire process of model architecture, which

includes CNN-based models for both diversified and non-

diversified datasets, as well as the pre-processed Keras models

EfficientNetB4 and VGG-16.

The callback will keep track of training accuracy and

change the learning rate accordingly until the accuracy meets

a user-specified threshold level. Once that level of training

accuracy is attained, the callback shifts to monitoring

validation loss and modifies the learning rate accordingly. The

callback has the following format:

“callbacks=[LRA(model, base_model, patience,

stop_patience, threshold, factor, dwell, batches, initial_epoch,

epochs, ask_epoch)]”

where:

• Model is the name of our developed model.

• If we use transfer learning, our base model’s name is

base_model.

• Patience is a number that specifies how many

successive epochs can pass before the learning rate is

1873

changed. The stop_patience integer represents the

number of consecutive epochs for which the learning

rate was changed, but no advancement in the

monitored measure was made before training was

stopped (like the patience parameter in early stopping).

• Threshold is a float that specifies the threshold at

which the call back changes from tracking training

accuracy to tracking validation loss. When

implementing the standard Keras call-backs, the

validation loss in early epochs tends to fluctuate

greatly and might result in undesired behavior.

• Factor is a float that gets the updated learning rate by

the equation (Learning_Rate=Learning_Rate×Factor)

batches are an integer. It tells us about the number of

batches of data that are segregated.

• Throughout the training, the callback provides data in

the form of an epoch that reads “processing batch of

batches accuracy=accuracy loss=loss.”

• Initial_epoch is a numeric value. It is utilized in the

data printed for each epoch, often set to zero.

• Either an integer number or None is specified for

ask_epoch. It indicates the epoch number at which

user input is required if set to an integer. The user’s

training stops once they enter H. If the user enters an

integer, it indicates how many epochs are left to run

until the user input is requested once again.

• This function is helpful if we are developing a model

and either need to stop because of poor metrics or

don’t need to continue because of strong metrics.

Remember that the weights employed in our model are

always those for the epoch with the weakest metric

performance. As a result, the algorithm may still

produce predictions even if training is halted.

The model using the fit function with several parameters

and callbacks is trained with the number of epochs set to be 40,

indicating that the model will undergo 40 complete passes

through the training data during training. The patience

parameter plays a role in adjusting the learning rate. It

determines the number of epochs to wait before modifying the

learning rate if the monitored value (either training accuracy

or validation loss) does not improve. This parameter helps

prevent premature adjustments to the learning rate. The

stop_patience parameter specifies the number of epochs to

wait before terminating the training process if the monitored

value fails to improve. Once this threshold is reached, training

will be halted. The threshold parameter defines the criteria for

monitoring the performance metric. If the training accuracy

falls below the threshold, the training accuracy itself will be

used as the monitored value. However, if the training accuracy

exceeds the threshold, the monitored value will be the

validation loss. This dynamic selection allows for adaptive

monitoring based on the training progress. The factor

parameter determines the reduction factor applied to the

learning rate when necessary. If the monitored value fails to

improve, the learning rate will be decreased by this factor to

fine-tune the model’s optimization process. The dwell

parameter is a boolean flag that determines whether the model

weights should revert to the weights from the previous epoch

if the monitored metric does not show improvement. Enabling

this flag can help prevent the model from getting stuck in a

suboptimal state by reverting to a previously successful

configuration. The freeze parameter, also a boolean flag,

controls whether the weights of the base model should remain

frozen during training. Freezing the base model allows for

feature extraction while keeping the learned representations

intact. The ask_epoch parameter specifies the frequency at

which the user will be prompted to halt the training process.

After running for the specified number of epochs, the training

will pause and inquire if further training is desired. The

batches parameter denotes the number of training batches to

be processed per epoch. Batches are smaller subsets of the

training data used for optimization, allowing for more efficient

computation. The callbacks list includes a single callback

object, LRA, which is an instance of a custom callback class.

This LRA callback is responsible for dynamically adjusting

the learning rate based on the specified criteria during training.

It ensures that the learning rate adapts to the model’s

performance, improving convergence. Finally, the training

process commences using the fit function. The training

generator (train_gen), validation generator (valid_gen), and

other relevant parameters are passed to the function. The

callbacks list is provided to enable learning rate adjustment

and other functionalities during training, allowing for more

effective and customized model optimization.

In summary, the provided model meticulously configures

the parameters and callbacks required for training and then

initiates the same using the fit function, incorporating the

specified parameters and the LRA callback to facilitate

learning rate adjustments. This comprehensive approach

ensures an efficient and adaptive training process, ultimately

leading to improved model performance.

This relationship is summarized as follows:

• When the training accuracy falls below the defined

threshold, the learning rate is adjusted based on the

training accuracy. If the training accuracy does not

show improvement for a specified number of epochs

(self.patience), the learning rate is reduced by a factor

determined by self.factor. This adjustment aims to

guide the optimization process towards a better

solution in the parameter space.

• Conversely, if the training accuracy surpasses the

threshold, the learning rate adjustment is based on the

validation loss. Similar to the previous scenario, if the

validation loss does not improve for a certain number

of epochs, the learning rate is decreased accordingly.

The learning rate adjustment occurs iteratively throughout

the training process, with the LRA class incorporating various

variables and calculations to quantify the relationship. These

include self.count, self.patience, self.stop_count,

self.stop_patience, self.highest_tracc, self.lowest_vloss, and

self.factor. These parameters and calculations influence how

the learning rate changes in response to training accuracy and

validation loss.

To gain a more comprehensive understanding of the

learning rate trend and its relationship with training accuracy,

it is recommended to examine the training history and the

information printed during training. This includes monitoring

the changes in learning rate, accuracy, validation loss, and

epoch progression. By analyzing this information, one can

gain insights into the dynamics of the learning rate and its

impact on the training process. From the provided output in

Figure 5 and Figure 6, we can analyze the trend of the learning

rate throughout the training process.

Initially, the learning rate is set to 0.001. The training starts

with an epoch of 1, where the loss is 6.143, accuracy is

1874

90.375%, validation loss is 4.55959, and validation accuracy

is 97.667%. As the training progresses, we observe a

consistent learning rate of 0.001, and the monitored metric is

the validation loss. During the first few epochs, the validation

loss experiences fluctuations. However, after epoch 10, the

training continues until epoch 21, as indicated by the user input.

At this stage, the learning rate remains unchanged at 0.001.

Figure 5. Ask_epoch function depicting epoch

initialization count

Figure 6. “H” option to halt training & integer input

to continue

From epoch 22 onwards, the learning rate transitions to

0.0005 based on the specified adjustment factor. The

monitored metric remains the validation loss. The training

continues until epoch 40, where the learning rate further

decreases to 0.00013. Throughout this phase, the validation

loss shows a decreasing trend, indicating improvement in the

model’s performance. It is noteworthy that the validation

accuracy remains consistently high at 100% throughout the

entire training process, demonstrating the model’s ability to

generalize well to unseen data.

In summary, the learning rate follows a pattern of

adjustment based on the specified factors and the monitored

validation loss. It gradually decreases as the training

progresses, suggesting a fine-tuning of the model’s

optimization process. This adaptive adjustment ensures that

the model converges towards a better solution in the parameter

space, leading to improved performance.

In observation, the article discusses several strategies to

address the challenge of training with a limited number of

samples. These techniques include data augmentation,

leveraging pre-trained models through transfer learning,

regularization methods, early stopping, and learning rate

adjustment. Data augmentation expands the training dataset by

applying various transformations to the available samples,

reducing overfitting. Transfer learning allows the utilization of

pre-trained models trained on large-scale datasets to leverage

their knowledge for the specific task at hand. Regularization

techniques, such as dropout and weight regularization, help

prevent overfitting and improve model generalization. Early

stopping stops the training process if no improvement is

observed, preventing overfitting on limited data. Learning rate

adjustment dynamically adjusts the learning rate to optimize

model convergence. By employing these techniques

collectively, the article addresses the challenge of few-sample

training and enhances the performance of the model with a

limited training dataset.

4. HARDWARE AND SOFTWARE SPECIFICATIONS

In this section, we provide an overview of the hardware and

software specifications utilized in our experiments.

Table 4. Prediction metrics for diversified and non-

diversified data

Component Manufacturer & Version Size

Processor Intel Core i7, 10870@2.20 Ghz NA

RAM DDR4-Speed 2667 Mhz 16GB

GPU1 Intel Iris-XE Graphics
Shared up to

8 GB

GPU2 Nvidia GeForce GTX 1650 Ti

Dedicated 4

GB, Shared

up to 8 GB

GPU3 Google Colab Shared GPU T4 NA

Operating System Windows 11 NA

Environment Used
Google Colab Python Virtual

Environment
NA

Packages/Libraries

used.

• Layers from Keras

• Image augmentation

using a class from Keras called

ImageDataGenrator

• Activation Function: -

Relu, SoftMax

• CNN Dropout: -0.2

• Loss Function: -

Categorical Crossentropy

Input to model

• Input image

size=224*224*3

• Batch Size=20

• Number of Epochs: 30-

40

5. RESULTS AND DISCUSSION

The experimental setup used for the analysis is represented

in Table 4. The study was divided into two sections-the data

was derived from images without and with diversifications in

the respective order. After training the model, the results are

analyzed in two main metrics-Loss and Prediction accuracy

[22, 23] for both sections, which are mentioned below in Table

5. Table 6 is a comparison of accuracies recorded by existing

methods with diversified and non-diversified data models.

Table 5. Prediction metrics for diversified and non-

diversified data

S.

No.

Metrics of predictions

Particulars Loss Accuracy

1. Non-Diversified Data-CNN 26% 97%

2. Diversified Data-CNN 25% 89%

3. EfficientNetB4 <1% 99.67%

4.
VGG Architecture-16

Using Keras Pre-Processed Models

<23%

96%

1875

Table 6. Prediction metrics for comparison b/w existing models & CNN’s diversified and non-diversified data model

Accuracy Predictions Based on Comparison

Particulars Their Accuracy
Our Accuracy (With/Without

Diversification of CNN Model)
EfficientNetB4

Keras Pre-Processed VGG

Architecture

Deepak and Ameer (CNN Model

without Transfer Learning)
84.19% 97% & 89% 99.67% 96%

Amin et al. (“Multi-Layer

Perceptron”)

Average B/w

88.20% to

96.70%

97% & 89% 99.67% 96%

Sharma et. al. (GLCM using Naïve

Bayes)

MLP 98.60%

Naïve Bayes

91.60%

97% & 89% 99.67% 96%

Zulpe and Pawar (“Grey Level

Concurrence Matrix”)

Classification

Rate: -97.5%
97% & 89% 99.67% 96%

Hussein et al. (3D CNN) 91.26% 97% & 89% 99.67% 96%

Yang et al. (GoogleNet & AlexNet)
90.90% Test

Accuracy
97% & 89% 99.67% 96%

In Figure 7, we present accuracy metrics obtained from the

evaluation of our implemented models, including the

EfficientNetB4 model and a customized CNN architecture.

For CNN, the first section for non-diversified data, Figure 8,

shows the plot for model accuracy in blue and accuracy for

validation data set in orange on the vertical axis plotted against

several epochs on the horizontal axis.

Figure 9 shows the value of the loss function in black and

the loss for validation data set in red circles on the vertical axis

plotted against several epochs on the horizontal axis.

Figure 10 shows the value for accuracy and accuracy for

validation data set in red circles on the vertical axis plotted

against the number of epochs on the horizontal axis.

Figure 11 shows the value for loss and validation data loss,

accuracy, and validation data accuracy, all in one chart on the

vertical axis plotted against the number of epochs on the

horizontal axis.

Figure 7. Accuracy metrics for efficientnetb4 model & CNN

architecture

Figure 8. Plot for accuracy and validation accuracy against a

number of epochs

Figure 9. Plot for accuracy and validation accuracy against a

number of epochs

Figure 10. Plot for accuracy and validation accuracy against

a number of epochs

Figure 11. Plot for loss and validation loss, accuracy, and

validation accuracy against the number of epochs

1876

For the second section for diversified data, Figure 12 shows

the plot for model accuracy in blue and the accuracy for

validation data set in orange on the vertical axis plotted against

the number of epochs on the horizontal axis.

Figure 13 shows the value for loss in a solid black line and

validation data loss in a dashed red line on the vertical axis

plotted against the number of epochs on the horizontal axis.

Figure 14 shows the accuracy value in the solid black line

and validation data accuracy in the dashed red line on the

vertical axis plotted against the number of epochs on the

horizontal axis.

Figure 12. Plot for loss and validation loss, accuracy, and

validation accuracy against the number of epochs

Figure 13. Plot for loss and validation loss against a number

of epochs

Figure 14. Plot for loss, accuracy, validation loss, and

validation accuracy

Figure 15. Plot for loss, validation loss, and accuracy,

validation accuracy plotted against the number of epochs

Figure 15 shows the value of the loss, validation loss, and

accuracy, validation accuracy combined in a single plot on the

vertical axis plotted against the number of epochs on the

horizontal axis.

For EfficientNetB4, The Total Epochs are 40, Total

Training Time elapsed is 1 Hour 33 Minutes 44.97 Seconds.

The Accuracy is 99.67% & The Loss is <1%. Figure 16

displays the training and validation loss curves for our

implemented EfficientNetB4 model. These curves illustrate

how the model's loss changes over a varying number of

training epochs.

Figure 16. Plot for loss and validation loss against a number

of epochs for EfficientNetB4

In Figure 17, we present the training and validation

accuracy curves for the EfficientNetB4 model. These curves

provide valuable insights into the model's learning progress

and its ability to generalize to unseen data as training

progresses.

Figure 18 showcases the confusion matrix for the

EfficientNetB4 model. The F1 Score of 1 indicates a perfect

balance between precision and recall.

Figure 19 demonstrates the training and validation accuracy

curves for the Keras pre-processed VGG model. These curves

reveal how well the model learns and generalizes across

various epochs, aiding in the assessment of its effectiveness

for the specific task.

1877

Figure 17. Plot for accuracy and validation accuracy against

a number of epochs for EfficientNetB4

Figure 18. Confusion matrix for EfficientNetb4 model: -F1

Score=1

Figure 19. Plot for accuracy and validation accuracy against

a number of epochs for the Keras pre-processed VGG model

Figure 20 illustrates the training and validation loss curves

for the Keras pre-processed VGG model which is crucial for

understanding the model's convergence.

The EfficientNetB4 model achieved an F1 score on the test

set of 100% [24]. There was 1 misclassification in 300 test

images.

The Keras Pre-Processed Model-VGG Architecture results

comprise 90-96% accuracy.

Figure 20. Plot for loss and validation loss against a number

of epochs for the Keras pre-processed VGG Model

6. CONCLUSION

This study aims to present an automatic and accurate model

for predicting and detecting the presence of brain tumors in

MRI scan images with minimal pre-processing required. The

performance was evaluated on metrics of accuracy and loss.

The model achieved 97% on non-diversified data and 89% on

diversified data, even 99.67% accuracy by EfficientNETB4,

but still, many improvements are possible. Firstly, the data

could be increased to be more inclusive of different images to

improve the model’s accuracy on the unseen data set.

Secondly, further improvements in the feature extraction

methods can be made, and more accurate and efficient

techniques can be applied for the extraction of features. Other

work in this area shall help address these issues, probably

using transfer learning concepts [25].

7. FUTURE WORK

As with any study conducted, there is always room for

improvements and further advancements. In this context, the

accuracy achieved using neural networks can be further

improved by incorporating transfer learning models in a better

way. The use of deep learning techniques to include further

detailed classification possibilities, such as segmenting the

regions with sub-tumoral growth that have complete, core, and

enhanced tumors from the images and this, can be further

extended to achieve even better accuracy and usability of

machine learning in the field of prediction of medical

conditions using imagery.

In several qualitative and quantitative comparisons, the

proposed deep learning-based model of brain tumor

identification outperforms previously published models. The

model is more robust to employ in a variety of scenarios

because it was trained on a diversified dataset. As noted in the

results section, this model would also be simple to adapt to and

capable of producing higher accuracy compared to previous

models. It was discovered that the proposed framework

spontaneously adopted features during training, and it has

demonstrated outstanding generalization abilities, correctly

identifying brain tumors in uncommon and difficult instances.

This model can be scaled for usage with datasets of greater

size.

To support our claims, we ran an experiment in which we

compared our results to those of other approaches already in

1878

use, using benchmark datasets and assessment criteria that are

widely used in the field of brain tumor identification. To

demonstrate the superiority of our deep learning model,

comparative studies have concentrated on the accuracy,

computational efficiency, interpretability, and generalization.

REFERENCES

[1] Zhang, J.C., Shen, X.L., Zhuo, T.Q., Zhou, H. (2017).

Brain tumor segmentation based on refined fully

convolutional neural networks with a hierarchical dice

loss. arXiv Preprint arXiv: 1712.09093.

https://doi.org/10.48550/arXiv.1712.09093

[2] Seetha, J., Raja, S.S. (2018). Brain tumor classification

using convolutional neural networks. Biomedical &

Pharmacology Journal, 11(3): 1457-1461.

https://doi.org/10.13005/bpj/1511

[3] https://www.cancer.net/cancer-types/brain-

tumor/statistics, accessed on 20 July 2023.

[4] Shao, L., Zhu, F., Li, X.L. (2014). Transfer learning for

visual categorization: a survey. IEEE Transactions on

Neural Networks and Learning Systems, 26(5): 1019-

1034. https://doi.org/10.1109/TNNLS.2014.2330900

[5] Zacharaki, E.I., Wang, S.M., Chawla, S., Soo Yoo, D.,

Wolf, R., Melhem, E.R., Davatzikos, C. (2009).

Classification of brain tumor type and grade using MRI

texture and shape in a machine learning scheme.

Magnetic Resonance in Medicine: An Official Journal of

the International Society for Magnetic Resonance in

Medicine, 62(6): 1609-1618.

https://doi.org/10.1002/mrm.22147

[6] Deepak, S., Ameer, P.M. (2019). Brain tumor

classification using deep CNN features via transfer

learning. Computers in Biology and Medicine, 111:

103345.

https://doi.org/10.1016/j.compbiomed.2019.103345

[7] Zulpe, N., Pawar, V. (2012). GLCM textural features for

brain tumor classification. International Journal of

Computer Science Issues (IJCSI), 9(3): 354-359.

[8] Sharma, K., Kaur, A., Gujral, S. (2014). Brain tumor

detection based on machine learning algorithms.

International Journal of Computer Applications, 103(1):

7-11. https://doi.org/10.5120/18036-6883

[9] Mohsen, H., El-Dahshan, E.S.A., El-Horbaty, E.S.M.,

Salem, A.B.M. (2018). Classification using deep

learning neural networks for brain tumors. Future

Computing and Informatics Journal, 3(1): 68-71.

https://doi.org/10.1016/j.fcij.2017.12.001

[10] Bauer, S., May, C., Dionysiou, D., Stamatakos, G.,

Buchler, P., Reyes, M. (2011). Multiscale modeling for

image analysis of brain tumor studies. IEEE Transactions

on Biomedical Engineering, 59(1): 25-29.

https://doi.org/10.1109/TBME.2011.2163406

[11] Islam, A., Reza, S.M.S., Iftekharuddin, K.M. (2013).

Multifractal texture estimation for detection and

segmentation of brain tumors. IEEE Transactions on

Biomedical Engineering, 60(11): 3204-3215.

https://doi.org/10.1109/TBME.2013.2271383

[12] Deniz, E., Şengür, A., Kadiroğlu, Z., Guo, Y.H., Bajaj,

V., Budak, Ü. (2018). Transfer learning based

histopathologic image classification for breast cancer

detection. Health Information Science and Systems, 6: 1-

7. https://doi.org/10.1007/s13755-018-0057-x

[13] Hussein, S., Kandel, P., Bolan, C.W., Wallace, M.B.,

Bagci, U. (2019). Lung and pancreatic tumor

characterization in the deep learning era: novel

supervised and unsupervised learning approaches. IEEE

Transactions on Medical Imaging, 38(8): 1777-1787.

https://doi.org/10.1109/TMI.2019.2894349

[14] Yang, Y., Yan, L.F., Zhang, X., Han, Y., Nan, H.Y., Hu,

Y.C., Hu, B., Yan, S.L., Zhang, J., Cheng, D.L., Ge,

X.W., Cui, G.B., Zhao, D., Wang, W. (2018). Glioma

grading on conventional MR images: A deep learning

study with transfer learning. Frontiers in Neuroscience,

12: 804. https://doi.org/10.3389/fnins.2018.00804

[15] Natarajan, P., Krishnan, N., Kenkre, N.S., Nancy, S.,

Singh, B.P. (2012). Tumor detection using threshold

operation in MRI brain images. In 2012 IEEE

International Conference on Computational Intelligence

and Computing Research, IEEE, pp. 1-4.

https://doi.org/10.1109/ICCIC.2012.6510299

[16] Joshi, D.M., Rana, N.K., Misra, V.M. (2010).

Classification of brain cancer using artificial neural

network. In 2010 2nd International Conference on

Electronic Computer Technology, IEEE, pp. 112-116.

https://doi.org/10.1109/ICECTECH.2010.5479975

[17] Amin, S.E., Megeed, M.A. (2012). Brain tumor

diagnosis systems based on artificial neural networks and

segmentation using MRI. In 2012 8th International

Conference on Informatics and Systems (INFOS), MM-

119.

[18] Goswami, S., Bhaiya, L.K.P. (2013). Brain tumour

detection using unsupervised learning based neural

network. In 2013 International Conference on

Communication Systems and Network Technologies,

IEEE, pp. 573-577.

https://doi.org/10.1109/CSNT.2013.123

[19] George, E.B., Karnan, M. (2012). MRI brain image

enhancement using filtering techniques. International

Journal of Computer Science & Engineering Technology

(IJCSET), 3(9): 399-403.

[20] Nalwar, S., Shah, K., Bidwe, R.V., Zope, B., Mane, D.,

Jadhav, V., Shaw, K. (2022). EffResUNet: encoder

decoder architecture for cloud-type segmentation. Big

Data and Cognitive Computing, 6(4): 150.

https://doi.org/10.3390/bdcc6040150

[21] Bidwe, R.V., Mishra, S., Patil, S., Shaw, K., Vora, D.R.,

Kotecha, K., Zope, B. (2022). Deep learning approaches

for video compression: a bibliometric analysis. Big Data

and Cognitive Computing, 6(2): 44.

https://doi.org/10.3390/bdcc6020044

[22] Bidwe, S., Kale, G., Bidwe, R. (2022). Traffic

monitoring system for smart city based on traffic density

estimation. Indian Journal of Computer Science and

Engineering, 13(5): 1388-1400.

https://doi.org/10.21817/indjcse/2022/v13i5/221305006

[23] Mane, D., Bidwe, R., Zope, B., Ranjan, N. (2022).

Traffic density classification for multiclass vehicles

using customized convolutional neural network for smart

city. In Communication and Intelligent Systems:

Proceedings of ICCIS, Singapore: Springer Nature

Singapore, 2021: 1015-1030.

https://doi.org/10.1007/978-981-19-2130-8_78

[24] Mane, D., Shah, K., Solapure, R., Bidwe, R., Shah, S.

(2022). Image-based plant seedling classification using

ensemble learning. In Proceedings of the 6th

International Conference on Advance Computing and

1879

https://doi.org/10.13005/bpj/1511
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962385
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962385
https://doi.org/10.1109/TNNLS.2014.2330900
https://doi.org/10.1002/mrm.22147
https://doi.org/10.1016/j.compbiomed.2019.103345
https://doi.org/10.1016/j.fcij.2017.12.001
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10
https://doi.org/10.1109/TBME.2011.2163406
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10
https://doi.org/10.1109/TBME.2013.2271383
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=42
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=42
https://doi.org/10.3389/fnins.2018.00804
https://ieeexplore.ieee.org/xpl/conhome/6504613/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6504613/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6504613/proceeding
https://doi.org/10.1109/ICCIC.2012.6510299
https://ieeexplore.ieee.org/xpl/conhome/5472207/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5472207/proceeding
https://doi.org/10.1109/ICECTECH.2010.5479975
https://ieeexplore.ieee.org/xpl/conhome/6524211/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6524211/proceeding
https://doi.org/10.1109/CSNT.2013.123
https://doi.org/10.3390/bdcc6040150
https://doi.org/10.3390/bdcc6020044

Intelligent Engineering (ICACIE), Singapore: Springer

Nature Singapore, 2021: 433-447.

https://doi.org/10.1007/978-981-19-2225-1_39

[25] Zope, B., Mishra, S., Shaw, K., Vora, D.R., Kotecha, K.,

Bidwe, R.V. (2022). Question answer system: a state-of-

art representation of quantitative and qualitative analysis.

Big Data and Cognitive Computing, 6(4): 109.

https://doi.org/10.3390/bdcc6040109

1880

https://doi.org/10.3390/bdcc6040109

