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Modern technological advancements are concentrated on the development of intelligent 

machines or software that mimic and respond like humans. Today's Artificial Intelligence 

computing activities encompass language processing, perception, learning, planning, and 

problem-solving. Early cancer detection is essential to saving as many lives as possible. A 

recent report from the "World Health Organization" (WHO) in February 2018 highlighted 

mortality associated with brain tumors or the "CNS" (Central Nervous System). This paper 

primarily aims to detect and predict the presence of brain tumors in individuals using "MRI" 

(Magnetic Resonance Imaging) brain scan images. This is achieved through machine 

learning techniques in classification. A model for identifying brain tumors is created using 

a deep learning algorithm and a dataset comprising thousands of images. "Convolutional 

Neural Networks" (CNNs) are employed to identify and predict the likelihood of the 

presence of a brain tumor in an individual, based on the provided MRI scan image. This 

work explores several potential mechanisms for using deep learning techniques to construct 

models for brain tumor detection. The objective is to discover more effective methods to 

detect brain tumors based on MRI scans, thereby enabling neurologists to make decisions 

with increased ease, accuracy, and speed. Manual classification of brain tumors using only 

MRI images can be time-consuming, potentially delaying necessary treatment for the 

affected individual. Therefore, the assistive use of machine learning technology can help 

healthcare professionals enhance their work in combating brain tumors, a severe medical 

condition. 
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1. INTRODUCTION

The brain, one of the most crucial organs in the human body, 

is responsible for transmitting signals to various parts of the 

body via neurons. A tumor is a cluster of abnormal cells that 

proliferate uncontrollably. A tumor occurring in the brain is 

known as a brain tumor and typically presents as two types: 

low-grade and high-grade brain tumors. A low-grade tumor, 

which is non-cancerous, does not have the ability to spread to 

other body parts or grow further. In contrast, high-grade brain 

tumors can quickly spread without defined boundaries and 

potentially lead to immediate death [1, 2]. Brain tumors are 

among the most aggressive diseases in both adults and children. 

They constitute about 85% to 90% of all primary "Central 

Nervous System" (CNS) tumors. Statistics indicate that 

approximately 11,700 people globally are diagnosed with 

brain cancer each year. 

Only about 34% of men and 36% of women survive beyond 

the 5-year mark after being diagnosed with brain cancer or a 

CNS tumor. To improve life expectancy, it is crucial to 

implement appropriate treatment strategies along with 

accurate diagnostic techniques. Conventionally, MRI scans 

are evaluated by a radiologist, a process that is susceptible to 

errors due to human involvement [3]. Given this complexity, 

it is vital to develop a cloud-based system that can assist 

radiologists and other healthcare professionals in accurately 

detecting and identifying brain tumors. Our goal is to create an 

algorithm using machine learning classification techniques 

that can predict and identify common brain tumor patterns in 

MRI scans, and determine whether a given MRI scan image 

shows the presence of potentially hazardous brain tumor cells. 

To achieve this, we are employing "Convolutional Neural 

Networks (CNN)" or "Artificial Neural Networks (ANN)," 

which are subsets of Deep Learning. 

The use of deep transfer learning, a specific branch of deep 

learning techniques, has been increasingly adopted in studies 

for visual data classification, object recognition, and 

classification of various forms of unstructured data records [4]. 

The challenge in classifying tumor images stems from the 

heterogeneous nature of neoplastic tissue in terms of spatial 

and imaging profiles, and its overlap with normal tissues in 

some imaging techniques [5]. 

2. LITERATURE REVIEW

Deepak and Ameer [6] demonstrated the effectiveness of 

their Convolutional Neural Network (CNN) model, which 

uses transfer learning for detecting and classifying brain tumor 

images. The authors focused on the most prevalent brain 
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tumors: glioma, meningioma, and pituitary tumors. Their 

system utilized GoogLeNet to extract features from MRI-

derived images, which were then classified using models built 

on these extracted features. A five-fold cross-validation was 

performed on the dataset, resulting in an accuracy of 

approximately 92.3% with the standalone model employing 

deep transfer learning. When Support Vector Machine (SVM) 

and K-Nearest Neighbors (KNN) were applied to the extracted 

features from CNN for classification, KNN achieved a higher 

accuracy than SVM. 

Zulpe and Pawar [7] employed the Gray-Level Co-

occurrence Matrix (GLCM) to analyze textures by detecting 

relationships between pixels in unique representations. The 

frequency or prominence of a particular pair of pixels in an 

image occurring in a specific spatial arrangement was 

calculated and represented in matrix form using MATLAB's 

gray comatrix function. For data preprocessing, the authors 

used a Gaussian filter to enhance image quality by suppressing 

noise, enhancing contrast, equalizing intensity, and 

eliminating outliers. For classification, a two-layer feed-

forward neural network was designed with 44 inputs, 10 

neurons in the hidden layers, and four output neurons for 

classification output. A sigmoid activation function was used. 

The Levenberg-Marquardt algorithm was implemented for 

model training, with a total of 15 epochs run, achieving a 

classification rate of 97.5%. 

Sharma et al. [8] proposed a model that first preprocesses 

the data to remove noise from images by applying binarization 

(from RGB to Gray) and a median filter. This is crucial as 

image noise can result in incorrect feature extraction, as pixels 

may contain unwanted data that needs to be cleaned using 

noise removal techniques. They then used an intelligent edge 

detection technique to identify the edges of the image, which 

is necessary for image segmentation. The image was 

segmented to simplify the algorithms' analysis. Gray-Level 

Co-occurrence Matrix (GLCM), Multi-Layer Perceptron 

(MLP), and Naive Bayes were used for texture extraction and 

image classification. Both MLP and Naive Bayes achieved 

accuracies of 98.6% and 91.6%, respectively. 

Mohsen et al. [9] utilized deep learning neural networks to 

classify MRI images depicting three types of brain tumors: 

Glioblastoma, Sarcoma, and Metastatic bronchogenic 

carcinoma. Image segmentation was employed to distinguish 

brain tissues for improved algorithm performance, achieved 

through the 'Fuzzy C' clustering technique, which segmented 

the image into five sections. The 'Multilevel Discrete Wavelet' 

transform was used to extract 1024 wavelet features, and 

principal component analysis was used to approximate the 

original extracted features with lower-dimension feature 

vectors. The 'Deep Neural Network' achieved a high accuracy 

of 96.67%. The classification algorithms used included KNN 

(with K values of 1 and 3), using WEKA and PCA; Sequential 

Minimal Optimization (SMO)-SVM was also implemented for 

classification purposes. However, Deep Neural Networks 

achieved the best performance, with a classification rate of 

around 96.97%. 

Bauer et al. [10] utilized bio-physio-mechanical modeling 

of tumor growth to investigate the sequential growth cycle in 

individuals diagnosed with brain tumors. The tumors were 

initially grown in an atlas, which served as the foundation for 

a new multi-scale, multi-physics model. This model 

encompassed development starting from the cellular level and 

moving up to the bio-mechanical layer. The method integrated 

discrete and continuous techniques to create a tumor growth 

model that differentiated images containing tumors based on 

atlas-based recognition. However, this approach had a 

significantly high computation time. The discrete model was 

applied to biological phenomena at the cellular level, 

providing substantial information about tumor cell evolution. 

Still, it assumed that the tumor expands or contracts in a 

conformal manner due to the lack of information about 

preferential growth directions. To address this, a bio-

mechanical model was employed to provide context using 

pressure gradient information. Values for Young's modulus 

and Poisson's ratio were used to conduct stress and strain 

analysis on the atlas using Lagrange's formula for structural 

mechanics. While this method offered profound insights into 

brain tumors through analysis, it required substantial 

computation time—ranging from 10 to 36 hours—given the 

large equations that needed iterative solving. 

Islam et al. [11] applied the advanced AdaBoost 

classification method and a new multi-fractal feature 

extraction technique to identify and segment images likely to 

contain brain tumors. The texture was treated as a feature and 

extracted using MultiFD, PTPSA, and texton schemes. Each 

pixel represented a set of feature values, including intensity, 

MultiFD and texton, PTPSA features. The authors followed a 

data-driven approach to machine learning for fusing features 

extracted from MRI images. Subsequently, an AdaBoost 

ensemble classifier was used to classify images into those with 

and without tumors. 

In study [2], a Convolutional Neural Network (CNN) was 

used to identify and segment images containing brain tumors, 

sourced from the RadioPedia and Brain Tumor Image 

Segmentation Benchmark (BRATS) 2015 datasets. Gradient 

descent was employed in the calculation of the loss function. 

The proposed CNN model eliminated the need for separate 

feature extraction, reducing both the computation time and 

model complexity. The results demonstrated that the model 

achieved an accuracy exceeding 96%, which was higher than 

the accuracy achieved using Support Vector Machines (SVM) 

and Deep Neural Networks (DNN). 

Deniz et al. [12] developed a classifier for breast cancer 

images using histopathologic data. The final validation was 

conducted using AlexNet. Given just two output classes - 

benign and malignant - the last three layers of AlexNet were 

tailored specifically for breast cancer detection. Deep feature 

extraction was performed using VGG16 and AlexNet. On the 

fully connected first and second layers of VGG16, feature 

extraction was carried out using activation functions, resulting 

in around 4096 features or attributes. Ultimately, a Support 

Vector Machine (SVM) classifier was utilized to classify the 

features into either benign or malignant classes using L2 

regularization. The highest accuracy, around 91.30%, was 

achieved by fine-tuning the AlexNet model. 

Hussein et al. [13] explored the use of a learning model for 

lung and pancreatic tumor classification. They employed a 3D 

Convolutional Neural Network (CNN) architecture based on 

transfer learning, which demonstrated superior accuracy 

compared to various handcrafted machine learning models. 

The fully connected layers of the CNN model, comprising 

4096 input features, formed the basis for the multitask learning 

model's concept of malignancy. The accelerated proximal 

gradient method was used for optimization. Fine-tuning was 

conducted with 10-fold cross-validation, and the highest 

accuracy achieved was 91.26% using a 3D convolutional 

network with multitask learning. 

In their work on glioma grading from MRI images, Yang et 
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al. [14] found that AlexNet outperformed GoogLeNet. 

Accurate glioma grading is critical before initiating surgical 

treatment. Given the proven high performance of CNN in 

medical research, they hypothesized that a deep neural 

network might yield higher accuracy in distinguishing 

between WHO low and high-grade gliomas. For image 

segmentation, a rectangular region of interest containing 80% 

of the tumor was used, and approximately 20% were 

partitioned for use as test data. Both GoogLeNet and AlexNet 

underwent initial training, and fine-tuning was carried out 

using models previously trained on vast databases of real-

world images. Classification evaluation was conducted using 

five-fold cross-validation. This approach achieved 

approximately 93.9% test AUC, 90.9% test accuracy, and 

86.7% validation accuracy. 

Natarajan et al. [15] proposed using a threshold operation to 

identify brain tumors in MRI brain scans. The images were 

first converted to grayscale, then the contrast was equalized 

using histogram equalization. This technique redistributes the 

most frequently occurring intensity values, enabling areas of 

lower contrast to become areas of higher contrast. The images 

were sharpened using a high pass filter, which highlights fine 

details from the image, thereby facilitating edge detection. A 

high contrast overlay emphasizes the image edges, making it 

easier to detect the edges by analyzing the contrast values 

using a different operator for edge detection and structure. A 

median filter was used for noise removal to enhance the 

model's results, achieved by filtering each image signal and 

replacing it with the median of neighboring signals. Image 

segmentation was then performed to simplify the signal 

representation into a more recognizable and analyzable form. 

Morphological operations were carried out, followed by image 

subtraction. As a result, they successfully condensed the image 

to focus solely on the area containing the tumor. 

In their work, Joshi et al. [16] developed a system that 

isolated the tumor portion from the image and extracted the 

tumor's texture to be used as a feature through the "Gray Level 

Co-occurrence Matrix" (GLCM). The classification was then 

performed using a neuro-fuzzy classifier. Initially, the images 

were segmented into regions containing tumors and those 

without, using histogram equalization. Binarization was 

achieved through thresholding, resulting in a gray value of 1 

for images containing the tumor and a gray value of 0 for the 

background. Texture feature extraction was accomplished 

using GLCM, and a Neuro Fuzzy Classifier, an "Artificial 

Neural Network," was employed to classify the results into 

various tumor grades. 

Amin and Megeed [17] utilized "Principal Component 

Analysis" (PCA) to automatically detect tumors from brain 

MRI scan images. In the second stage, a "Multi-Layer 

Perceptron" (MLP) was used to categorize the extracted 

features of the images, achieving an average recognition rate 

between 88.2% and 96.7%. 

Goswami and Bhaiya [18] applied an unsupervised machine 

learning technique of neural networks for classification using 

MRI brain scan images. Preprocessing was performed through 

noise filtering on MRI brain images, followed by edge 

detection and tumor extraction via segmentation. Feature 

extraction was conducted using the "Gray-Level Co-

occurrence Matrix" (GLCM). Finally, "Self-Organizing 

Maps" were utilized to classify images with and without brain 

tumors. 

George and Karnan [19] proposed a technique for 

enhancing MRI images using histogram equalization and 

"Center Weighted Median" (CWM). 

 

 

3. RESEARCH METHODOLOGY 

 

Data Collection: 

- The data was sourced from the Kaggle dataset named 

“Brain Tumor Detection 2020,” which contains three folders, 

yes, no, and pred, that contain a collective of 3060 images. 

Table 1 provides details of it. 

 

Table 1. Images used for the analysis 

 

S. No. 

Metrics of Count in Each Folder 

Particulars about Dataset: Brain 

Tumor Detection 2020 

Total 3 Folders Namely: 

“Yes”, “No”, “Pred” 
Total Count in Each Folder 

1. Yes 1500 Images 

2. No 1500 Images 

3. Pred 60 Images 

 

The methodology followed resembles the following 

sequence: 

1. Importing packages and libraries. 

2. Setting the path of data. 

3. Importing and shuffling of data. 

4. Visualization. 

5. Training and testing data splitting. 

6. Generation of data from images without 

diversification. 

7. CNN model for non-diversification. 

a. Defining model structure. 

b. Model compiling. 

c. Model fitting. 

8. Efficient Net B4 Model Fitment. 

9. Checking model fit with graphs. 

10. Prediction score & Confusion Matrix & Evaluation. 

The methodology starts with importing necessary libraries 

into the environment. Then the next step is to set the paths for 

addressing the data imported into the drive. The process was 

carried out on Google’s Colab service, which provided the 

integration of Google Drive to import and use large datasets. 

Since the dataset exceeded the maximum limit allowed to be 

uploaded in the runtime, we had to mount google drive and 

import the data from there by specifying a path. Next comes 

the shuffling step so that the data for Yes and No (images 

containing tumor and not containing the tumor, respectively) 

do not group when training or testing the model. Then, the data 

is visualized using the imshow function from matplotlib, 

which allows us to read an image. The sample images of the 

dataset used for comparative implementation methodology is 

shown in Figure 1. 

 

 
 

Figure 1. Dataset images of brain CT, MRI 
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Figure 2. Architecture diagram for non-diversified 

dataset based CNN 

 

 
 

Figure 3. Architecture for diversified dataset based CNN 

 

The next step was to split the data into training and testing. 

The training data size was 90%, with a random state seed value 

of 42. The next step was to generate data from images without 

diversification. From here on out, the proceeding methodology 

is divided into two sections, each following the same steps for 

diversified and non-diversified image data. The data was 

hence generated from the images. Next, as per Figure 2, the 

CNN model was to be developed for non-diversification. 

Firstly, the model structure was defined by having 4 2D 

convolutional layers with ReLU activation functions. Each 

was followed by a later 2 by 2 2D pooling and a dropout layer 

that removes any record with less than 20% recognition. 

Finally, a flattened layer was added with a dropout rate of 50% 

and two dense layers with ReLU and SoftMax activation 

functions, respectively. The model was then compiled using a 

loss rate of 0.001 and “Categorial Cross Entropy” as the loss 

function on the accuracy metric. Then the model fitting was 

carried out for 30 epochs with 120 steps each. The accuracy 

and other metrics were then checked by plotting them using 

matplotlib functions. Finally, the prediction score was 

calculated, and the prediction process was carried out. 

Next, the data was generated from images with 

diversification as per Figure 3. All the steps were the same 

except for the structure of the CNN model, where we had 4 

layers last time. We had 5 2D convolutional layers with ReLU 

activation function and only a pooling layer of 2 by 2 for each 

2D convolutional layer. The dropout layer was put in at the 

end, along with dense layers. The flattening layer was added, 

followed by a dropout layer of 50% and two dense layers with 

ReLU and SoftMax activation functions, respectively. The rest 

of the process also remains identical to the previous section 

with only changes in the model fitting section, where we used 

50 epochs with 122 steps in each epoch this time. 

 

𝑪𝒐𝒏𝒗𝑶𝒖𝒕𝒑𝒖𝒕 (𝒙, 𝒚) = (𝐹𝐾 ∗ 𝐼𝑁𝑃) (𝑥, 𝑦) =
∑∑𝐹𝐾(𝑖, 𝑗) ∗ 𝐼𝑁𝑃 (𝑥 + 𝑖, 𝑦 + 𝑗)  

(1) 

 

𝑷𝒐𝒐𝒍𝒊𝒏𝒈𝑶𝒖𝒕𝒑𝒖𝒕 (𝒙, 𝒚) = 𝑃𝑜𝑜(𝐼𝑁𝑃[𝑥 ∗
𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒 : (𝑥 + 1)𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒 , 𝑦 ∗ 𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒 : (𝑦 +

1)𝑝𝑜𝑜𝑙𝑠𝑖𝑧𝑒])  

(2) 

 

𝑫𝒆𝒏𝒔𝒆𝑶𝒖𝒕𝒑𝒖𝒕 = 𝐴𝑐𝑡𝐹𝑢𝑛[(𝑊𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑡𝑟𝑖𝑥 ∗
𝐼𝑁𝑃) + 𝑏𝑖𝑎𝑠]  

(3) 

 

whereas, 

• 𝑪𝒐𝒏𝒗𝑶𝒖𝒕𝒑𝒖𝒕(𝒙, 𝒚) = Output of the Convolution 

layer, new generated feature map after operation. 

• 𝑷𝒐𝒐𝒍𝒊𝒏𝒈𝑶𝒖𝒕𝒑𝒖𝒕(𝒙, 𝒚) =Output of Pooling layer, 

downsampled feature map after operation. 

• 𝑭𝑲 =Convolutional Filter. 

• 𝑰𝑵𝑷 =Feature Map of Input Image. 

• (𝒙, 𝒚) =Spatial Coordinates of Feature Map. 

• (𝒊, 𝒋) =Spatial Coordinates of Filter Kernel. 

• 𝑨𝒄𝒕𝑭𝒖𝒏 = Activation Function of Learnable 

Parameters. 

• 𝑾𝒆𝒊𝒈𝒉𝒕𝑴𝒂𝒕𝒓𝒊𝒙 = Matrix with Learnable 

Parameters. 

• 𝒃𝒊𝒂𝒔 =a bias value. 

• 𝑺𝒐𝒇𝒕𝑴𝒂𝒙 =the last layer in a network, the Softmax 

layer produces predictions about the input data. 

• 𝑭𝒍𝒂𝒕𝒕𝒆𝒏 =It reshapes the tensor into 1-dimentional 

vector. 

 
𝐶𝑁𝑁𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝐷𝑒𝑛𝑠𝑒 
(𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝐷𝑒𝑛𝑠𝑒(𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷 

(𝐶𝑜𝑛𝑣2𝐷(𝐼𝑁𝑃))))))))  
(4) 

 

Table 2. Architecture configuration of diversified and non-

diversified CNN’s 

 
Implementation 

Details 

Description (Model Architecture-

Diversified & Non-Diversified CNN) 

Convolutional 

Layers 

Several convolutional layers with different 

filter sizes (32, 64, 128, 256) and “ReLu” 

activation. 

Max Pooling 

Layers 

Max pooling layers with pool size (2, 2) to 

down sample feature maps. 

Dropout Layers 
Dropout layers with a dropout rate of 0.2 for 

regularization and preventing overfitting. 

Flatten Layer 
Converts 2D feature maps to a 1D feature 

vector. 

Dense Layers 
Dense layers for classification after the 

flatten layer. 

Loss Function 
Categorical Crossentropy, suitable for multi-

class classification problems. 

Batch Size 
Fit Function is Used. (Non-Diversified 

CNN). Batch size is 20 (Diversified CNN). 

Training 
Training is performed using the fit function 

with training data and validation data. 

Steps per Epoch 

120 steps per epoch, indicating the training 

data is divided into batches and processed 

accordingly. 
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Figure 4. Workflow diagram for complete process of model architecture based on CNN-(diversified & non-diversified), 

EfficientNetB4, VGG-16 pre-processed Keras model 

 

Table 3. Structure of developed model 

 
Layer Description 

Base Model EfficientNetB4 with pre-trained weights from ImageNet, excluding the top layer. Input shape: img_shape 

Batch Normalization Normalizes the activations of the base model to improve training stability. 

Dense Layer Units: 256; Regularization: Kernel L2 (0.016), Activation L1 (0.006), Bias L1 (0.006); Activation: ReLU 

Dropout Regularization Rate: 0.45; Randomly drops out a fraction of units during training to prevent overfitting. 

Output Layer Dense layer with units equal to class_count (number of classes). Activation: Softmax 

Model Instantiation Inputs: base model input; Outputs: output layer 

Model Compilation Optimizer: Adamax; Learning Rate: 0.001; Loss: Categorical Cross-Entropy; Metric: Accuracy 

 

Table 2 outlines architecture configurations for diversified 

and non-diversified CNN models. 

The TensorFlow Keras callbacks Reduce the Learning Rate 

on Plateau, Early Stopping, and Model Checkpoint are 

combined in the EfficientNetB4 [20]. Architecture, but some 

of their drawbacks are also addressed [21]. The base model 

used is EfficientNetB4 from the TensorFlow Keras 

applications. It is loaded with pre-trained weights from the 

ImageNet dataset and has its top layer (fully connected layer) 

excluded. The input shape of the model is specified as 

img_shape, which represents the shape of the input images. 

The output of the base model is passed through batch 

normalization, which helps normalize the activations and 

improve training stability. A Dense layer with 256 units is 

added using kernel regularization (L2 regularization with a 

coefficient of 0.016), activity regularization (L1 regularization 

with a coefficient of 0.006), and bias regularization (L1 

regularization with a coefficient of 0.006). The activation 

function used for this layer is ReLU. Dropout regularization 

with a rate of 0.45 is applied to the previous layer, which helps 

prevent overfitting by randomly dropping out a fraction of the 

units during training. 

The final output layer is a Dense layer with the number of 

units equal to class_count, representing the number of classes 

in the classification task. The activation function used is 

softmax, which produces probability distributions over the 

classes. The model is instantiated using the Model class, with 

the inputs set to the input of the base model and the outputs set 

to the output layer. The model is compiled using the Adamax 

optimizer with a learning rate 0.001. The loss function used is 

categorical cross-entropy, suitable for multi-class 

classification tasks. The accuracy metric is also specified for 

evaluation during training. The specific sizes of the 

convolution kernels in the EfficientNetB4 model are not 

explicitly specified. The EfficientNetB4 architecture consists 

of multiple convolutional layers with different kernel sizes 

defined internally within the EfficientNetB4 model 

implementation. The details of the mentioned model are given 

below in Table 3. 

Additionally, it offers a summary of the model’s 

performance after each epoch that is simpler to understand. 

Further, it includes a valuable feature that allows us to select 

how many epochs we want to train for before receiving a 

message asking us to input H to cease training on the current 

epoch or an integer to define how many epochs we want to 

train for before hearing the message again. This is useful if we 

are developing a model and find that the metrics are suitable, 

and we want to halt the model training early. Remember that 

the callback always gives our model weights that have been 

changed to represent the epoch with the highest performance 

on the monitored metric (accuracy or validation accuracy). 

Figure 4 depicts a comprehensive workflow diagram 

encompassing the entire process of model architecture, which 

includes CNN-based models for both diversified and non-

diversified datasets, as well as the pre-processed Keras models 

EfficientNetB4 and VGG-16. 

The callback will keep track of training accuracy and 

change the learning rate accordingly until the accuracy meets 

a user-specified threshold level. Once that level of training 

accuracy is attained, the callback shifts to monitoring 

validation loss and modifies the learning rate accordingly. The 

callback has the following format: 

“callbacks=[LRA(model, base_model, patience, 

stop_patience, threshold, factor, dwell, batches, initial_epoch, 

epochs, ask_epoch)]” 

 

where: 

• Model is the name of our developed model. 

• If we use transfer learning, our base model’s name is 

base_model. 

• Patience is a number that specifies how many 

successive epochs can pass before the learning rate is 
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changed. The stop_patience integer represents the 

number of consecutive epochs for which the learning 

rate was changed, but no advancement in the 

monitored measure was made before training was 

stopped (like the patience parameter in early stopping). 

• Threshold is a float that specifies the threshold at 

which the call back changes from tracking training 

accuracy to tracking validation loss. When 

implementing the standard Keras call-backs, the 

validation loss in early epochs tends to fluctuate 

greatly and might result in undesired behavior. 

• Factor is a float that gets the updated learning rate by 

the equation (Learning_Rate=Learning_Rate×Factor) 

batches are an integer. It tells us about the number of 

batches of data that are segregated. 

• Throughout the training, the callback provides data in 

the form of an epoch that reads “processing batch of 

batches accuracy=accuracy loss=loss.” 

• Initial_epoch is a numeric value. It is utilized in the 

data printed for each epoch, often set to zero. 

• Either an integer number or None is specified for 

ask_epoch. It indicates the epoch number at which 

user input is required if set to an integer. The user’s 

training stops once they enter H. If the user enters an 

integer, it indicates how many epochs are left to run 

until the user input is requested once again. 

• This function is helpful if we are developing a model 

and either need to stop because of poor metrics or 

don’t need to continue because of strong metrics. 

Remember that the weights employed in our model are 

always those for the epoch with the weakest metric 

performance. As a result, the algorithm may still 

produce predictions even if training is halted. 

 

The model using the fit function with several parameters 

and callbacks is trained with the number of epochs set to be 40, 

indicating that the model will undergo 40 complete passes 

through the training data during training. The patience 

parameter plays a role in adjusting the learning rate. It 

determines the number of epochs to wait before modifying the 

learning rate if the monitored value (either training accuracy 

or validation loss) does not improve. This parameter helps 

prevent premature adjustments to the learning rate. The 

stop_patience parameter specifies the number of epochs to 

wait before terminating the training process if the monitored 

value fails to improve. Once this threshold is reached, training 

will be halted. The threshold parameter defines the criteria for 

monitoring the performance metric. If the training accuracy 

falls below the threshold, the training accuracy itself will be 

used as the monitored value. However, if the training accuracy 

exceeds the threshold, the monitored value will be the 

validation loss. This dynamic selection allows for adaptive 

monitoring based on the training progress. The factor 

parameter determines the reduction factor applied to the 

learning rate when necessary. If the monitored value fails to 

improve, the learning rate will be decreased by this factor to 

fine-tune the model’s optimization process. The dwell 

parameter is a boolean flag that determines whether the model 

weights should revert to the weights from the previous epoch 

if the monitored metric does not show improvement. Enabling 

this flag can help prevent the model from getting stuck in a 

suboptimal state by reverting to a previously successful 

configuration. The freeze parameter, also a boolean flag, 

controls whether the weights of the base model should remain 

frozen during training. Freezing the base model allows for 

feature extraction while keeping the learned representations 

intact. The ask_epoch parameter specifies the frequency at 

which the user will be prompted to halt the training process. 

After running for the specified number of epochs, the training 

will pause and inquire if further training is desired. The 

batches parameter denotes the number of training batches to 

be processed per epoch. Batches are smaller subsets of the 

training data used for optimization, allowing for more efficient 

computation. The callbacks list includes a single callback 

object, LRA, which is an instance of a custom callback class. 

This LRA callback is responsible for dynamically adjusting 

the learning rate based on the specified criteria during training. 

It ensures that the learning rate adapts to the model’s 

performance, improving convergence. Finally, the training 

process commences using the fit function. The training 

generator (train_gen), validation generator (valid_gen), and 

other relevant parameters are passed to the function. The 

callbacks list is provided to enable learning rate adjustment 

and other functionalities during training, allowing for more 

effective and customized model optimization. 

In summary, the provided model meticulously configures 

the parameters and callbacks required for training and then 

initiates the same using the fit function, incorporating the 

specified parameters and the LRA callback to facilitate 

learning rate adjustments. This comprehensive approach 

ensures an efficient and adaptive training process, ultimately 

leading to improved model performance. 

This relationship is summarized as follows: 

 

• When the training accuracy falls below the defined 

threshold, the learning rate is adjusted based on the 

training accuracy. If the training accuracy does not 

show improvement for a specified number of epochs 

(self.patience), the learning rate is reduced by a factor 

determined by self.factor. This adjustment aims to 

guide the optimization process towards a better 

solution in the parameter space. 

• Conversely, if the training accuracy surpasses the 

threshold, the learning rate adjustment is based on the 

validation loss. Similar to the previous scenario, if the 

validation loss does not improve for a certain number 

of epochs, the learning rate is decreased accordingly. 

 

The learning rate adjustment occurs iteratively throughout 

the training process, with the LRA class incorporating various 

variables and calculations to quantify the relationship. These 

include self.count, self.patience, self.stop_count, 

self.stop_patience, self.highest_tracc, self.lowest_vloss, and 

self.factor. These parameters and calculations influence how 

the learning rate changes in response to training accuracy and 

validation loss. 

To gain a more comprehensive understanding of the 

learning rate trend and its relationship with training accuracy, 

it is recommended to examine the training history and the 

information printed during training. This includes monitoring 

the changes in learning rate, accuracy, validation loss, and 

epoch progression. By analyzing this information, one can 

gain insights into the dynamics of the learning rate and its 

impact on the training process. From the provided output in 

Figure 5 and Figure 6, we can analyze the trend of the learning 

rate throughout the training process. 

Initially, the learning rate is set to 0.001. The training starts 

with an epoch of 1, where the loss is 6.143, accuracy is 
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90.375%, validation loss is 4.55959, and validation accuracy 

is 97.667%. As the training progresses, we observe a 

consistent learning rate of 0.001, and the monitored metric is 

the validation loss. During the first few epochs, the validation 

loss experiences fluctuations. However, after epoch 10, the 

training continues until epoch 21, as indicated by the user input. 

At this stage, the learning rate remains unchanged at 0.001. 

 

 
 

Figure 5. Ask_epoch function depicting epoch  

initialization count 

 

 
 

Figure 6. “H” option to halt training & integer input  

to continue 

 

From epoch 22 onwards, the learning rate transitions to 

0.0005 based on the specified adjustment factor. The 

monitored metric remains the validation loss. The training 

continues until epoch 40, where the learning rate further 

decreases to 0.00013. Throughout this phase, the validation 

loss shows a decreasing trend, indicating improvement in the 

model’s performance. It is noteworthy that the validation 

accuracy remains consistently high at 100% throughout the 

entire training process, demonstrating the model’s ability to 

generalize well to unseen data. 

In summary, the learning rate follows a pattern of 

adjustment based on the specified factors and the monitored 

validation loss. It gradually decreases as the training 

progresses, suggesting a fine-tuning of the model’s 

optimization process. This adaptive adjustment ensures that 

the model converges towards a better solution in the parameter 

space, leading to improved performance. 

In observation, the article discusses several strategies to 

address the challenge of training with a limited number of 

samples. These techniques include data augmentation, 

leveraging pre-trained models through transfer learning, 

regularization methods, early stopping, and learning rate 

adjustment. Data augmentation expands the training dataset by 

applying various transformations to the available samples, 

reducing overfitting. Transfer learning allows the utilization of 

pre-trained models trained on large-scale datasets to leverage 

their knowledge for the specific task at hand. Regularization 

techniques, such as dropout and weight regularization, help 

prevent overfitting and improve model generalization. Early 

stopping stops the training process if no improvement is 

observed, preventing overfitting on limited data. Learning rate 

adjustment dynamically adjusts the learning rate to optimize 

model convergence. By employing these techniques 

collectively, the article addresses the challenge of few-sample 

training and enhances the performance of the model with a 

limited training dataset. 

 

 

4. HARDWARE AND SOFTWARE SPECIFICATIONS 

 

In this section, we provide an overview of the hardware and 

software specifications utilized in our experiments. 

 

Table 4. Prediction metrics for diversified and non-

diversified data 

 
Component Manufacturer & Version Size 

Processor Intel Core i7, 10870@2.20 Ghz NA 

RAM DDR4-Speed 2667 Mhz 16GB 

GPU1 Intel Iris-XE Graphics 
Shared up to 

8 GB 

GPU2 Nvidia GeForce GTX 1650 Ti 

Dedicated 4 

GB, Shared 

up to 8 GB 

GPU3 Google Colab Shared GPU T4 NA 

Operating System Windows 11 NA 

Environment Used 
Google Colab Python Virtual 

Environment 
NA 

Packages/Libraries 

used. 

• Layers from Keras 

• Image augmentation 

using a class from Keras called 

ImageDataGenrator 

• Activation Function: -

Relu, SoftMax 

• CNN Dropout: -0.2 

• Loss Function: -

Categorical Crossentropy 

 

Input to model 

• Input image 

size=224*224*3 

• Batch Size=20 

• Number of Epochs: 30-

40 

 

 

 

5. RESULTS AND DISCUSSION 

 

The experimental setup used for the analysis is represented 

in Table 4. The study was divided into two sections-the data 

was derived from images without and with diversifications in 

the respective order. After training the model, the results are 

analyzed in two main metrics-Loss and Prediction accuracy 

[22, 23] for both sections, which are mentioned below in Table 

5. Table 6 is a comparison of accuracies recorded by existing 

methods with diversified and non-diversified data models. 

 

Table 5. Prediction metrics for diversified and non-

diversified data 

 
S. 

No. 

Metrics of predictions 

Particulars Loss Accuracy 

1. Non-Diversified Data-CNN 26% 97% 

2. Diversified Data-CNN 25% 89% 

3. EfficientNetB4 <1% 99.67% 

4. 
VGG Architecture-16 

Using Keras Pre-Processed Models 

 

<23% 

 

96% 
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Table 6. Prediction metrics for comparison b/w existing models & CNN’s diversified and non-diversified data model 

 
Accuracy Predictions Based on Comparison 

Particulars Their Accuracy 
Our Accuracy (With/Without 

Diversification of CNN Model) 
EfficientNetB4 

Keras Pre-Processed VGG 

Architecture 

Deepak and Ameer (CNN Model 

without Transfer Learning) 
84.19% 97% & 89% 99.67% 96% 

Amin et al. (“Multi-Layer 

Perceptron”) 

Average B/w 

88.20% to 

96.70% 

97% & 89% 99.67% 96% 

Sharma et. al. (GLCM using Naïve 

Bayes) 

MLP 98.60% 

Naïve Bayes 

91.60% 

97% & 89% 99.67% 96% 

Zulpe and Pawar (“Grey Level 

Concurrence Matrix”) 

Classification 

Rate: -97.5% 
97% & 89% 99.67% 96% 

Hussein et al. (3D CNN) 91.26% 97% & 89% 99.67% 96% 

Yang et al. (GoogleNet & AlexNet) 
90.90% Test 

Accuracy 
97% & 89% 99.67% 96% 

 

In Figure 7, we present accuracy metrics obtained from the 

evaluation of our implemented models, including the 

EfficientNetB4 model and a customized CNN architecture. 

For CNN, the first section for non-diversified data, Figure 8, 

shows the plot for model accuracy in blue and accuracy for 

validation data set in orange on the vertical axis plotted against 

several epochs on the horizontal axis. 

Figure 9 shows the value of the loss function in black and 

the loss for validation data set in red circles on the vertical axis 

plotted against several epochs on the horizontal axis. 

Figure 10 shows the value for accuracy and accuracy for 

validation data set in red circles on the vertical axis plotted 

against the number of epochs on the horizontal axis. 

Figure 11 shows the value for loss and validation data loss, 

accuracy, and validation data accuracy, all in one chart on the 

vertical axis plotted against the number of epochs on the 

horizontal axis. 

 

 
 

Figure 7. Accuracy metrics for efficientnetb4 model & CNN 

architecture 

 

 
 

Figure 8. Plot for accuracy and validation accuracy against a 

number of epochs 

 
 

Figure 9. Plot for accuracy and validation accuracy against a 

number of epochs 

 

 
 

Figure 10. Plot for accuracy and validation accuracy against 

a number of epochs 

 

 
 

Figure 11. Plot for loss and validation loss, accuracy, and 

validation accuracy against the number of epochs 
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For the second section for diversified data, Figure 12 shows 

the plot for model accuracy in blue and the accuracy for 

validation data set in orange on the vertical axis plotted against 

the number of epochs on the horizontal axis. 

Figure 13 shows the value for loss in a solid black line and 

validation data loss in a dashed red line on the vertical axis 

plotted against the number of epochs on the horizontal axis. 

Figure 14 shows the accuracy value in the solid black line 

and validation data accuracy in the dashed red line on the 

vertical axis plotted against the number of epochs on the 

horizontal axis. 

 

 
 

Figure 12. Plot for loss and validation loss, accuracy, and 

validation accuracy against the number of epochs 

 

 
 

Figure 13. Plot for loss and validation loss against a number 

of epochs 

 

 
 

Figure 14. Plot for loss, accuracy, validation loss, and 

validation accuracy 

 
 

Figure 15. Plot for loss, validation loss, and accuracy, 

validation accuracy plotted against the number of epochs 

 

Figure 15 shows the value of the loss, validation loss, and 

accuracy, validation accuracy combined in a single plot on the 

vertical axis plotted against the number of epochs on the 

horizontal axis. 

For EfficientNetB4, The Total Epochs are 40, Total 

Training Time elapsed is 1 Hour 33 Minutes 44.97 Seconds. 

The Accuracy is 99.67% & The Loss is <1%. Figure 16 

displays the training and validation loss curves for our 

implemented EfficientNetB4 model. These curves illustrate 

how the model's loss changes over a varying number of 

training epochs.  

 

 
 

Figure 16. Plot for loss and validation loss against a number 

of epochs for EfficientNetB4 

 

In Figure 17, we present the training and validation 

accuracy curves for the EfficientNetB4 model. These curves 

provide valuable insights into the model's learning progress 

and its ability to generalize to unseen data as training 

progresses. 

Figure 18 showcases the confusion matrix for the 

EfficientNetB4 model. The F1 Score of 1 indicates a perfect 

balance between precision and recall.  

Figure 19 demonstrates the training and validation accuracy 

curves for the Keras pre-processed VGG model. These curves 

reveal how well the model learns and generalizes across 

various epochs, aiding in the assessment of its effectiveness 

for the specific task. 
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Figure 17. Plot for accuracy and validation accuracy against 

a number of epochs for EfficientNetB4 

 

 
 

Figure 18. Confusion matrix for EfficientNetb4 model: -F1 

Score=1 

 

 
 

Figure 19. Plot for accuracy and validation accuracy against 

a number of epochs for the Keras pre-processed VGG model 

 

Figure 20 illustrates the training and validation loss curves 

for the Keras pre-processed VGG model which is crucial for 

understanding the model's convergence. 

The EfficientNetB4 model achieved an F1 score on the test 

set of 100% [24]. There was 1 misclassification in 300 test 

images. 

The Keras Pre-Processed Model-VGG Architecture results 

comprise 90-96% accuracy. 

 
 

Figure 20. Plot for loss and validation loss against a number 

of epochs for the Keras pre-processed VGG Model 

 

 

6. CONCLUSION 

 

This study aims to present an automatic and accurate model 

for predicting and detecting the presence of brain tumors in 

MRI scan images with minimal pre-processing required. The 

performance was evaluated on metrics of accuracy and loss. 

The model achieved 97% on non-diversified data and 89% on 

diversified data, even 99.67% accuracy by EfficientNETB4, 

but still, many improvements are possible. Firstly, the data 

could be increased to be more inclusive of different images to 

improve the model’s accuracy on the unseen data set. 

Secondly, further improvements in the feature extraction 

methods can be made, and more accurate and efficient 

techniques can be applied for the extraction of features. Other 

work in this area shall help address these issues, probably 

using transfer learning concepts [25]. 
 

 

7. FUTURE WORK 

 

As with any study conducted, there is always room for 

improvements and further advancements. In this context, the 

accuracy achieved using neural networks can be further 

improved by incorporating transfer learning models in a better 

way. The use of deep learning techniques to include further 

detailed classification possibilities, such as segmenting the 

regions with sub-tumoral growth that have complete, core, and 

enhanced tumors from the images and this, can be further 

extended to achieve even better accuracy and usability of 

machine learning in the field of prediction of medical 

conditions using imagery. 

In several qualitative and quantitative comparisons, the 

proposed deep learning-based model of brain tumor 

identification outperforms previously published models. The 

model is more robust to employ in a variety of scenarios 

because it was trained on a diversified dataset. As noted in the 

results section, this model would also be simple to adapt to and 

capable of producing higher accuracy compared to previous 

models. It was discovered that the proposed framework 

spontaneously adopted features during training, and it has 

demonstrated outstanding generalization abilities, correctly 

identifying brain tumors in uncommon and difficult instances. 

This model can be scaled for usage with datasets of greater 

size. 

To support our claims, we ran an experiment in which we 

compared our results to those of other approaches already in 
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use, using benchmark datasets and assessment criteria that are 

widely used in the field of brain tumor identification. To 

demonstrate the superiority of our deep learning model, 

comparative studies have concentrated on the accuracy, 

computational efficiency, interpretability, and generalization. 
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