
Advances in Brain Tumor Segmentation and Skull Stripping: A 3D Residual Attention U-

Net Approach 

Tamara A. Dawood* , Ashwaq T. Hashim , Ahmed R. Nasser

Control and System Engineering Department, University of Technology-Iraq, Baghdad 10001, Iraq 

Corresponding Author Email: cse.21.12@grad.uotechnology.edu.iq

https://doi.org/10.18280/ts.400510 ABSTRACT 

Received: 15 March 2023 

Revised: 26 June 2023 

Accepted: 12 July 2023 

Available online: 30 October 2023 

The timely diagnosis of brain tumors plays a critical role in enhancing patient prognosis and 

survival rates. Despite its superior accuracy, manual tumor segmentation is known to be a 

labor-intensive process. Over the years, a collection of automated tumor segmentation 

methodologies has been devised and investigated. However, a universally applicable 

resolution that consistently delivers reliable outcomes across diverse datasets continues to 

be elusive. Additionally, skull stripping remains a crucial prerequisite to the tumor 

segmentation procedure. This paper introduces an integrated 3D Attention Residual U-Net 

(3D_Att_Res_U-Net) model that seamlessly merges attention mechanisms and residual 

units within the U-Net architecture to augment the performance of brain tumor segmentation 

and skull stripping in Magnetic Resonance Imaging (MRI). An initial preprocessing stage is 

implemented, incorporating bias field correction and intensity normalization to optimize 

performance. The proposed model is trained using the Brain Tumor Segmentation (BraTS) 

2020 dataset, along with the Neurofeedback Skull Stripping (NFBS) dataset. The proposed 

methodology achieved Dice Similarity Coefficients (DSC) of 0.9961 for skull stripping, and 

0.9985, 0.9982, and 0.9980 for whole tumor, enhanced tumor, and tumor core segmentation, 

respectively. Experimental results underscore the applicability and superiority of the 

proposed approach compared to existing methods in this research domain. 
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1. INTRODUCTION

Brain tumors are characterized by the uncontrolled 

proliferation of abnormal cells within the brain tissue. They 

can be broadly classified into benign and malignant types. 

While benign brain tumors do not impinge upon surrounding 

healthy tissues, malignant tumors pose a significant health risk 

due to their invasive nature. Gliomas, the most common form 

of malignant brain tumors, can be further stratified into high-

grade gliomas (HGG) and low-grade gliomas (LGG) [1, 2]. 

Early detection of brain tumors is critical for enhancing patient 

survival rates. Manual segmentation, despite being the 

industry standard, is labor-intensive, costly, and prone to inter-

observer variability [3]. Therefore, automatic tumor 

segmentation, particularly for large datasets, is recommended, 

given its utility in continuous tumor surveillance and adaptive 

treatment planning in clinical practice [4]. 

Magnetic resonance imaging (MRI) is one of the most 

frequently utilized imaging modalities for brain tumor 

detection in clinical settings due to its superior soft tissue 

resolution [5]. Additionally, MRI poses no known health risks. 

Quantitative analysis of brain tumors can be performed using 

multimodal brain scans, allowing physicians to devise the 

most accurate diagnostic and treatment strategies for patients. 

However, MRI images are often compromised by field bias, 

a low-frequency, highly smooth signal, particularly those 

generated by older MRI machines. Consequently, image 

processing techniques such as skull stripping, segmentation, or 

classification, which rely on the gray-level values of image 

pixels, may not yield accurate results. Therefore, when 

applying these methods to distorted MRI images, a 

preprocessing step is needed to correct the bias field signal [6]. 

In most brain MRI examinations, skull stripping is usually 

the first step, especially prior to brain tumor segmentation. 

However, automatic skull stripping poses a challenge due to 

lack of intensity uniformity, low contrast MRIs, and indistinct 

brain boundaries [7]. The task becomes even more complex 

when dealing with MRI datasets associated with clinical 

conditions [8]. On T1-weighted images, both the skull and the 

cerebrospinal fluid (CSF) space appear black, providing clear 

boundaries between the brain and the skull. However, even 

these sharp edges can become distorted during MRI 

acquisition due to low resolution or the presence of other 

anatomical partial structures in the brain (e.g., connections 

between the brain and optic nerves or brainstem). Therefore, 

developing a fully automated method for skull removal from 

MRI images is crucial prior to tumor segmentation. 

The variability in size, shape, and structure of brain tumors, 

coupled with the effects of surrounding tissues and imaging 

device noise, presents significant challenges in accurately 

detecting and segmenting tumors from brain MRI images [9]. 

Thankfully, advancements in deep learning technology have 

led to significant progress in automatic image segmentation 

techniques [10]. 

Semantic segmentation, a fundamental task in computer 

vision that involves assigning a semantic label to each pixel in 

an image, is important for enabling machines to understand 

and interpret image content more meaningfully. This approach 

has numerous applications, including self-driving cars, 

medical imaging, and object recognition [11]. Convolutional 
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Neural Networks (CNNs), a type of deep learning model, are 

employed in the semantic segmentation process to analyze an 

image and predict the class to which each pixel belongs. In the 

context of brain MRI images, the semantic segmentation 

model labels each pixel of the entire brain image for skull 

stripping and brain tumor segmentation. 

The U-Net architecture, proposed by Ronneberger et al. [12], 

forms the basis of most semantic segmentation algorithms for 

brain tumor cell segmentation. Created for Biomedical Image 

Segmentation in 2015, U-Net is one of the most widely used 

methods for semantic segmentation tasks. It is a fully 

convolutional neural network designed with smaller training 

sample sizes in mind. By integrating an encoder path for 

gathering context information and a decoder path for ensuring 

precise localization, U-Net significantly improves the 

performance of the medical image segmentation task [13]. 

Moreover, the residual block technique has been shown to 

aid in the convergence of the network to the optimal solution, 

thereby improving performance and reducing training time 

[14]. A residual block is a construction block of a 

Convolutional Neural Network (CNN) that aids in addressing 

the vanishing gradients problem in deep networks. 

Additionally, attention mechanisms have been 

demonstrated to be successful in the field of computer vision 

for capturing long-range dependencies and significant 

responses, where the segmentation of medical images has 

successfully incorporated attention mechanisms [15]. Because 

U-Net must gradually recover the down-sampled image 

generated by the inherent pooling and stride convolution, 

attention approaches can more effectively relate the 

information flow from deep layers to shallow layers and 

control the learning of upsampling. 

The main contributions of this work are as follows: 

1) Create a 3D attention residual U-Net (3D_Att_ResU-

Net) to handle the segmenting of brain tumor and skull 

stripping tasks that successfully integrates the attention and 

residual blocks into the U-Net network design. 

2) Instead of learning the direct mapping between inputs 

and outputs, the model can quickly learn the residual mapping 

according to a residual block technique. Over-fitting and 

vanishing gradients were problems for the U-Net design, 

especially when dealing with huge and intricate images. To 

solve these problems, residual blocks were developed, which 

let the network learn the residual mapping between the inputs 

and outputs rather than the direct mapping. 

3) To investigate the implications of local responses for 

the segmentation of brain tumors, the current U-Net model on 

the brain attention mechanism is embedded. To increase 

performance even more, a 3D segmenting network for brain 

tumors is shown by concurrently incorporating attention 

mechanisms and residual units into U-Net. 

4) The network's performance was greatly enhanced by 

preprocessing processes. The N4 bias field correction is 

applied to MRI image data to rectify low-frequency intensity 

non-uniformity. Moreover, the multimodal scans in the BraTS 

2020 and NFBS datasets were obtained using various scanners 

from numerous institutions and a variety of clinical methods, 

leading to non-standard intensity distribution. Hence, in order 

to execute multi-mode scan by a single method, the 

normalizing stage is required. 

The rest of the argument is structured as follows: A list of 

related works is provided in Section 2. The details of the 

suggested 3D_Att_ResU-Net technique are introduced in 

Section 3. Part 4 describes the implementation of the proposed 

method, Section 5 describes the experiments for skull stripping 

and segmenting brain tumors, and Section 6 provides 

conclusions. 

 

 

2. RELATED WORK 

 

In this paper, two fields related to the segmentation process 

are concerned. The first one is skull-stripping and the other 

tumor localization. Throughout the past two decades, 

numerous solutions to the issue of skull stripping in brain MRI 

images are put forth, and new designs are still being created to 

address these issues and constraints. The vast variation in brain 

MRI datasets and standards, however, places limitations on 

every technique. In recent times, deep learning-based methods 

like CNNs have produced excellent results in the segmentation 

of biomedical 3D images, with accuracy that is comparable to 

that of humans. In 2017, Milletari et al. [16] presented CNN 

with the Hough voting method to effectively integrate the 

location and segments of an area of interest for 3D deep brain 

segmentation. In 2016, Kleesiek et al. [17] proposed a method 

for brain segmentation and skull removing based on 3D CNN 

and demonstrated to perform well. Their design can 

accommodate a variety of formats, involving contrast 

enhanced images. Even though Kleesiek's technique was the 

first CNN to ad-dress the issue and demonstrated precision, the 

structure is not deep. It should be noted that while the 

network's depth is not a concern for the current task, it might 

be if the network were to be used to subsequent tasks. Because 

subsurface layers cannot combine features from different 

levels of abstraction, the short depth typically has a restricted 

capacity for learning. In 2019, The usage of 3D U-Net for the 

stripping of the skull in brain MRI was suggested by Hwang 

et al. [7]. They used it on actual, freely obtainable brain MRI 

database and had successful results. 

There have been more articles on brain tumor segmentation 

throughout the last few decades. As a result, research is being 

done in this area to develop an automation system for 

segmenting brain tumors. The three types of brain tumor 

segmentation techniques are manual, semi-automatic, and 

fully automated procedures. Deep learning based and 

classification approaches using neural networks are both fully 

auto-mated. Researchers have started using CNN to segment 

biological images in recent years due to the effectiveness of 

deep learning techniques [18, 19]. 

Deep networks, which significantly outperform 

conventional techniques, have recently been developed in the 

area of the segmentation of brain tumors. Among these, patch-

wise based brain tumor segmentation networks are learned on 

small patches with labels to accurately differentiate tumor 

tissues from natural tissues as representative studies proposed 

early. Researchers have created a variety of modules to add 

more contextual contact information amongst distinct network 

slices in order to achieve beneficial performance. In 2016, A 

cascaded Convolutional Neural Network architecture with two 

paths was proposed by Havaei et al. [20]. One pathway 

concentrates on the finer details of gliomas, and the other 

pathway considers the bigger context. additionally, suggest a 

two-phase patch-wise training method. The (BRATS'13, 

BRATS'15) data sets were used to evaluate the model. In 2019, 

Derikvand and Khotanlou [21] used a combination of a used a 

cascading structure constructed using a convolutional and 

convolutional neural network in an automated brain tumor 

segmentation algorithm. Using a patch-based method, the 
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input images are firstly divided to patches before being fed 

into the neural network. In order to enhance the segmentation 

outcomes, it lastly adds a label to the mid voxel of every patch 

based on both local and global information. the BraTS 2017 

database used to validate the model. For the brain tumor 

segmentation challenge. In 2017, Kamnitsas et al. [22] used a 

3D CNN model with two pathways and a dense structure. 

Additionally, this model used conditional random fields to 

implement multi-scale analysis on input pictures and post-

processing on the resulting images (CRF). Finally, this piece 

of work won the BraTS 2015 challenge. In 2018, Zhao et al. 

[23] employed a fully convolutional neural network with CRF 

to perform the brain tumor segmentation. They trained three 

2D patch-wise models from the axial view, sagittal view, and 

coronal view using a voting-based fusion technique. 

The semantic segmentation system describes each pixel of 

the entire brain image into a set of assigned labels to complete 

segmenting the brain tumors. In 2015, The U-Net architecture 

suggested by Ronneberger et al. [12] is the foundation of the 

majority of the semantic segmentation methods for the 

segmenting of brain tumors challenge one of the most widely 

used methods for any semantic segmentation task in use today 

is the UNET architecture, which was created for Biomedical 

Picture Segmentation in 2015. It is a fully convolutional neural 

network built to learn from a smaller number of training data. 

The performance of the medical image segmentation task is 

significantly enhanced by U-Net, which has an encoder path 

to gather context information and a decoder path to assure 

precise positioning [24]. In order to in-crease the 

generalization ability of their 2D U-Net based segmentation of 

brain tumors network, Dong et al. [25] used real time data 

augmentation in 2017. By including Two-pathway residual 

blocks to the u net architecture. In 2021 Aghalari et al. [26] 

were able to improve the U-Net assessment criteria like DSC, 

sensitivity, and the number of parameters. which concurrently 

take advantage of both local and more global qualities. The 

BRATS'2018 database was used to evaluate the proposed 

models. Path aggregation U-Net (PAU-Net) model for brain 

tumor segmentation was proposed by Lin et al. [27] in 2021. 

The bottom-up path aggregation encoder (PA) specifically 

reduced the entry of sounds by shortening the distance 

between output layers and deep features. More intact 

information was stored using the enhanced decoder (ED). 

Furthermore, the efficient feature pyramid (EFP), which uses 

fewer resources to achieve the feature pyramid effect, was 

applied to enhance mask prediction further. In 2022, Munir et 

al. [13] suggest a framework for segmenting brain tumor based 

on the U-Net architecture and Inception modules. Each 

Inception module in the model contains a number of 

convolutional filters of various sizes to collect contextual data 

at various scales. The proposed framework also uses a new 

losing function based on the improved Dice similarity 

coefficient (DSC) to enhance the segmentation accuracy 

Attention mechanisms are increasingly being used in 

computer vision tasks for two main purposes. The first one is 

to emphasize based on distant dependencies. For example, in 

2019, Fu et al. [28] introduced dual attention modules 

consisting of spatial and channel attention for semantic 

segmentation, where the spatial attention is similar to the non-

local (NL) operation in NL-Net and the channel attention 

follows a similar idea. To further enhance segmentation 

performance, in 2019, Zhang et al. [29] developed NL using a 

prior distribution and constructed an ensemble of NLs with 

weights in other works. The learning of each channel's scaling 

factors for feature maps is the second goal of attention 

processes. This method, which emphasizes the channel 

relationship and implements dynamic channel-wise feature 

recalculation to improve feature expression, is typically 

illustrated by SENet [30]. Researchers are investigating how 

to employ attention to learn channel-specific variables to 

selectively improve channel responses based on the success of 

attention. 

Residual blocks are being increasingly utilized in computer 

vision tasks to com-bat the problem of vanishing gradients, 

which can impede the learning process by making the 

gradients too small during backpropagation. To address this 

issue, in 2019, Abd-Ellah et al. [31] introduced the TPUAR-

Net which employed a deep residual based CNN model with 

two parallel U-Nets for BTS. By adding skip connections and 

residual blocks, this model was able to extract global and local 

feature responses at different levels, and the model was 

effective in terms of execution speed. To take advantage of the 

contextual information in 3 diminution MRI image, in 2021, 

Ghaffari et al. [32] introduced a 3D CNN design for 

segmenting different parts of brain tumors. The decoder path 

employed the self ensembling strategy to reduce the number 

of feature maps at each level, while the encoder path used 

residual blocks to learn non-linear residual and improve the 

learning process. However, this suggested model requires 

greater computational and hardware power. In 2023, Raza et 

al. [33] proposed a deep learning architecture called dResU-

Net, which aims to dominate the problem of vanishing 

gradient in deep neural networks. The suggested architecture 

combines the deep residual network and the U-Net model, two 

well-known deep learning models. The suggested architecture 

uses the deep residual network as an encoder and the U-Net 

model as a decoder to tackle the vanishing gradient problem. 

Based on the previous works, the U-Net architecture has 

proven superior to other segmentation methods in medical 

image analysis, making it a popular choice in this field. Plus, 

it allows for efficient training with relatively small data sets, 

which is often the case in medical imaging studies. Therefore, 

in this study, the U-Net architecture was employed with some 

improvements by merging the attention units and residual 

units, which can be a powerful combination for identifying 

brain tumors in medical images. The attention units allow the 

model to selectively focus on the most relevant features for 

tumor detection, while the residual units can improve training 

stability and prevent overfitting. This combination of the 

model can more accurately localize the tumor and help guide 

treatment planning. Image preprocessing techniques were 

employed in this study to improve the model's performance by 

removing unwanted elements and highlighting important 

features in the images. Additionally, skull stripping has been 

given particular importance in this study as it can significantly 

affect the accuracy of brain tumor diagnosis. By removing the 

skull from the image, the model can focus better on the brain 

tissue, which can lead to more accurate tumor localization and 

identification. 

 

 

3. MATERIAL AND METHOD 

 

Figure 1 provides an overview of the workflow of the 

proposed method to better explain the procedure.
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Figure 1. The overall architecture of the proposed system 

 

3.1 Magnetic resonance imaging 

 

Magnetic Resonance Imaging (MRI) is an imaging 

technique that provides high contrast and detailed images of 

the spinal cord, brain, and vascular anatomy. Compared to CT 

scans, MRI does not involve radiation, making it a safer option. 

Coronal, sagittal, and axial planes of the brain can all be seen 

with MRI technology. T1-weighted (T1w), T2-weighted 

(T2w), and Fluid Attenuated Inversion Recovery (FLAIR) are 

the three most popular MRI sequences [34]. 

T1w MRI is mainly utilized to differentiate between healthy 

and diseased tissues, establishing a strong difference between 

gray and white matter T2w MRI is particularly suitable for 

brain disorders where water accumulates in brain tissues, due 

to its sensitivity to water content as shown in Figure 2. This 

modality helps to determine the location of edema, resulting in 

a bright signal on the image. Cerebrospinal fluid (CSF), which 

is a colorless fluid found in the spinal cord and brain, can be 

effectively distinguished using T1w and T2w images. In T2w 

images, the CSF appears bright, whereas in T1w images, it 

appears dim. T1w MRI with gadolinium contrast enhancement 

(T1-Gd) is another MRI sequence used for imaging. In this 

modality, a contrast agent, such as gadolinium ions, is 

accumulated in the active cell area of tumor tissues to produce 

a bright signal, facilitating the demarcation of the tumor 

boundaries. Necrotic cells, which are segmented as a hypo-

intense region of the tumor's core and do not correlate with 

contrast agents, help to segment the hypo-intense region of the 

active cell zone. Fluid Attenuated Inversion Recovery 

(FLAIR) is similar to T2-weighted images except for its 

acquisition protocol. It achieves the suppression of the water 

molecule, which helps to distinguish between edema and the 

CSF. FLAIR has the capability to suppress water signals, 

making hypertensive periventricular lesions easily visible. 

Although brain tumors are not as common as liver, 

esophageal, and breast tumors, they have a significant impact 

on global mortality rates. Brain cancer is one of the deadliest 

forms of cancer, affecting both adults and children. As a result, 

research has focused on developing diagnostic techniques to 

improve early detection and in-crease survival rates. Accurate 

tumor diagnosis helps doctors determine the best treatment 

options, including chemotherapy and surgery. The World 

Health Organization has categorized tumors into four types 

[35] Gliomas and metastases are the two most common types 

of malignant tumors, accounting for about 80% of cases [36] 

Gliomas are classified as either low-grade (LGG) or high-

grade (HGG) based on their aggressiveness. Magnetic 

Resonance Imaging (MRI) is a noninvasive diagnostic tool 

that provides precise information about the tumor and sur-

rounding healthy tissues [2]. 

 

 
 

Figure 2. Brain tumor MRI modalities. (a) FLAIR, (b) T1-

weighted, (c) T1ce respectively, (d) T2-weighted (e) Ground 

truth 

 

3.2 Datasets 

 

3.2.1 Skull stripping dataset 

This study's skull stripping MRI dataset was made available 

through NFBS challenge [37]. The data collection consists of 

a T1-weighted (T1w) model brain MRI scan for 124 

participants. Ground truth labels that are manually segregated 

for each subject in the training dataset are given. A sample 

from the NFBS dataset is shown in Figure 3. 

 

 
 

Figure 3. 3 samples from the NFBS data set. (a) the t1w MRI 

images (b) the ground truth 

 

3.2.2 Brain tumor segmentation dataset 

The MRI dataset utilized in this research is obtained from 

the BraTS'2020 Challenge [38] which contains multimodal 3D 

brain MRI scans of 369 individuals in the training dataset. 

Each subject underwent four scans, including native T1-

weighted (T1w), contrast-enhanced T1-weighted (T1ce), T2-

weighted (T2w), and T2 Fluid Attenuated Inversion Recovery 

(FLAIR). Ground truth labels were manually segmented by 

highly skilled and certified neuroradiologists, and include 

annotations for the GD-enhancing tumor (ET-label 4), 

peritumoral edema (ED-label 2), and necrotic and non-

enhancing tumor core (NCR/NET-label 1), background (Label 

0). Validation datasets of 125 individuals with similar scans 

but lacking expert segmentation annotations and grading 

information were also included. Figure 4 displays a sam-ple of 

the Brats2020 dataset. 

 

 
 

Figure 4. 3 samples from the Brats2020 data set. (a) T1w (b) 

T2w (c) T1ce (d) FLAIR (e) the ground truth 
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3.3 Preprocessing 

 

The presence of variations in intensity within the same 

tissues is known as intensity inhomogeneity, which is mainly 

caused by RF coil imperfections. This issue can adversely 

affect the results of segmentation, but several methods are 

available to address it, such as N4 bias field correction. This 

popular approach uses multiscale optimization to correct low-

frequency intensity non-uniformity in MRI image data. In 

addition to specifying the "real" pixel, the "MaskImage" can 

be used to prevent excessive processing [9]. The N4 Bias 

Correction method [39] can be used to correct the MRI scan's 

intensity inhomogeneity. The N4 bias field correction 

algorithm is initially applied to T2w, T1ce, and flair scans. The 

BraTS 2020 multimodal scans contain an unstandardized 

intensity distribution because they were obtained utilizing 

various clinical methods and scanners. Normalization is 

therefore a crucial step in the processing of multi-mode 

scanning by a single algorithm. To improve calculation 

efficiency and preserve as much of the original image data as 

feasible, the original Brats 2020 images were cropped and 

resized to 128×128×128 pixels, and the original NFBS images 

were reduced from 256×256×192 pixels to 128×128×128 

pixels by eliminating as many zero backgrounds as possible. 

Finally, the data is normalized to have a zero mean and unit 

variance. 

 

3.4 Proposed structure 

 

The proposed 3D_Att_ResU-Net used for brain tumor 

segmentation is developed from the U-Net architecture with 

some modifications. 

 

3.4.1 U-Net architecture 

U-Net, proposed by Ronneberger et al. [12], is a well-

known method for semantic medical image segmentation, that 

offers superior efficiency and accuracy [40]. U-Net has been 

proven to be a successful method for medical image 

segmentation, even when dealing with limited amounts of 

training data [41]. It has a symmetrical "U" shape structure and 

is comprised of two main components. The first component, 

called the contracting encoder, is located on the left side of the 

network and is responsible for extracting global features by 

employing convolution layers and max pooling. The second 

component, called the decoder, is located on the right side of 

the network and is responsible for accurate localization, which 

leads to significant improvement in the performance of 

medical image segmentation. The decoder uses up-sampling, 

concatenation with the corresponding cropped feature map 

from the encoder, and convolution layers at each step. Figure 

5 shows the U-Net diagram. In this paper, we demonstrate that 

replacing the plain unit with a residual unit and attention 

mechanism can further enhance the performance of U-Net. 

 

3.4.2 Attention mechanism 

"Attention" refers to an intentional action that directs focus 

toward a specific object or goal, giving it priority over other 

sensory inputs. This ability to selectively assign importance to 

different stimuli is sometimes described as "giving need". 

Concentration reinforces the focus on the object of attention 

while reducing attention to other stimuli [42]. 

The attention mechanism, a popular technique in deep 

learning, is inspired by a human vision which can rapidly focus 

on objects of interest while filtering out extraneous 

information. It is widely used in many fields including natural 

language processing [43] and computer vision [44]. Typically, 

the attention mechanism is used to improve the performance 

of the encoder-decoder architecture. This paper introduces a 

type of attention mechanism called "channel-wise attention" 

which is applied on the channel-wise level to make the U-Net 

network focus on key feature regions. The channel-wise 

attention mechanism uses a gating mechanism to weigh the 

importance of each channel in the input feature map for the 

final output. The block diagram of the channel-wise attention 

mechanism is shown in Figure 6. 

 
 

Figure 5. A network diagram of U-Net. The number of channels in each stratum is indicated by numbers above it 
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Figure 6. The block diagram of channel-wise attention mechanism 

 

3.4.3 Residual unit 

The issue of degradation can occur when a multilayer neural 

network is made deeper, as it could hinder the training process 

[16]. To address this issue and improve training He et al. [45] 

suggested the residual neural network, In 2016. This network 

uses adaptive skip connections in residual blocks to preserve 

low-level features and overcome the problem of vanishing 

gradients. The use of identity mapping connections facilitates 

direct transfer of activations from earlier to later layers, and 

the concatenation operator joins the output with the input of 

the residual convolutional block. Moreover, the residual 

network enhances information transfer and hastens the 

convergence of the model to the global minima. The residual 

neural network is composed of a collection of residual 

elements, each of which can be represented by Eq. (1). and Eq. 

(2). 

 

𝑌𝑖 = ℎ(𝑥𝑖) + 𝐹(𝑥𝑖 , 𝑤𝑖) (1) 

 

𝑋𝑖+1 = 𝑓(𝑦𝑖) (2) 

 

where, ℎ(𝑥𝑖)  is an identity mapping function, a typical 

example being ℎ(𝑥𝑖)=𝑥𝑖 , and 𝑥𝑖  and 𝑋𝑖+1  are the input and 

output of the ith residual unit, F(.) is the residual function, 

𝑓(𝑦𝑖)  is the activation function, and ℎ(𝑥𝑖)  is the mapping 

function's identity. In Figure 7, a plain unit is distinguished 

from a residual unit. There are numerous combinations of 

batch normalization (BN), rectified linear unit activation 

(ReLU), and convolutional layers in a residual unit. Xu et al. 

[44] provided a thorough analysis of the effects of various 

combinations and proposed a complete reactivation scheme, 

as shown in Figure 7 (b) where (a) represent the basic neural 

unit of U-Net. 

 

 
 

Figure 7. Neural network building blocks. (a) The basic 

neural unit of U-Net (b) The proposed 3D_Att_ResU-Net’s 

residual unit with identity mapping 

3.4.4 3D_Att_ResU-Net 

The semantic segmentation neural network is presented. 

The 3D_Att_ResU-Net incorporates the advantages of the 

UNet, residual neural network, and Attention mechanism. To 

start, the residual connections are added to the left and right 

branches' various layers. Next, channel-wise consideration is 

adding to the skip connection. Three advantages result from 

this combination: 1) The residual unit will make network 

training easier. 2) When producing predictions, the UNet 

network may concentrate on the region of interest in the input 

image thanks to an attention mechanism, which also lessens 

the impact of noise. 3) The skip connections within the 

residual unit between the low levels and high levels of the 

network will enable information propagation without 

degradation, allowing the design of a neural network with a 

great deal fewer parameters while still achieving an ever-

improving performance on semantic segmentation. As 

illustrated in Figure 8, we use a 9-level 3D_Att_ResU-Net 

architecture in this letter to segment brain tumors and strip 

away the skull. Three components make up the network: 

encoding, a bridge, and decoding. The incoming image is first 

encoded into small representations. The final section, or 

semantic segmentation, recovers the representations to a pixel-

by-pixel categorization. The middle section functions as a link 

between the encoding and decoding paths. The three 

components are constructed using residual units, which are 

two 3×3×3 convolution blocks and an identity mapping. The 

identity mapping links the unit's input and output. A BN layer, 

a ReLU activation layer, a dropout layer, an addition layer, and 

a convolutional layer are all included in each residual block. 

The first residual block in the suggested system is shown in 

Figure 9. For quicker convergence, batch normalization (BN) 

is applied. The activation function value or convolution output 

value is normalized to become BN. When BN is used, the 

weight propagation process is unaffected by a parameter scale. 

Consequently, the learning rate can have boosted that 

determines how much alter the weights are altered, allowing 

for quick learning. A regularization method known as dropout 

eliminates overfitting [46]. This is because the model is overly 

tuned and fitted to the training dataset. As a result, it is limited 

to the training dataset. In order to avoid overfitting during 

training, the dropout strategy deliberately removes some 

network units. Dropout enhances performance by essentially 

building numerous models and making predictions. 

Overfitting may inevitably result from learning with just one 

model. The risk of overfitting can be decreased, though, if 

numerous models are trained and predictions are made using 

each model. There are four residual units in the encoding path. 

The maximum pooling used for down sampling in each unit 

has voxel sizes of 2×2×2 and a stride of 2 in each dimension 

to minimize the feature map in half. The attention is added as 

the horizontal link in order to obtain richer low-level and high-
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level information, strengthening feature information 

representations between the two types of data. The decoding 

path also includes four residual units in this manner. Before to 

each unit, lower level feature maps from the previous level are 

up sampled, and they are concatenated with the feature maps 

from the appropriate attention mechanisms path. Figure 10 

shows the first attention block between the output of the fourth 

Res. block and the output of the bridge Res. block and then the 

concatenation that linked the output of the attention block and 

the output of the first up sampling after the bridge Res. block. 

The multichannel feature maps are projected into the 

appropriate segmentation using Softmax for brain tumor 

segmentation after the final level of decoding path, a 1×1×1 

convolution, and a sigmoid activation function for skull 

stripping. Table 1 lists the input and output specifications for 

each phase.

 

 
 

Figure 8. The proposed 3D_Att_ResU-Net architecture 

 

 
 

Figure 9. The first residual block in the proposed system 

 

 
 

Figure 10. The first attention block 
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Table 1. Network structure of 3D_Att_ResU-Net 

 
 Unit Level Conv Layer  Filter Size Output Size No of Parameters 

Input    128,128,128,3 0 

Encoding 

Level 1 
Res block 

maxpooling 
16 

128,128,128,16 

64,64,64,16 

8,496 

0 

Level 2 
Res block 

pooling 
32 

64,64,64,32 

32,32,32,32 

42,464 

0 

Level 3 
Res block 

maxpooling 
64 

32,32,32,64 

16,16,16,64 

168,896 

0 

Level 4 
Res block 

maxpooling 
128 

16,16,16,128 

8,8,8,128 

673,664 

0 

Bridge Level 5 Res block 256 8,8,8,256 2,690,816 

 

Decoding 

Level 6 

Attention 

Down sampling 

concatenate 

Res block 

 ــ  ــــــ

 ــ  ــــــ

 ــ  ــــــ

128 

16,16,16,128 

16,16,16,128 

16,16,16,256 

16,16,16,128 

640,769 

884,864 

0 

1,361,792 

Level 7  

Attention 

Down sampling 

concatenate 

Res block 

 ــ  ــــــ

 ــ  ــــــ

 ــ  ــــــ

64 

32,32,32,64 

32,32,32,64 

32,32,32,128 

32,32,32,64 

160,641 

221,248 

0 

340,928 

Level 8 

Attention 

Down sampling 

concatenate 

Res block 

 ــ  ــــــ

 ــ  ــــــ

 ــ  ــــــ

32 

64,64,64,32 

64,64,64,32 

64,64,64,64 

64,64,64,32 

40,385 

55,328 

0 

85,472 

Level 9 

Attention 

Down sampling 

concatenate 

Res block 

 ــ  ــــــ

 ــ  ــــــ

 ــ  ــــــ

16 

128,128,128,16 

128,128,128,16 

128,128,128,32 

128,128,128,16 

10,209 

13,840 

0 

21,488 

Output  Conv 
2 

4 

128,128,128,2 skull stripping 

128,128,128,4 brain tumor segmentation 
68 

Total parameters: 7,421,368 

Trainable parameters: 7,415,992 

Non-trainable parameters: 5,376 

 

3.5 Evaluation metrics 

 

The intersection over union (IoU) evaluation metric was one 

of several used in the work to objectively assess the efficacy 

of the suggested strategy Eq. (3). The IoU (Intersection over 

Union) is a segmentation performance metric that determines 

the overlap between the expected and ground-truth segments. 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (3) 

 

Dice similarity coefficient (DSC) Eq. (4), precision Eq. (5), 

specificity Eq. (6), sensitivity Eq. (7), and accuracy are the 

other five frequent evaluation metrics employed in image 

segmentation tasks, particularly in the field of medicine Eq. 

(8). 

 

𝐷𝑆𝐶 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (6) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (8) 

 

where, 

True Positives (TP) are the proportion of pixels that are 

correctly identified as belonging to an item. 

False Positives (FP) are the quantity of pixels that are 

mistakenly identified as belonging to an item. 

False Negatives (FN) are the number of pixels that should 

be considered to be a part of the item but are instead not. 

True Negatives (TN): the quantity of pixels that are 

correctly identified as not being a part of the object. 

 

 

4. MODEL IMPLEMENTATION 

 

Python programming, the Keras library, and TensorFlow as 

the backend were used to create the suggested model 

(3D_Att_ResU-Net). The T1w channel of the MRI images was 

used to create predicted brain masks using the 3D_Att_ResU-

Net model. These masks were utilized to extract the images of 

the brain tissue. The 124 images of T1w MRI that were chosen, 

with an image size of 256×256×192 were used. The T2, T1ce 

and Flair channels of the MRI images were used to create 

predicted brain tumor masks using the 3D_Att_ResU-Net 

model. These masks were utilized to extract the images of the 

brain tumor tissue. The 369 images of 3 modalities MRI that 

were chosen, with an image size of 240×240×155×1 were used. 

preprocessing was performed on them, including bias field 

correction, intensity normalization, cropping, and resizing, as 

the images' size becomes 128×128×128×1 for skull stripping 

and 128×128×128×3 for brain tumor segmentation. Batch 

normalization were used typically improves model stability 

whereas layer-by-layer normalizing the network. Due to the 

limited computing power, a batch size of 2 was used to train 

the model. 90% of the da-ta were taken for training and 10% 
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for validation, served as the basis for the studies. The Google 

Colab Pro Tesla T4 GPU and 25 GB RAM were used for the 

model training, because Google Colab is an exceptional cloud 

service that includes a comprehensive Keras library and 

enables users to interact with a server using a Jupyter notebook 

environment [47]. To determine the ideal combination of the 

hyperparameters, a number of tests were run using the 

suggested method. Starting with smaller filters to gather as 

much local information as possible, the trials gradually raised 

the filter width to lower the resulting feature space width and 

obtain more representative data. The dropout layer is utilized 

during training. The dropout rate was initially set to 0.3, 

however by empirically adjusting the dropout value, it was 

discovered that a 0.2 dropout rate was ideal for the test's 

outcome. Also, the learning rate was empirically adjusted in a 

variety of tests to determine the ideal learning rate value. By 

starting with a higher learning rate and gradually lowering it, 

this method enables us to reach the global minima much faster. 

After training, the brain mask and brain tumor mask were 

predicted for the selected MRI images for each patient using 

the 3D_Att_ResU-Net. Each image's forecast time ranges 

from 12 to 80 ms. Table 2 provides more information on the 

hyperparameter settings that were made during model training. 

 

Table 2. The 3D_Att_ResU-Net’s hyperparameter 

 

Hyperparameters Skull Stripping 
Brain Tumor 

Segmentation 

Input size 128×128×128×1 128×128×128×3 

Learning rate 0.001 0.001 

Batch size 2 2 

The hidden layer 

activation function 
ReLU ReLU 

Optimizer ADAM ADAM 

epochs 25 190 

Dropout 0.2 0.2 

Output layer activation 

function 
Sigmoid SoftMax 

Output size 128×128×128×2 128×128×128×4 

 

 

5. RESULTS AND DISCUSSION 

 

This section covers the evaluation measures used to assess 

the proposed model's performance, implementation details, 

obtained results, and a comparison with state-of-the-art 

techniques. Evaluation measures such as DSC, Precision, 

Sensitivity, Specificity, and IOU were employed to evaluate 

the model's accuracy and detection capabilities. 

Implementation details include architecture, hyperparameters, 

and preprocessing or post-processing techniques. the 

evaluation process divided into two section skull stripping 

evaluation and brain tumor segmentation evaluation as shown 

below. 

 

5.1 Skull stripping evaluation 

 

The proposed method of skull stripping is trained and tested 

on the NFBS data set. The method is implemented once 

without images preprocessing and once after preprocessing to 

find out the extent of the effect of image preprocessing on the 

desired results. The efficacy of the method was tested by 

measuring IoU, DSC, precision, specificity, Sensitivity and, 

accuracy. Table 3 shows the comparison of the proposed skull 

stripping method with and without preprocessing. Table 4 

shows a comparison of mean deviation for MVU-Net method, 

3D Unet, MHF method and, the proposed 3D_Att_ResU-Net 

method. Figure 11 shows Examples of skull stripping results 

on the validation set of NBFS dataset. The visual 

representation demonstrates how closely the outcomes 

correspond to the values of the ground truth. 

 

 
 

Figure 11. Examples of skull stripping outcomes on the 

validation set of NBFS dataset. (a) the input t1w MRI image, 

(b) the ground truth, (c) the predicted brain mask and, (d) the 

extracted brain 

 

 

Table 3. Comparison of the proposed skull stripping method with and without preprocessing 

 
Preprocessing  Accuracy  IoU DSC Precision Specificity Sensitivity 

Without 0.9814 0.9196 0.8969 0.9861 0.9865 0.9318 

With 0.9942 0.9644 0.9961 0.9916 0.9916 0.9943 

 

Table 4. Comparison of mean deviation for MVU-Net method, 3D U-Net and the proposed method. The strongest values are 

boldened 

 

Method DSC Sensitivity Specificity 

[7] 3D U-Net 0.9903 0.9853 0.9953 

[48] MVU-Net 0.9681  0.9763 0.9954 

[49] MHF 0.9416 - - 

Proposed: 3D_Att_ResU-Net 0.9961 0.9943 0.9916 
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5.2 Brain tumor segmentation evaluation 

 

The proposed method of brain tumor segmentation was 

trained and tested on the BraTS 2020 database. The method 

was implemented once without images preprocessing and once 

after preprocessing to find out the extent of the effect of image 

preprocessing on the desired results. The efficacy of the 

method was tested by measuring IoU, DSC, precision, 

specificity, Sensitivity and, accuracy. Table 5 shows the 

comparison of the proposed brain tumor segmentation method 

with and without preprocessing. Table 6 shows a comparison 

for related works and the proposed 3D_Att_ResU-Net method. 

Table 6 shows a Comparison of Accuracy, IoU, Mean DSC, 

precision, specificity and, Sensitivity of proposed 

3D_Att_ResU-Net model with the most recent techniques. 

Figure 12 shows Examples of brain tumor segmentation 

results on the validation set of BraTS dataset. The visual 

representation demonstrates how closely the results match the 

ground truth values for WT, CT, and ET. 

The 3D_Att_ResU-Net model is evaluated against existing 

models for brain tumor semantic segmentation. The results 

show that the recommended strategy outper-formed existing 

methods in terms of segmentation results for certain tumor 

locations (WT, TC, and ET). However, the most challenging 

regions to segment were the enhancing tumor and its 

dispersion with necrosis, which many existing models 

struggled with. On the other hand, the 3D Att ResU-Net model 

was able to segment these areas. The 3D Att ResU-Net model 

outperformed cutting-edge techniques for tumor core and 

enhancing tumor classes, as shown in Table 7. The suggested 

strategy outperformed previous approaches in terms of 

complete tumor segmentation, producing results that were 

superior. Overall, it seems that the 3D Att ResU-Net model is 

a better method for producing segmented images that are more 

accurate. 

 

 
 

Figure 12. Examples of brain tumor segmentation results on 

the validation set of BraTS 2020 dataset. (a) the input MRI 

image, (b) the ground truth, (c) the model prediction 

 

Table 5. Comparison of the proposed brain tumor segmentation method with and without a preprocessing 

 
Preprocessing  Accuracy  Mean IoU DSC Precision Specificity Sensitivity 

Without 0.9490 0.8744 0.9381 0.9501 0.9844 0.9590 

With 0.9793 0.9595 0.9983 0.9691 0.9897 0.9691 

 

Table 6. Comparison for related works and the proposed method. The best values are emboldened 

 
Method Mean DSC Precision Specificity Sensitivity 

[23] FCNN 0.8267 0.8167 - 0.9033 

[5] SK-TPCNN 0.8540 0.8167 - 0.9033 

[50] OM-Net 0.8878 - 0.9942 0.9012 

[51] Modified UNet 0.8187 - 0.995 0.843 

[26] TPRE-UNet 

TPRD-UNet 

TPRED-UNet 

0.894 

0.8954 

0.8976 

0.9088 

0.9049 

0.9065 

0.9987 

0.9987 

0.9987 

87.77 

88.31 

0.8919 

[13] Depth-wise separable Hybrid model  0.8775 - 0.9942 0.9026 

Proposed 3D_Att_ResU-Net 0.9983 0.9691 0.9897 0.9691 

 

Table 7. Comparison of DSC TC, WT and ET of proposed 3D_Att_ResU-Net model with the present techniques Brain Tumor 

Segmentation methods 

 

Method Dataset 
Dice Score (DSC) 

Tumor Core (TC) Whole Tumor (WT) Enhancing Tumor (ET) 

[51] Modified U-Net Brats 2018 0.805 0.868 0.783 

[52] 3D-CNNs Brats 2020 0.7526 0.8463 0.6215 

[32] cascaded 3D densely-connected U-Net Brats 2020 0.82 0.90 0.78 

[53] Transformer Brats 2020 0.8173 0.9009 0.7873 

[25] 3D U-Net Brats 2015 0.86 0.86 0.65 

[33] dResU-Net Brats 2020 0.8357 0.8660 0.8004 

[54] 3D Attention U-Net Brats2019 0.7927 0.898 0.7047 

Proposed 3D_Att_ResU-Net Brats 2020 0.9985 0.9982 0.9980 
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The preprocessing steps applied in the proposed system 

resulted in notable performance enhancements, as depicted in 

Table 3 and Table 5. The improvements were observed across 

various evaluation metrics. Specifically, the preprocessing 

steps led to increased accuracy, IOU (Intersection over Union), 

DSC (Dice Similarity Coefficient), precision, specificity, and 

sensitivity, with improvement rates ranging between 0.51% 

and 9.92%. These enhancements highlight the effectiveness of 

the preprocessing steps in improving the overall performance 

of the system. 

The proposed 3D_Att_ResU-Net method for brain tumor 

segmentation and skull stripping has demonstrated superior 

performance compared to previous approaches, as indicated in 

Table 4 and Table 6. It has outperformed previous works in 

terms of mean DSC, Precision, and Sensitivity. However, the 

previous work does outperform the proposed system in terms 

of Specificity, by a relatively small margin ranging between 

0.35% and 0.9%. 

When examining medical images to detect specific diseases 

like cancer, the measure of Sensitivity becomes more crucial 

than Specificity. Sensitivity represents the ability to accurately 

identify positive cases, meaning the capability to detect true 

positive cases correctly. In this context, it is more important to 

achieve a higher sensitivity to ensure the correct identification 

of as many true positive cases as possible. While high 

specificity is desirable to avoid false positives, it may be 

prioritized slightly lower compared to sensitivity in the context 

of disease detection from medical images. 

 

 

6. ABLATION STUDY 

 

The ablation study compared the performance of the 

proposed 3D_Att_Res_U-Net model with U-Net, Residual U-

Net, and Attention U-Net. The integration of attention and 

residual units in the proposed model resulted in improved 

feature representation, better preservation of low-level details, 

and enhanced training stability, leading to higher segmentation 

accuracy in brain tumor segmentation. By comparing the 

proposed method with the ablation studies referenced as [24, 

32, 53] in Table 7, it becomes evident that the performance of 

the proposed method is significantly superior to the respective 

ablated models, particularly for the challenging ET class, 

which historically posed difficulties in accurate segmentation. 

The inclusion of attention and residual mechanisms proved 

crucial in achieving accurate segmentation, validating their 

importance in skull stripping and brain tumor identification. In 

summary, the 3D_Att_Res_U-Net model outperformed the 

other models, highlighting its effectiveness in addressing the 

complexities of brain tumor segmentation. 

 

 

7. CONCLUSION 

 

This paper introduces the 3D_Att_ResU-Net model for 

MRI skull stripping and brain tumor segmentation tasks. The 

superior performance of the architecture is achieved due to 

three main things. First reason is that the segmentation 

performance of brain tumors is improved by the model's use 

of residual units and attention mechanisms. The inclusion of 

attention units during the down-sampling and up-sampling 

processes allows for adaptive feature rescaling, increasing the 

local responses of the residual down-sampling features and the 

up-sampling process' recovery effects. The second reason 

residual blocks were developed, which let the network learn 

the residual mapping between the inputs and outputs rather 

than the direct mapping between inputs and outputs, the model 

can quickly learn the residual mapping according to a residual 

block technique. The third reason a different preprocessing 

technique, i.e., bias field correction and intensity 

normalization was employed. To confirm the confidence of 

bias field correction (N4ITK) as a preprocessing technique, 

normalization was employed after bias field correction. Based 

on the results of bias field correction as a preprocessing 

method, it was concluded that segmentation results may be 

improved. As a result, bias field correction should be used as 

a preprocessing method because it enhances segmentation 

outcomes. Experimental results show that the proposed 

method outperforms state-of-the-art models. For skull 

stripping, the model achieved a dice score of 0.9961, and for 

brain tumor segmentation, the model achieved dice scores of 

0.9985, 0.9982, and 0.9980, for TC, WT, and ET respectively, 

without any data augmentation or extensive post-processing. 

In the future, we intend to apply the 3D_Att_ResU-Net model 

for other diseases that require the properties provided by this 

method. 
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