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The study of crowd movement and behavioral patterns typically relies on spatio-temporal 

localization data of pedestrians. While monocular cameras serve the purpose, industrial 

binocular cameras based on multi-view geometry offer heightened spatial accuracy. These 

cameras synchronize time through circuits and are calibrated for external parameters after 

fixing their relative positions. Yet, the flexibility and real-time adaptability of using two 

different cameras or smartphones in close proximity, forming a short-baseline binocular 

camera, presents challenges in camera time synchronization, external parameter calibration, 

and pedestrian feature matching. A method is introduced herein for jointly addressing these 

challenges. Images are abstracted into spatial-temporal point sets based on human head 

coordinates and frame numbers. Through point set registration, time synchronization and 

pedestrian matching are achieved concurrently, followed by the calibration of the short-

baseline camera's external parameters. Numerical results from synthetic and real-world 

scenarios indicate the proposed model's capability in addressing the aforementioned 

fundamental challenges. With the sole reliance on crowd image data, devoid of external 

hardware, software, or manual calibrations, time synchronization precision reaches the sub-

millisecond level, pedestrian matching averages a 92% accuracy rate, and the camera's 

external parameters align with the calibration board's precision. Ultimately, this research 

facilitates the self-calibration, automatic time synchronization, and pedestrian matching 

tasks for short-baseline camera assemblies observing crowds. 
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1. INTRODUCTION

Locating individuals within densely populated crowds 

entails determining the spatio-temporal positions of a vast 

majority of people in such scenes. Primarily, these findings 

serve as a data source and empirical foundation for various 

industrial and research endeavors. They have been frequently 

utilized in the domains of safety management [1], pedestrian 

dynamics [2], and intelligent transportation [3], among others. 

Additionally, dense crowd positioning has emerged as one of 

the research themes in crowd behaviour analysis [4-8]. A 

myriad of sensors is available to gather pedestrian data. Upon 

evaluating factors such as data precision, equipment costs, and 

deployment costs, cameras are discerned to possess distinct 

advantages. The precision in extracting crowd-related features 

through computer vision (CV) methods has been notably 

enhanced under the influence of deep learning [9-11]. 

Furthermore, the implementation of binocular stereoscopic 

vision (BSV) with multiple cameras to execute spatial 

triangulation [12] has the potential to ameliorate positioning 

accuracy and spatial dimensions. While a multitude of 

industrial binocular cameras can accomplish data collection 

tasks for short-baseline stereoscopic vision, an even more 

favourable approach entails the ad-hoc pairing of two standard 

cameras or smartphones to form a short-baseline camera 

assembly. Such combinations permit swift execution of 

controlled and natural experiments. However, in comparison 

to industrial binocular cameras, this freely-formed camera 

assembly confronts three pivotal challenges when observing 

from multiple angles: precise time synchronization, manual 

external camera parameter calibration, and pedestrian 

matching across multiple views. Hence, this study pivots its 

attention towards jointly addressing these three challenges, 

striving to propose a method that balances both engineering 

practicality and theoretical significance. 

These three pivotal challenges can be distilled into the 

geometric object correspondence issues enumerated in Table 

1. An intuitive approach to resolve these correspondence

issues involves transitioning from static image resolution to

dynamic scene resolution. Features of pedestrians are first

extracted using detectors [9, 10, 13]. Following video frame

time alignment [14, 15] and after the camera assembly

calibration is completed [16], triangulation is performed on

each pair of video frames [12, 17].

However, what appears intuitively feasible often comes 

with intricacies. Assuming the exclusive use of image data 

without relying on camera hardware/software control and 

manual calibration, resolving the aforementioned relationships 

becomes reminiscent of the chicken-or-the-egg conundrum. 

The underlying reason lies in the inter-dependencies that exist 

among C1~C3. Existing research purely based on images [15, 

18-21] either does not achieve the temporal precision required
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by BSV or relies on features unsuitable for crowd scenes 

characterized by significant occlusions. Furthermore, when C3 

is unknown or fraught with large errors [22], C1 and C2 

become indefinable. Only a handful of research endeavors 

have proposed joint solutions for C2 and C3 when dealing with 

individual pedestrians [23]. The presented research intends to 

circumvent these challenges through an innovative approach. 

 

Table 1. Point set correspondence 

 
Serial 

No. 
Name 

Point Set 

Relationship 
Function 

C1 
Feature point 

matching 

Point-point 

relationship 

Correspondence of 

pedestrian features in left 

and right views 

C2 

Fundamental 

matrix 

estimation 

Point-line 

relationship 

Correspondence of points 

and lines between left and 

right views or rigid 

transformations of 

coordinate systems 

C3 
Time 

synchronization 

Point-set 

relationship 

Temporal correspondence 

between left and right view 

videos 

 

 
 

Figure 1. Point sets with correspondence in left and right 

views 

 

The following perspectives are proposed in this study: 

• The three challenges warrant simultaneous resolution, 

each representing a different facet of the overarching 

problem. 

• The employment of higher-order pedestrian features, 

specifically head points, is essential to tackle the C1-C3 

issues, aiming to negate the obstructions prevalent in 

crowded environments.  

• Utilizing an average plane formed by head points within 

a 30cm range proves meaningful, as height variances 

among adults minimally affect locating corresponding 

points on the average plane using homograph 

transformations. 

The precise methodology encompasses both models and 

their respective solution algorithms. As depicted in Figure 1, 

head points from both views, along with time, are abstracted 

as point sets in a linear space, with the time axis orthogonal to 

the imaging plane. Subsequently, the correspondence issues of 

C1-C3 are recast into the challenge of solving point set 

stitching problems [24, 25]. The specific solution algorithm is 

then tailored according to the uniqueness of the problem. 

Main contributions of this study are: 

• The proposed model and solution algorithm, independent 

of additional synchronization hardware and manual 

calibration, facilitate time synchronization among 

multiple cameras, external parameter calibration, and 

pedestrian matching.  

• The algorithm exhibits resilience against noise from 

detectors and manual annotations.  

• Numerical connections between positioning accuracy and 

corresponding pixel errors are provided based on 

experiments with synthetic data. 

Prerequisites for the introduced method encapsulate two 

dimensions: the known internal parameters of the cameras and 

the assumption that the scene entails a crowd walking on an 

approximate plane. These conditions, while being easily 

achievable in experimental or production settings, resonate 

with real-world applications. 

 

 

2. LITERATURE REVIEW 

 

In subsequent sections, works overlapping with the research 

objectives of this study are introduced. Their distinct 

characteristics, strengths, and limitations, when applied to 

dense crowd positioning, are briefly discussed. The 

foundational knowledge section provides the theoretical bases 

on which the core algorithms of this study hinge, specifically 

the theory related to the Iterative Closest Point (ICP) algorithm. 

 

2.1 Related studies 

 

This segment introduces works congruent with the topics 

addressed in this study, serving as the foundational base for 

this research. Comparisons between the present study and 

existing literatures are further elaborated in Sections 4.1 and 

4.2. 

Time synchronization emerges as a prerequisite for data 

fusion from multiple cameras. A plethora of studies have 

utilized supplementary software and hardware tools during 

data acquisition to achieve optimal time accuracy. Among 

them, Smid and Matas [26] deployed camera flash as a 

synchronization tool. Faizullin et al. [27] utilized a gyroscope 

for synchronizing smartphones with commercial depth 

cameras. Work by Ansari et al. [28] enabled multiple Android 

phones to capture synchronously with sub-millisecond 

precision, largely leaning on network communication from 

camera capture software, albeit with high inter-camera 

dependencies. In the realms of video archive retrieval and 

alignment, studies [29, 30] have achieved large-scale spatial-

temporal alignment through video features and spatio-

temporal encoding. Common video processing tasks often 

employ methods by Wang et al. [15] for non-linear time 

alignment, necessitating manual and software interaction. 

Sinha's series of works [31, 32] utilize the tangent of imaging 

silhouettes of individual pedestrians to determine the 

fundamental matrix, subsequently deploying the Ransac 

algorithm to compute time offset from numerous matches. 

However, this method is found inadequate for long-distance 

observations of dense crowds. Takahashi et al. [33] 

synchronized time and calibrated multiple cameras for posture 

recognition using human body key points. Their model, an 

optimization problem with constraints, was deemed ill-suited 

for crowds with extensive obstructions. Numerous other 

studies [14, 18, 34], although capable of resolving time offset, 

presume the fundamental matrix as a given condition. Yet, 

Albl et al. [23], who employed pedestrian trajectories, 

introduced a method to jointly address time offset and the 

fundamental matrix, despite the challenges associated with 

automatically obtaining high-quality trajectories in dense 

crowds. 
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Pedestrian feature matching holds significant weight in 

multi-view pedestrian positioning research. Common 

pedestrian positioning methods are categorized into instance-

level and pixel-level [35], both contingent upon pre-known 

time offsets and scene geometry. The pixel-level, or pseudo 

radar method [36], is predicated on depth mapping for 3D 

detection and remains ineffectual for dense crowds. Instance-

level pedestrian positioning mandates object feature matching 

followed by positioning of object instances. The study by Li et 

al. [37], termed stereoscopic R-CNN and purposed for 

autonomous driving, employed corresponding patches from 

left and right views during training to generate features, 

facilitating simultaneous detection and association during 

prediction. Qin et al. [38] made use of a series of hypothetical 

3D candidate anchor points for foreground object detection. At 

this juncture, the matching relationship of the ROI in the left 

and right views is assumed known. While their triangulation 

accuracy and match quality are commendable, further 

refinements are required for pedestrian or crowd research. 

Bertoni et al. [35], by training on human key points, deployed 

both left and right view key points and Reid method for 

pedestrian matching. However, in scenarios with considerable 

occlusions, their key point detector fails. Pon et al. [39] used 

metrics formed from the mean and variance of pixel intensity 

values within the ROI for matching in left and right views, yet 

its applicability for dense crowd scenarios remains unverified. 

Fundamental matrix estimation, pivotal for 3D object 

positioning in space, ranks among the central issues in multi-

view geometry [12, 17]. The short-baseline triangulation 

explored in this study necessitates sub-pixel precision. 

Numerous sub-pixel object relation refinement studies exist 

[40, 41], but these algorithms come with high operational costs. 

There's also a wealth of studies on outlier pruning [42], most 

of which are similarly resource-intensive. This study plans to 

deploy the lightweight random algorithm, GraphCut [43], for 

estimating the fundamental matrix. 

 

2.2 Preliminary knowledge 

 

This section introduces the foundational concepts and 

provides a broad description of the models and algorithms 

utilized in the study. The challenges are re-framed as point set 

registration problems, solution for which is commonly termed 

as the ICP algorithm. While this method is typically applied to 

static physical space for point set registration, in this context, 

it us adapted for alignment within image spaces and time. 

Matrix optimization knowledge is pivotal for understanding 

the models and algorithms presented. Du et al. [25] provided a 

special form of Lemma 2, which has been generalized in this 

study. Throughout the proofs of the lemmas and theorems in 

this work, the Frobenius norm ∥⋅∥𝐹 of matrices and the 

𝑇𝑟𝑎𝑐𝑒(⋅)  function are repeatedly employed. For detailed 

definitions and properties, please refer to the study [44]. 

Relevant lemmas related to this study are presented below. 

Lemma 1. Given two m-dimensional point sets {𝑞𝑖}𝑖=1

𝑁𝑝
 and 

{𝑝𝑖}
𝑖=1

𝑁𝑝
, the function 𝐹(𝑡) = ∑ ∥

𝑁𝑝

𝑖=1
𝑞𝑖 + 𝑡 − 𝑛𝑖 ∥2

2  achieves 

its minimum when 𝑡 =
1

𝑁𝑝
∑ (𝑛𝑖 − 𝑞𝑖)

𝑁𝑝

𝑖=1
. 

Lemma 2. For given matrices 𝐴 ∈ ℝ𝑚×𝑚 , 𝐵 ∈ ℝ𝑚×𝑁𝑝 , 

𝐶 ∈ ℝ𝑚×𝑁𝑝, 𝑡 ∈ ℝ𝑚, and 𝐽 = (1, ⋯ ,1)𝑇 ∈ ℝ𝑁𝑝, set 𝐷 = 𝐵 −
𝐶, A is invertible, then the point of minimum value for matrix 

function 𝐿(𝑡) =∥ 𝐴(𝐵 + 𝑡𝐽𝑇 − 𝐶) ∥𝐹 is: 

 

*

1

1 1
( ).

pN

i i

ip p

t DJ B C
N N =

= − = − −  

 

Typical transformations for point set registration can be 

categorized into rigid transformations, non-rigid 

transformations, affine and projective transformations, or even 

further advanced non-linear transformations. Existing 

literatures [24, 25, 45] have already detailed analytical and 

proof-based discussions on the related data theories. Most 

relevant to this work are the models based on rigid 

transformations, which will be further modified. The model is 

defined as: 

 

 
( )

2

2
, , 1,2, , 1

argmin

 s.t. ,det( ) 1

p

m

N

i j
X t j N i

T

Xp t m

X X I X

  =

 
+ −  

 

= =


  (1) 

 

where, 𝑝𝑖 , 𝑚𝑖 ∈ ℝ3  and 𝑋2 ∈ ℝ2 × ℝ2 . The conventional 

approach to solving the rigid transformation model using the 

ICP algorithm is as follows: 

Step 1. Determine the correspondence under current 

parameters. 

 

 
( )( )2

1 1 2
1,2, ,

( ) argmin ,

1, , .

m

k k i k j
j N

p

c i X p t m

i N

− −
 

= + −

= 

 

 

Step 2. Based on the current correspondence, new 

parameters are computed. 

 

( )
2

,

, argmin ,

s.t. ,det( ) 1,

T

k k F
X t

T

X t XA Jt B

X X I X

= + −

= =

  (2) 

 

Step 3. If convergence criteria are not met, return to Step 1. 

In Eq. (2), 𝐽 = (1, … ,1)𝑇 represents a column vector with 

𝑁𝑝  dimensions, 𝐴 ∈ ℝ3×𝑁𝑝  its column vectors are 𝑝𝑖 , 𝐵 ∈

ℝ3×𝑁𝑝, and its column vectors are 𝑚𝑗. 

 

 

3. MODEL AND ALGORITHM 

 

In this section, methods for addressing problems C1~C3 

under the short-baseline camera combination will be 

elucidated. Initially, an overview of the dense crowd 3D 

positioning process is presented, with clarity provided 

regarding the position of the research discussed within this 

broader process. Subsequently, based on the viewpoints 

proposed in the prologue, pertinent models are introduced. 

Finally, solution algorithms for these models are described, 

underpinned by pertinent mathematical theories, for which 

corresponding proofs are provided. 

Referring to Figure 2, the comprehensive process for dense 

crowd 3D positioning is outlined. Here, 𝑉𝑙 = {𝐼𝑖}  and 𝑉𝑟 =

{𝐼𝑗} denote video sequences, 𝐻𝑙 , 𝐻𝑟 ⊂ ℝ𝟛are respectively the 

point sets composed of image coordinates of pedestrian heads 

in left and right views an time values. 𝑃𝑠𝑡  symbolizes a set of 

parameters, encompassing time offsets, external camera 

parameters, and transformations employed for pedestrian 

matching. Four segments are represented in the figure, with 
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the third segment, temporal-spatial parameter estimation, and 

the dark rounded rectangle in the fourth segment correlating 

directly with the primary focus of this research. Green and blue 

arrows, respectively, represent data pertinent to the left and 

right views. 

 

 

 
 

Figure 2. Overall process of pedestrian positioning 

 

The tasks associated with parameter estimation and feature 

matching between the left and right views in the 

aforementioned process are addressed within this study. 

 

3.1 Problem definition 

 

The temporal-spatial parameter estimation process is 

simplified here as a point set matching model. Upon inputting 

the left and right view image sequences 𝑉𝑙  and 𝑉𝑟  into the 

pedestrian head detection module, point sets 𝐻𝑙  and 𝐻𝑟  on ℝ𝟛 

are obtained respectively. Assuming 𝑝𝑖 ∈ 𝐻𝑙 , 𝑚𝑗 ∈ 𝐻𝑟 , to 

jointly solve problems C1~C3, the following objectives are 

defined: 

• After transformation 𝑋 ∈ ℝ𝟛 × ℝ𝟛 is applied to point set 

𝐻𝑙  , align its overall shape with the right view point set 𝐻𝑟.  

• Displacement vector 𝑡 ∈ ℝ3×1 represents the shift of 𝐻𝑙 , 

align its image plane and time centroid with that of 𝐻𝑟 , 

which includes the solution to the time synchronization 

problem.  

• The correspondence of points i and j signifies the 

relationship between point 𝑝𝑖 in 𝐻𝑙 and point 𝑚𝑗 in 𝐻𝑟 , 

which resolves the pedestrian matching issue.  

• The solution to the fundamental matrix estimation is 

addressed independently in Section 3.3.2 once time 

synchronization is accomplished. 

The rigid transformation model presented in Eq. (1) is 

deemed unsuitable for this context and necessitates the 

following adaptations: 

 

 
( )

2

2
, , 1,2, , 1

2

argmin  

,det( ) 1,

s.t. 0
.

0 1

p

m

N

i j
X t j N i

T

Xp t m

X X I X

X
X

  =

 
+ −  

 

= =

 
=  
 



  (3) 

 

where, 𝑝𝑖 , 𝑚𝑖 ∈ ℝ3, 𝑋2 ∈ ℝ2 × ℝ2. 

Newly incorporated conditions reduce the degree of 

freedom in the transformation, permitting only rotation around 

time. Shuster [46] parametrized such rotation matrices by a 

unit vector in space 𝜇 and the angle of rotation 𝛼 around it, as 

shown: 
 

Rot(𝛼, 𝜇) = 𝐼3 + sin(𝛼)[𝜇]× + (1 − cos(𝛼))[𝜇]×
2  (4) 

 

where, [𝜇]× ∈ ℝ3×3 is an anti-symmetric matrix, denoted as 

the cross product matrix with respect to 𝜇. If ∀𝑣 ∈ ℝ, then 

there is 𝜇 × 𝑣 = [𝜇]×𝑣; assuming 𝜇 = (𝜇1, 𝜇2, 𝜇3)𝑇, then [𝜇]× 

is defined as: 
 

[𝜇]× = [

0 −𝜇3 𝜇2

𝜇3 0 −𝜇1

−𝜇2 𝜇1 0
] 

 

Thus, in the short-baseline scenario, only the rotation axis 

𝜇0 is known as a vector (0,0,1)𝑇, while the rotation angle 𝛼 

remains an estimated parameter. Here, the objective function 

in Eq. (3) is defined and is reformulated as follows: 
 

(𝑋𝑘 , 𝑡𝑘) = argmin
𝑋,𝑡

 L(𝑋, 𝑡)

𝑠. 𝑡. 𝑋 = Rot(𝛼, 𝜇0)，
 

where  L(𝑋, 𝑡) = ‖𝑋𝐴 + 𝑡𝐽𝑇 − 𝐵‖𝐹
2  .  

(5) 

 

Upon defining the model, the iterative process discussed in 

Section 2.2 can be employed for solutions. The subsequent 

sections provide analytical solutions for single-step iterations. 
 

3.2 Single-step analytical solution 
 

The single-step solution method for Eq. (5) during iteration 

significantly differs from the solution method for Eq. (2). 

Herein, an analytical solution for a single step iteration of Eq. 

(5) is provided. Corollary 1 is a generalized form of Lemma 1 

and will also be used in Eq. (2). The proofs for propositions 

and theorems are presented in the appendix. 

Corollary 1. Let matrices be given as 𝑋 ∈ ℝ𝑚×𝑚 , 𝐴 ∈
ℝ𝑚×𝑚, 𝐵 ∈ ℝ𝑚×𝑁𝑝 , 𝐶 ∈ ℝ𝑚×𝑁𝑝 , 𝑡 ∈ ℝ𝑚×1, 𝐽 = (1, ⋯ ,1)𝑇 ∈
ℝ𝑁𝑝 , with 𝐵𝑖 and 𝐶𝑖 being column vectors of 𝐵 and 

𝐶respectively. Define functions L1(𝑋, 𝑡) and L2(𝑋) as follows: 
 

L1(𝑋, 𝑡) =∥ 𝐴(𝑋𝐵 + 𝑡𝐽𝑇 − 𝐶) ∥𝐹
2

L2(𝑋) =∥ 𝐴(𝑋�̃� − �̃�) ∥𝐹
2  
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where, 𝐽 = (1, … ,1)𝑇 is a 𝑁𝑝 -dimensional vector, and both 

�̃� = 𝐵 −
1

𝑁𝑝
(∑ 𝐵𝑖

𝑁𝑝

𝑖=1
) 𝐽𝑇 and �̃� = 𝐶 −

1

𝑁𝑝
(∑ 𝐶𝑖

𝑁𝑝

𝑖=1
) 𝐽𝑇 hold. 

Then, the optimal solution 𝑋∗  for L2(𝑋)  is the optimal 

solution of L1(𝑋,𝑡) with respect to X, and the optimal solution 

of L1(X,t) with respect to t is: 

 

( )* *

1

* *

1
,

.

pN

i i

ip

t X B C
N

Y X

=

= − −

=


  

 

Theorem 1. Given matrices 𝐴, 𝐵 ∈ ℝ3×𝑁𝑝,𝐵 ∈ ℝ3×𝑁𝑝,and 

𝜇0 = (0,0,1)𝑇, the minimum value of function  

 

L(𝛼) =∥ Rot(𝛼, 𝜇0)�̃� − �̃� ∥𝐹
2  

 

appears at: 

 

𝛼∗ = argmax (L2 (arctan
−𝑑1

𝑑2
) , 𝐿2 (arctan

−𝑑1

𝑑2
+ 𝜋)),  

 

where, 𝑑1 = 𝐶12 − 𝐶21  and 𝑑2 = −(𝐶11 + 𝐶22) ; 𝐶𝑖𝑗 are the 

respective elements at the corresponding positions of 𝐶 =
�̃��̃�𝑇, and L2(𝛼) = 𝑑1 sin 𝛼 + 𝑑2(1 − cos 𝛼). 

 

3.3 Algorithm 

 

The algorithm consists of two parts: the point set alignment 

and the fundamental matrix estimation. The point set 

alignment is further divided into the FeatureMatching process, 

the RansacRegistration denoising process, and the 

TransformEstimationFine refinement process. Detailed 

descriptions follow, along with pseudocode implementations 

of the primary processes. 

 

Algorithm 1 TwoViewAlignmentST 

𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 TwoViewAlgMain(𝐻𝑙 , 𝐻𝑟) 

𝑘𝑑𝑡𝑟𝑒𝑒𝑟 ← GenerateKdtree(𝐻𝑟) 

𝑐𝑜𝑟𝑟𝑒𝑠𝑖𝑗 ← FeatureMatching(𝐻𝑙 , 𝐻𝑟) 

𝑋𝑘−1, 𝑡𝑘−1 ← RansacRegistration(𝑐𝑜𝑟𝑟𝑒𝑠𝑖𝑗 , 𝐻𝑙 , 𝐻𝑟) 

𝐖𝐡𝐢𝐥𝐞(𝑟𝑒𝑙𝑒𝑟𝑟(𝑓𝑖𝑡𝑛𝑒𝑠𝑠) < 1𝑒 − 6 or 𝑙𝑜𝑜𝑝 < 100) 

𝐻𝑙 ← 𝑋𝑘−1𝐻𝑙 + 𝑡𝑘−1 

𝑐𝑘𝑖 ← Get corresponding indexes of 𝐻𝑙  in 

𝑘𝑑𝑡𝑟𝑒𝑒𝑟 

(𝑋𝑘 , 𝑡𝑘) ← TransformEstimation(𝐻𝑙 , 𝐻𝑟 , 𝑐𝑘𝑖) 

computing fitness and loop 

EndWhile 

(𝑋𝑘, 𝑡𝑘) ← TransformEstimationFine(𝐻𝑙 , 𝐻𝑟 , 𝑐𝑘𝑖) 

computing fitness and loop 

𝐑𝐞𝐭𝐮𝐫𝐧 𝑋𝑘 , 𝑡𝑘, 𝑐𝑘𝑖 , 𝑓𝑖𝑡𝑛𝑒𝑠𝑠  

 

3.3.1 Point set alignment algorithm 

The FeatureMatching process employs point cloud feature 

methods to calculate the correspondence between the point 

sets 𝐻𝑙  and 𝐻𝑟  of the left and right views, and apply filtering. 

At this stage, the point sets of the left and right views appear 

remarkably similar in visual representation, but their positions 

and angles do not coincide. Point cloud feature extraction 

algorithms, as described in the studies [47, 48], can be used to 

find corresponding points between point sets. However, many 

erroneous matches may occur. Initially, forward and reverse 

matching must be conducted and mutually validated. Next, 

matches are grouped and counted based on their temporal 

offset, allowing for the selection of groups within a specified 

time deviation range. 

The RansacRegistration process employs the relationships 

identified from point set feature matching to extract an initial 

solution using the Ransac algorithm. Implementation details 

of the Ransac algorithm are not presented in this text; readers 

are directed to Schnabel's literature [49] for details. 

The TransformEstimationFine process provides an 

analytical solution for Eq. (2) in Step 2 based on the specifics 

of the short baseline scenario. Traditional rigid transformation 

estimations [24, 45] require the calculation of 3 degrees of 

freedom. However, due to the distinct characteristics of the 

short-baseline scenario, the transformation degree of freedom 

in model Eq. (4) is reduced to 1. The single-step analytical 

solution during the iteration process was previously proven in 

Section 2.2. According to Proposition 1, the optimal value of 

Xk  can be calculated first, and then tk  can be calculated 

through Xk. 

The pseudocode implementation of the aforementioned 

tasks is represented as Algorithm 1 (TwoViewAlignmentST). 

 

3.3.2 Fundamental matrix estimation algorithm 

Estimation of scene geometry (Problem C2) requires both 

temporal synchronization and sub-pixel matching precision as 

prerequisites. With temporal synchronization already achieved, 

two methods can address the sub-pixel synchronization 

challenge. One approach involves the utilization of 

corresponding point refinement algorithms [50, 51], while the 

other aims to increase the number of matching points, 

subsequently filtering a small subset that possesses sub-pixel 

precision. Both methods will be harnessed in this work. 

The Asift feature descriptor [52] is used to enhance the 

sample volume. Its fundamental principle involves performing 

multi-perspective affine transformations on images and then 

employing descriptors like Sift, Orb, Brisk, etc., to extract 

features exhibiting affine invariance. One of the advantages of 

the Sift feature descriptor is the extraction of key points with 

exceptional sub-pixel properties. Therefore, by combining the 

Asift and Sift algorithms, an increase in the number of 

matching point samples is achieved, all the while preserving 

sub-pixel correspondence. Eventually, Graphcut [43] is 

employed to discard matches that don't possess sub-pixel 

precision. 
 

 

4. EXPERIMENTS 

 

This section aims to validate the model and algorithm in 

terms of principles and applicability, corresponding 

respectively to Sections 4.1 and 4.2. The objective of the 

principle validation is to assess the algorithm's performance on 

synthetic data ground truth and when quantifiable noise is 

introduced. This ensures the upper limit of its convergence 

accuracy is confirmed, and the interval of its location error is 

analyzed. The objective of applicability validation, as detailed 

in Section 4.2, is to use complex crowd scenes to validate 

issues C1 and C2. The adaptability of the algorithm to different 

pedestrian head detectors and its performance under varying 

overlap degrees between left and right views is also explored. 

 

4.1 Synthetic data validation 
 

Synthetic data experiments utilized the STCrowd [53] 

dataset, collected using LIDAR and cameras and annotated 
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manually. This resulted in the generation of 2D projection data 

on the pixel plane. The pedestrian head images in this dataset 

underwent a blurring process. To ensure accuracy, only 

LIDAR data was employed. Annotated point cloud 3D boxes 

were projected onto virtual cameras at different baseline 

distances and rotation angles to obtain the synthetic data. 

Subsequently, the algorithm's performance on multiple data 

sets for issues C1~C3 was assessed. 

As shown in Figure 3, the highest point in each point cloud 

annotation was extracted as the pedestrian head point, denoted 

in red. This set is denoted as 𝐻3𝑑. Projections of 𝐻3𝑑 were then 

generated onto the pixel plane. The resolution and intrinsic 

parameter matrix of the camera were consistent with the 

equipment used in STCrowd [53]. Fifteen virtual camera sets 

were produced, with baseline lengths ranging from 0.06m to 

0.2m, and rotation angles linearly proportional to baseline 

distances. After projection, 15 sets of projection point sets and 

under different external parameters were obtained. To validate 

algorithm reliability, a 1/5 duration of data from the left view 

was extracted while the entire right view was retained. The 

point sets of the left and right views  𝐻𝑙𝑖
and 𝐻𝑟𝑖

 were then 

verified using the short baseline algorithm, 

TwoViewAlignmentST. 

The point set alignment results are shown in Figure 4. The 

first column displays the point sets of the left and right views, 

with the left view's time range being a subset of the right view. 

The second column presents the aligned point clouds, and the 

third column indicates the position of a frame of the left view's 

point cloud in image space. 

 

 
 

Figure 3. Point cloud in a crowd scene, with red dots representing pedestrian head points 

 

 
 

Figure 4. Point set alignment and pedestrian matching results 

 

4.1.1 Point set alignment and pedestrian matching results 

Figure 5 presents numerical results under 15 different 

external parameters. It's evident that point set matching was 

successful, with the worst fitness of point sets (fitness_pt) 

being 88% and the best fitness being 98%. The accuracy rate 

of pedestrian matching (fitness_pid) also reached a similar 

level, indicating the algorithm's suitability for addressing the 

pedestrian matching issue. 

Furthermore, in terms of the root mean square error (RMSE) 

of matching points (inliner_rmse), good results were also 

achieved. The maximum inliner RMSE was 5.5px, ensuring 

convergence even with a Gaussian noise of 10px when 

observing pedestrians within 20m, and this is a necessary 

condition for using the pedestrian head point detection tool. 

 

4.1.2 Results of time synchronization 

In these experiments, the time synchronization accuracy for 

all baselines was maintained at a frame level, implying that the 

accuracy achieved matches the time precision of the lidar used 

in the STCrowd dataset. With an image localization error of 

5px, the algorithm was found to be suitable for addressing the 

C3 problem, which pertains to time synchronization. 
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4.1.3 Results and error analysis of external parameter 

estimation 

Firstly, the influence of noise addition to feature points on 

triangulation localization after scene geometry recovery was 

explored. The results from Figure 6 indicate that to recover a 

usable fundamental matrix, pixel error must be kept below 

0.2px, and the baseline distance must exceed 0.1m to achieve 

an effect consistent with standard industrial stereo cameras, 

wherein the accuracy is 9% at 15m and 1% at 0.5m. 

 

 

 
 

Figure 5. Fit degree of point cloud stitching and RMSE of inliner matches 

 

 
 

Figure 6. Mean of location errors and mean of error per meter 
 

         
(a)                                                                            (b) 

 

Figure 7. Isolines of pedestrian head positioning. a - Isolines of mean error in pedestrian head positioning; b - Isolines of error 

per meter in pedestrian head positioning 
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Furthermore, the impact of noise added to feature points on 

the accuracy of localization was discussed in case that the 

geometry of the scene is known. As can be discerned from 

Figure 7, to achieve a 5% accuracy in spatial triangulation, the 

pixel error must not exceed 0.2px. To ensure the triangulation 

accuracy reaches 0.2, the baseline distance must be greater 

than 0.08m and the pixel noise should not surpass 0.1px. In 

Figure 7(a), the presented results pertain to the mean of 

location errors, while in Figure 7(b), the results represent the 

mean of error per meter. 

Based on the aforementioned numerical results, the viable 

range for pixel precision was determined. Additionally, it was 

concluded that directly using the pedestrian's head feature 

points to restore the fundamental matrix is infeasible. 
 

4.2 Verification in real-world scenarios 

 

The proprietary dataset, ZEDPed, was employed for 

verification purposes. As depicted in Figure 8, the lighting 

conditions were suboptimal, and there was significant 

obstruction of pedestrians. The data was captured using the 

ZED Mini stereo camera. Its circuit-level synchronized rolling 

shutter ensures high precision time synchronization between 

the left and right cameras, thereby providing an accurate 

reference for temporal alignment. The effective detection 

range stood at 15 meters, and the video lasted 30 seconds, 

totalling 300 frames. 

 

 

 
 

Figure 8. Matching results with a 15-frame difference 
 

    
(a) (b) (c) (d) 

 

Figure 9. Point cloud stitching results generated by manual annotation and various detectors. a — Results from manual 

annotation, b — Results from headhunter detector, c — Results from IIM detector, d — Results from P2P detector 
 

 
 

Figure 10. Curves of stitching results from various detectors 
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Figure 11. Distribution of head points in 3D space and the impact of estimated external parameters on positioning accuracy 
 

Given the data now available from the left and right camera 

videos, along with the internal parameters of the cameras, the 

ultimate output is the transformation between point sets. Initial 

steps involved the extraction of head points using head 

detectors like Headhunter [10], P2P [9], and IIM [54]. 

Following this, algorithms were employed to match head point 

sets 𝐻𝑙  and 𝐻𝑟 from both left and right views. Additionally, 

manual annotations of head points were done for all video 

frames in the ZEDPed dataset, without any trajectory matching 

or left-right view matching. In the following discussions, these 

annotations are referred to as "Anno". 

Initially, the convergence and time synchronization 

accuracy of the algorithm at different time range overlap rates 

were addressed. Precision in pedestrian matching was not 

discussed due to the absence of a ground truth. Subsequently, 

the positioning accuracy of triangulation was presented. 

 

4.2.1 Point set alignment results 

Discussion will now focus on the algorithm's convergence 

results at different time overlap rates. Numerical results 

indicate that the algorithm can converge for both noisy 

detection results and manual annotations. 

Head detectors, including Headhunter [10], P2P [9], and 

IIM [54], were employed to analyze the video, yielding three 

distinct sets of head point 𝐻𝑙  and 𝐻𝑟  data. Manual annotation 

data were also examined. Each point set 𝐻𝑙  was divided based 

on a time proportion, ranging from 10% to 100%, resulting in 

ten sets for the left view. These were then matched with their 

respective 𝐻𝑟 . Figures 9(a), 9(b), 9(c), and 9(d) display the 

results corresponding to manual annotations and three 

detection tools at an overlap rate of 20%. In the illustrations, 

blue points represent matched points from the left view, light 

blue indicates unmatched points from the left view, and red 

signifies points from the right view. 

Numerical outcomes suggest that the algorithm can 

converge at most time overlap degrees. Evaluation metrics 

employed were point set fitting and RMSE of the stitched 

matched points. Figures 10(a) and 10(b) display numerical 

curves for various detectors and overlap rates, representing 

fitting, inliner RMSE, and time synchronization accuracy. The 

findings are as follows: 

• The overall fitting for manually annotated (Anno) data is 

satisfactory, although convergence is not achieved at a 0.7 

overlap rate. The inliner RMSE for overall point cloud 

registration exceeds 7.5px.  

• The Headhunter converges for all overlap rates, with an 

inliner RMSE of less than 5.  

• Detectors IIM and P2P do not converge at 0.1 overlap rate; 

their inliner RMSE ranges between manual annotation 

and Headhunter. 
 

4.2.2 Time synchronization results 

Time synchronization accuracy varies significantly between 

detectors. Figure 10(c) presents accuracy for different 

detector-overlap rate combinations. Detailed results are: 

• Manual annotation maintains 6ms clock accuracy.  

• P2P maintains 5ms clock accuracy.  

• IIM maintains 2ms clock accuracy.  

• Headhunter achieves 0.7ms clock accuracy. 

 

4.2.3 External parameter estimation results  

This section contrasts the impact of true and estimated 

extrinsic parameters on pedestrian positioning. The ground 

truth for the fundamental matrix was obtained from a 

calibration board, while its estimated value is derived using the 

fundamental matrix estimation method proposed in Section 

3.3.2. Numerical results demonstrate that the employed 

algorithm achieves accuracy comparable to the calibration 

board. 

Initially, spatial point coordinates were generated in line 

with the camera's FOV (Field of View), resulting in the spatial 

fan-shaped point set shown in Figure 11 (a). Projections were 

subsequently created using the true internal and external 

camera parameters. The estimated external parameter values 

were finally utilized to recover spatial coordinates, which were 

then compared to produce the errors at various distances 

shown in Figure 11 (b). Figure 11 (b) presents the mean, 

standard deviation, and range of the triangulation errors. 

An observable linear relationship exists between precision 

and the distance of space points from the camera. At 20m 

distance from the camera, the mean error was 0.06m, with the 

maximum error being 0.12m. This precision significantly 

surpasses the 9% accuracy at 20m of the depth map produced 

by standard stereo cameras. In practical applications, sub-pixel 

refinement of detected head points was conducted to achieve 

this level of precision. 

 

4.3 Comparison with related works 
 

For crowd data extraction, existing studies have primarily 
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focused on positioning in the imaging plane [1], with business 

objectives centred around crowd behaviour analysis, crowd 

counting, and density estimation [55, 56]. Due to 

misidentifications caused by obstructions and high density in 

crowd scenarios, and combined with the three problems 

C1~C3, the complexity has been raised, and no research 

currently addresses all three problems simultaneously. 

Numerous studies have sought to simultaneously solve time 

synchronization and scene geometry [14, 23, 32, 33, 57, 58]. 

However, these methods are not applicable in crowd scenarios. 

The primary reasons include their suitability only for scenes 

with individual or few unobstructed pedestrians and the 

inability of even the best trackers to obtain high-quality 

continuous trajectories in crowds. Moreover, the 

computational cost of determining correspondence between 

multi-view trajectories remains high. 

 

Table 2. Pixel error requirements and time synchronization errors of different time synchronization methods 

 
Method Average Frame Offset Average Time Offset Pixel Error Scene and Data 

Image Feature [32] 0.2 frames 6ms 0.25px Single person, multiple datasets 

Image Feature [33] 0.6 frames 10ms 3px Single person, single dataset 

Image Feature [23] 1 frame 67ms(estimated) Unknown Single person, multiple datasets 

Image Feature [14] 0.35 frames 8ms(estimated) 2px~8px Single target, multiple datasets 

Flash [26] 0.1frames 3ms - Multi-person hockey game 

IMU & Circuit Trigger [27] - 0.1ms - Android phone synchronized with 

depth camera 

NTP algorithm and Android API [28] - 0.03ms - Multiple Android phones 

Image Feature [text] 0.01frames 0.7ms 5px Congested crowd, single dataset 

Synthetic Data [text] 0 frame 0ms 5px Congested crowd, multiple dataset 

Table 2 provides a comparison in terms of time accuracy, 

encompassing work similar to this study as well as methods 

that use circuit synchronization, gyroscopes, and other 

auxiliary software and hardware tools during video collection 

[26-28]. Experimental data indicate that the results of this 

study surpass image data-driven methods by an order of 

magnitude. While not exclusively due to the algorithm, it can 

be confirmed that the methodology achieves the level of true 

inter-camera time offset. Its advantage lies in not requiring 

additional software or hardware, and it remains effective even 

in densely crowded scenes with significant obstructions. 

It cannot be numerically compared with feature matching 

because existing studies [35, 37, 39, 59] only provide 

algorithms in the matching process without giving 

corresponding numerical results. A comparison of constraints 

and properties is presented below: 

• The proposed method has good interpretability with clear 

principles. 

• There's no need to introduce epipolar constraints for 

comparison; incorporating epipolar geometric constraints 

would produce better results. 

• Computation cost is low; there's no need to repeatedly use 

patches for matching. 

In terms of scene geometry estimation, the method proposed 

herein achieves the precision of calibration board. Ortiz et al. 

[60] conducted an in-depth analysis of the positioning error of 

the ZED camera. Corresponding to the ZEDPED dataset with 

a resolution of 2208*1242, the mean 𝜇 and standard deviation 

𝜎 are 0.17m and 0.14m respectively. From the results in Figure 

11, the worst mean and standard deviation obtained are 0.06m 

and 0.065m, respectively. Hence, the fundamental matrix 

calculated by this method fully meets the precision 

requirements when observing pedestrians with short-baseline 

cameras. 

 

 

5. CONCLUSION 

 

Through the validation of models and algorithms using 

crowd scene instance data, the dilemma of the chicken-and-

egg sequence has been resolved, and the validity of the 

proposed perspectives has been confirmed. Currently, no 

related work has been identified that simultaneously addresses 

these three issues in dense crowd scenarios. 

Methodologically, the initial problem was reduced to a 

point cloud registration issue, and a Euclidean model that 

redefines the inner product was introduced. Experiments with 

synthetic data demonstrated that the algorithm can converge 

when dealing with noisy data produced by detectors and 

manual annotations. In terms of time synchronization, owing 

to a vast amount of valid samples, experiments in two 

scenarios reached the true level of camera time deviations. For 

pedestrian matching, a lightweight single-point multi-view 

pedestrian matching method was introduced to reduce 

computational costs and the likelihood of mismatches. 

Regarding the external parameter estimation in scene 

geometry, the method exploited the high similarity of short-

baseline images and the abundant features of dense crowds, 

achieving sub-pixel accuracy comparable to calibration board. 

While these three problems were successfully addressed 

simultaneously, several aspects remain that warrant 

improvement, specifically:  

• Addressing the C1~C3 issues under a wide baseline.  

• Enhancing the precision and applicability of this point 

cloud feature matching approach.  

• Adapting the pedestrian matching method presented in 

this study for spatial pedestrian positioning. 
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APPENDIX 

 

Lemma 1. Given two sets of 𝑚-dimensional points {𝑞𝑖}𝑖=1

𝑁𝑝
 

and {𝑝𝑖}
𝑖=1

𝑁𝑝
, the function 𝐹(𝑡) = ∑

𝑖=1

𝑁𝑝   ∥ 𝑞𝑖 + 𝑡 − 𝑛𝑖 ∥2
2 attains 

its minimum at 𝑡 =
1

𝑁𝑝
∑

𝑖=1

𝑁𝑝  (𝑛𝑖 − 𝑞𝑖). 

Proof: Clearly, the vector 𝑡 is the average of the displacement 

vectors between {𝑞𝑖} and {𝑛𝑖}. ◼ 

Lemma 2. For given matrices 𝐴 ∈ ℝ𝑚×𝑚 , 𝐵 ∈ ℝ𝑚×𝑁𝑝 , 𝐶 ∈
ℝ𝑚×𝑁𝑝 , 𝑡 ∈ ℝ𝑚 , and 𝐽 = (1, ⋯ ,1)𝑇 ∈ ℝ𝑁𝑝 . Let 𝐷 = 𝐵 − 𝐶 , 

where 𝐴 is invertible. The point of minimum for the matrix 

function L(𝑡) =∥ 𝐴(𝐵 + 𝑡𝐽𝑇 − 𝐶) ∥𝐹 is 

 

𝑡∗ = −
1

𝑁𝑝
𝐷𝐽

 = −
1

𝑁𝑝

∑  
𝑁𝑝

𝑖=1
  (𝐵𝑖 − 𝐶𝑖)

  

 

Proof: 

 

L(𝑡) = tr((𝐴𝐷 + 𝐴𝑡𝐽𝑇)𝑇(𝐴𝐷 + 𝐴𝑡𝐽𝑇))

 = tr(𝐷𝑇𝐴𝑇𝐴𝐷 + 𝐷𝑇𝐴𝑇𝐴𝑡𝐽𝑇 + 𝐽𝑡𝑇𝐴𝑇𝐴𝐷 + 𝐽𝑡𝑇𝐴𝑇𝐴𝑡𝐽𝑇).
 

 

Let L1(𝑡) = 2tr(𝐷𝑇𝐴𝑇𝐴𝑡𝐽𝑇) + tr(𝐽𝑡𝑇𝐴𝑇𝐴𝑡𝐽𝑇) . By properties 

of the trace of matrices, 

 

L1(𝑡) = 2tr(𝐽𝑇𝐷𝑇𝐴𝑇𝐴𝑡) + tr(𝐽𝑇𝐽𝑡𝑇𝐴𝑇𝐴𝑡). 
 

It's clear that L1(𝑡)  and L(𝑡)  share the same points of 

extremum. 

Using the properties of matrix functions and the trace, the 

gradient of L1(𝑡) is 

 

∇𝑡L1 = 2𝐴𝑇𝐴𝐷𝐽 + 2𝑁𝑃𝐴𝑇𝐴𝑡. 
 

Since L1(𝑡) is a convex function, it has its optimal solution 

when ∇𝑡L1 = 0: 

𝑡∗ = −
1

𝑁𝑝
𝐷𝐽.  ◼  

 

Corollary 1. Let the matrices 𝑋 ∈ ℝ𝑚×𝑚 , 𝐴 ∈ ℝ𝑚×𝑚 , 𝐵 ∈
ℝ𝑚×𝑁𝑝 , 𝐶 ∈ ℝ𝑚×𝑁𝑝 , 𝑡 ∈ ℝ𝑚×1 , and 𝐽 = (1, ⋯ ,1)𝑇 ∈ ℝ𝑁𝑝 , 

where 𝐵𝑖 and 𝐶𝑖 are column vectors of 𝐵 and 𝐶, respectively. 

Define the functions 𝐿1(𝑋, 𝑡) and 𝐿2(𝑋) as: 

 

L1(𝑋, 𝑡) =∥ 𝐴(𝑋𝐵 + 𝑡𝐽𝑇 − 𝐶) ∥𝐹
2

L2(𝑋) =∥ 𝐴(𝑋�̃� − �̃�) ∥𝐹
2   

 

where, 𝐽 = (1, … ,1)𝑇  is an 𝑁𝑝 -dimensional vector, and �̃� =

𝐵 −
1

𝑁𝑝
(∑

𝑖=1

𝑁𝑝
 𝐵𝑖)𝐽𝑇  and �̃� = 𝐶 −

1

𝑁𝑝
(∑

𝑖=1

𝑁𝑝
 𝐶𝑖)𝐽𝑇 . Then, the 

optimal solution 𝑋∗  for 𝐿2(𝑋)  is the optimal solution with 

respect to 𝑋 for 𝐿1(𝑋, 𝑡), and the optimal solution for 𝐿1(𝑋, 𝑡) 

with respect to 𝑡 is: 

 

𝑡∗ = −
1

𝑁𝑝

∑  
𝑁𝑝

𝑖=1
  (𝑋∗𝐵𝑖 − 𝐶𝑖),

𝑌∗ = 𝑋∗ .
  

 

Proof: Since both 𝐿1  and 𝐿2  are bounded below and 

continuous, 𝐿1  must have a minimum point (𝑋∗, 𝑡∗), and 𝐿2 

must also have an optimal solution 𝑌∗ . As 𝐿1  and 𝐿2  are 

convex functions, both (𝑋∗, 𝑡∗)  and 𝑌∗  are global optima. 

Define a function of 𝑡 as: 

 

L̃1(𝑡) = L1(𝑋∗, 𝑡) =∥ 𝐴(𝑋∗𝐵 + 𝑡𝐽𝑇 − 𝐶) ∥𝐹
2  . 

 

It's clear that the optimal solution of �̃�1  is 𝑡∗  for 𝐿1 . Let 

G(𝑋) = −
1

𝑁𝑝
∑

𝑖=1

𝑁𝑝  (𝑋𝐵𝑖 − 𝐶𝑖) . By Lemma 2, we have 𝑡∗ =

G(𝑋∗). Hence: 

 

min
𝑋,𝑡

 L1(𝑋, 𝑡) = min
𝑋

 L1(𝑋, 𝐺(𝑋)).  

 

Substituting 𝐺(𝑋) into L1(𝑋, 𝑡) gives: 

 

L1(𝑋, G(𝑋)) = ∥∥
∥

𝐴 (𝑋𝐵 −
1

𝑁𝑝

∑  
𝑁𝑝

𝑖=1
  (𝑋𝐵𝑖 − 𝐶𝑖)𝐽𝑇 − 𝐶)∥∥

∥

𝐹

2

 =

∥
∥
∥
∥
∥
∥

𝐴 (
𝑋𝐵 −

1

𝑁𝑝

∑  
𝑁𝑝

𝑖=1
 𝑋𝐵𝑖𝐽

𝑇

+
1

𝑁𝑝

∑  
𝑁𝑝

𝑖=1
 𝐶𝑖𝐽

𝑇 − 𝐶
)

∥
∥
∥
∥
∥
∥

𝐹

2

 =∥ 𝐴(𝑋�̃� − �̃�) ∥𝐹
2

 = L2(𝑋) .

  

 

Let 𝑌∗ be the optimal solution for L2. From this, we conclude: 

 

argmin 𝐿1(𝑋, 𝑡)
𝑋,𝑡

= (
𝑌∗

−
1

𝑁𝑝

∑  
𝑁𝑝

𝑖=1
  (𝑌∗𝐵𝑖 − 𝐶𝑖)

)  ◼  

 

Theorem 1. Given matrices 𝐴, 𝐵 ∈ ℝ3×𝑁𝑝 , 𝐵 ∈ ℝ3×𝑁𝑝 , and 

𝜇
0

= (0,0,1)𝑇
, the function 𝐿(𝛼) =∥ Rot(𝛼, 𝜇0)�̃� − �̃� ∥𝐹

2  

attains its minimum at 

𝛼∗ = arg max (𝐿2 (arctan 
−𝑑1

𝑑2
) , 𝐿2 (arctan 

−𝑑1

𝑑2
+ 𝜋)),  

1819

https://doi.org/10.5565/rev/elcvia.1084


 

where, 𝑑1 = 𝐶12 − 𝐶21, 𝑑2 = −(𝐶11 + 𝐶22), and 𝐶𝑖𝑗 denotes 

the elements at position 𝑖, 𝑗  in 𝐶 = �̃��̃�𝑇 . The function 

𝐿2(𝛼) = 𝑑1sin (𝛼) + 𝑑2(1 − cos (𝛼)). 

Proof: Let 𝑋 = Rot(𝛼, 𝜇0) . By known properties and the 

properties of matrix trace, we have 

 

𝐿(𝛼) =∥ Rot(𝛼, 𝜇
0
)�̃� − �̃� ∥𝐹

2

 =∥ 𝑋�̃� − �̃� ∥𝐹
2

 = tr((𝑋�̃� − �̃�)𝑇(𝑋�̃� − �̃�))

 = tr(�̃�
𝑇

𝑋𝑇𝑋�̃�) − 2tr(�̃�
𝑇

𝑋�̃�) + tr(�̃�
𝑇

�̃�)

 = tr(�̃�
𝑇

�̃�) − 2tr(𝑋�̃��̃�
𝑇

) + tr(�̃�
𝑇

�̃�)

  

 

Define L1(𝛼) = tr(𝑋�̃��̃�
𝑇

) . Thus, finding the minimum of 

𝐿(𝛼) is equivalent to finding the maximum of L1(𝛼). Given 

that 𝐶 ∈ ℝ3×3 and performing singular value decomposition 

on 𝐶 as 𝐶 = 𝑈𝑆𝑉𝑇, with 𝑊 = 𝑉𝑇𝑋𝑈, we get 

 

L1(𝛼) = tr(𝑊𝑆) 
 

From the axis-angle decomposition of rotation matrix 𝑋, we 

have 

 

L1(𝛼) = tr(𝑉𝑇(𝐼3 + sin (𝛼)[𝜇
0
]

×
+ (1 − cos (𝛼))[𝜇

0
]

×
2 )𝑈𝑆)

 = tr(𝐶) + 𝑑1sin (𝛼) + 𝑑2(1 − cos (𝛼))
   

 

Given that 𝜇
0

= (0,0,1)𝑇
, we can derive matrices for [𝜇0]× 

and [𝜇0]×
2 . Thus, 𝑑1 = 𝐶12 − 𝐶21  and 𝑑2 = −(𝐶11 + 𝐶22) , 

where 𝐶𝑖𝑗 is the element at position 𝑖, 𝑗 in matrix 𝐶. 

Let 𝐿2(𝛼) = 𝑑1sin (𝛼) + 𝑑2(1 − cos (𝛼)) . Solving for its 

extremum points, we conclude that 

 

𝛼∗ = arg max (𝐿2 (arctan 
−𝑑1

𝑑2
) , 𝐿2 (arctan 

−𝑑1

𝑑2
+ 𝜋))  

 

Thus, 𝛼∗ is also the optimal solution for L1(𝛼) and L(𝛼). ◼ 
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