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Future 6G wireless networks are anticipated to support a variety of gadgets, including 

smartphones, tablets, smart home sensors, etc. One of the most significant problems that 

limits the operation of wireless networks as the number of connected devices rises is 

interference. With the advent of 6G wireless networks, new use cases and applications are 

emerging that adhere to tight standards for next-generation wireless communications. On 

TV, radio, or mobile phones, interference causes poor reception of the images or sounds. 

EM (Electromagnetic) waves are used as the transport medium in these communication 

systems. Therefore, recent research has focused on the potential of DL techniques in 

fulfilling these stringent requirements and addressing the drawbacks of existing model-

based methodologies. In 6G MIMO channel estimation with interference alignment, this 

research proposes a unique method based on a heterogeneous network and deep learning 

methods. HetNet-based multiuser propagation is used in this case to estimate the channel. A 

hybrid transfer convolutional network has been used to align the network's interference. We 

design an Orthogonal Frequency Division Multiplexing (OFDM) frame structure to 

illustrate the allocation of time-frequency resources to pilot signals for channel estimation. 

It is important to note that the proposed framework does not require information 

transmission between BSs and instead operates in a non-iterative and distributed manner 

based on local channel state information (CSI) at both BSs and users. 
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1. INTRODUCTION

The massive use of wireless devices on daily basis requires 

a new generation (6G) of wireless communications that can 

provide aggregate date rates of Tb/s per access point. 

Furthermore, these new wireless networks must introduce 

features such as high achievable data rates, low latency, low 

power consumption, security, and high reliability. Therefore, 

new methods are needed in 6G to achieve these objectives 

including high data rate transceivers, new network 

architectures and efficient interference management schemes 

[1]. In both industrial and academic communities, optical 

wireless communication (OWC) is increasingly being 

considered as a promising technology that can support the 

escalating user demands where the optical spectrum provides 

a huge and license-free bandwidth, satisfying part of the 

requirements of 6G networks. visible light communication 

(VLC) using light emitting diodes (LEDs) is deployed for 

providing illumination as well as communication. It is shown 

that VLC can outperform traditional radio frequency (RF) 

wireless networks in terms of achievable data rates and 

aggregate capacity. It is worth mentioning that there are 

currently significant standardization efforts for OWC in the 

802.11bb standard and its integration in the Internet protocol 

(IP) network, usually referred to as Light-Fidelity (LiFi) [2]. 

However, using LEDs for data transmission limits the 

performance of OWC systems where these sources have a 

limited modulation speed. 

The wireless industry has been encouraged to take into 

consideration mmW for Fifth Generation of cellular networks 

(5G), as well as Vehicle-to-Everything (V2X) applications due 

to recent advancements in millimeter-wave (mmW) hardware 

as well as probable availability of spectrum [3]. Sub-THz 

systems for 6G networks are anticipated, continuing the same 

trend [4]. This results in highly sparse channels. Several Input 

A saving grace is the use of Multiple Output Multiple Input 

(MIMO) systems, which can offer a beamforming gain to get 

around route loss as well as build links with a respectable 

Signal-to-Noise Ratio (SNR). Precoding and stream 

combining are made possible by MIMO systems, which could 

greatly increase the potential data rate. The hardware in 

mmW/sub-THz band is subject to a number of non-trivial 

practical restrictions, despite fact that fundamental principle of 

MIMO precoding/combining is same regardless of carrier 

frequency [5]. In conventional MIMO systems, processing is 

carried out digitally at baseband, necessitating a separate RF 

chain for every antenna element. This indicates a significant 

cost as well as power consumption due to large number of 

elements needed in mmW, rendering it impractical. First, 

Hybrid Beamforming (HBF) was presented and examined. It 
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is motivated by the notion that, if suitable 

precoding/combining is used, the number of antenna elements 

will determine beamforming gain as well as diversity. In order 

to achieve analogue precoding/combining, phase shifters, 

switches, or lenses are frequently used. The components of the 

RF precoder are subject to the restriction of constant amplitude 

imposed by an HBF based on a phase shifting network [6]. 

Research contribution are as follows: In MIMO interference 

networks with fixed channel coefficients and no symbol 

extensions, we discuss the viability of linear IA. The 

conclusions presented here do not hold if multiple channel 

uses are taken into account; instead, they are focused on the 

recently popular single channel use IA feasibility problem. 

The solution to a set of polynomial equations and some partial 

findings constitute this issue. The major contribution of this 

study, which is a straightforward feasibility test that essentially 

checks the rank of a certain matrix, may be derived from this 

finding. We offer precise arithmetic and floating-point 

variants of the test, together with a thorough complexity 

analysis that demonstrates the problem's impossibility for 

general MIMO channels. The primary contribution is given 

below: 

(1) To propose novel method in 6G MIMO channel 

estimation with interference alignment based on 

heterogeneous network with deep learning techniques; 

(2) To develop channel estimation model using HetNet 

based multiuser propagation model; 

(3) To design interference alignment model using hybrid 

transfer convolutional network. 

 

 

2. RELATED WORKS 

 

Theoretical analyses of IA have been done in a number of 

studies. Degrees of Freedom (DoF) is a common statistic used 

to describe IA. The amount of space that is devoid of 

interference is referred to as the DoF [7]. Examples are given 

by Wang et al. [8] to illustrate how IA and varying DoF can be 

achieved in K-User interference networks with various 

antenna designs. For a TDD mode of operation, an iterative 

approach for producing precoders as well as beamformers is 

provided by Pan et al. [9]. The bidirectional relationship 

between MIMO forward as well as reverse channels 

determines how the precoders work in this manner. Nasser et 

al. [10] presents yet another IA framework using TDD 

channels. Xu et al. [11] investigates interference alignment in 

MIMO downlink networks where precoders are created 

through eigen decomposition of MIMO channels. Ren et al. 

[12] makes a new IA proposal for a K-User MIMO X network. 

This approach maximises the amount of interference-free 

space by reducing interference at each mobile device to half of 

the received signal space by suitably precoding the broadcast 

signals. Furthermore, interference cancellation for K=3 has 

been accomplished by using a zero forcing beamformer that is 

a function of interfering channels as well as precoders. The 

methods in Fanjul et al. [13] are entirely theoretical, and we 

develop on them in this study. There is no explanation on how 

to demodulate symbols. Additionally, we want to operate K-

User MIMO X method so that every access point transmits 

various symbols to every mobile device while operating on 

same frequency subcarrier in order to maximise capacity. We 

looked into the scenario where every access point is on a 

various subcarrier in Mafuta and Walingo [14] as well as 

discovered that there is a considerable reduction in bandwidth 

as well as consequently capacity of K-User method by a factor 

of K. A multi-cell cooperative downlink channel was initially 

researched in Ranjith et al. [15]. The authors used dirty paper 

coding (DPC) to create the perfect backhaul network with one 

antenna for every user as well as BS. Benaya and Elsabrouty 

[16] investigated BS cooperation for MIMO to reduce co-

channel interference using cooperative transmission 

techniques. In Wang et al. [17], an iterative technique was 

suggested to optimise beamforming vector as well as power 

allocations based on an uplink-downlink duality property. In 

Qamar et al. [18], an effective iterative technique based on 

uplink-downlink duality and Lagrangian theory was presented 

for coordinated beamforming vectors across all BSs in 

decentralised multi-cell downlink. Additionally, based on the 

primal-dual optimality theory, a novel transmits precoding 

method for multiple access spatial modulation MIMO was 

presented in Suo et al. [19]. Through the use of super-

resolution technology, a DL based low overhead analogue 

beam selection technique was created in Muta et al. [20], as 

well as beam quality prediction method was created. When 

MRC as well as random choice of LSFD, which were 

introduced in Liu et al. [21], were utilized in first as well as 

second decoding layers, closed form of uplink SE was derived 

for correlated Rayleigh fading environment. For MIMO 

system based on DL, numerous channel estimation algorithms 

have been established in the Ali et al. [22]. However, the 

channel plans were approximated without taking the obtained 

SNR feedback into account. For the MIMO system, a number 

of channel modelling strategies have been proposed in Najlah, 

and Sameer [23]. Additionally, for the massive MIMO system, 

DL -based direction-of-arrival (DOA) estimate method as well 

as hybrid precoding methods are proposed in Rajoria et al. [24]. 

Methods of Mellempudi and Pamula [25] however, 

presuppose some particular channel methods are 

parameterized by a number of variables, including array 

response, angle-of-departure, and direction-of-arrival. 

Uncoordinated interference, which significantly reduces the 

performance of the coordinated part of the network, is a 

significant problem for IA approaches. For instance, in 

heterogeneous pico-cell networks, interference from femto 

and home base stations is frequently an uncoordinated source, 

and the users who are connected to them aren't always able to 

collaborate. As a result, their interference cannot completely 

align. Furthermore, interference is a serious problem for relay-

aided MIMO networks since it simultaneously affects the 

signal received at the relay and the destination. Relay 

processing matrix design also becomes a challenging problem. 

Unfortunately, because the power limits of relays depend on 

the precoding matrices at transmitters as well as the processing 

matrices at the relays, earlier single-hop IA techniques are not 

easily adaptable to relay-aided situations. 

 

2.1 Problem formulation 

 

Vectorizing the received signal matrix Y is important to take 

advantage of the MIMO channel's sparseness (1). After 

denoting
vec(𝐘)

√𝑃𝑝
 by 𝐲 ∈ ℂ𝑁𝑡

beam𝑁𝑟
beam×1 we have: 

 

𝑌 = ((𝐹𝐷
𝑇𝐹𝑅

𝑇) ⊗ (𝑊𝐷
𝐻𝑊𝑅

𝐻))𝑣𝑒𝑐(𝐻)

+ 𝑧 =(𝑏) 𝑄𝑣𝑒𝑐(𝐺) + 𝑧 
(1) 

 

Equivalent noise vector 𝑧 ≜
1

√𝑃
[𝐳1
𝑇 , ⋯ , 𝐳

𝑁𝑡
bosm
𝑇 ]

𝑇

∈

1952



 

ℂ𝑁𝑡
hesam𝑁𝑟

hesm×1  and properties of Kronecker product, vec 

(𝐀𝐁𝐂) = (𝐂𝑇⊗𝐀) vec (𝐁) and (𝐀⊗ 𝐁)𝑇 = 𝐀𝑇⊗𝐁𝑇 , and 

(𝑏)  follows from vec (𝐇) = (𝐀𝑖
∗⊗𝐀𝑟)𝑣𝑒𝑐(𝐆)  and (𝐀⊗

𝐁)(𝐂⊗ 𝐃) = (𝐀𝐂)⊗ (𝐁𝐃). Equivalent sensing matrix Q ∈

ℂ𝑁𝑡
besm

𝑁+
thesm × 𝑁𝑡

iot𝑁+
totare described as Eq. (2): 

 

𝑄 ≜ (𝐹𝐷
𝑇𝐹𝑅

𝑇𝐴𝑡
∗) ⊗ (𝑊𝐷

𝐻𝑊𝑅
𝐻𝐴𝑟) (2) 

 

Since vec (G) only has 𝑁0 = |Ω𝑐| + ∑𝑚=1
𝑀𝑟  ∑𝑛=1

𝑀𝑡  |Ω𝑚,𝑛
1 | 

non-zero elements and �̇�0 ≪ 𝑁𝑡
tot𝑁𝑟

𝑡 tot , the formulation of 

vectorized received signal in (2) gives a sparse formulation of 

channel estimation issue. This suggests that number of 

observations needed to find non-zero elements, 𝑁𝑡
beam𝑁𝑟

beam 

may be considerably lower 𝑁𝑡
tot𝑁𝑟

tot. To decrease amount of 

training needed and enhance channel estimation performance, 

we plan to take use of the hidden joint sparsity in beam-domain 

channel. To create a new vector with a block of equal length 

for MtMr, we simply reverse order of the items in vec (G) Eq. 

(3): 

 

𝐱 ≜ [𝐱1
𝑇 , ⋯ , 𝐱𝑀𝑀𝑡𝑀𝑟

𝑇 ]
𝑇

 

= [vec𝑇 (𝐆1,1)⏟      
1th block 

, ⋯ , vec𝑇 (𝐆𝑀𝑟,1)⏟        
𝑀𝑟 th block 

 

vec𝑇 (𝐆1,𝑀𝑡)⏟        
(𝑀𝑟(𝑀𝑡−1)+1) th block 

, ⋯ , vec𝑇 (𝐆𝑀𝑟,𝑀𝑡)⏟        
𝑀𝑡𝑀𝑟 th block 

]𝑇 

(3) 

 

where, block size is 𝑁𝑡
sub𝑁𝑟

sub. By switching the column order 

of Φ ≜ 𝐐𝚷Φ, where is a column permutation matrix, so that 

𝚽𝐱 = 𝐐𝐯𝐞𝐜(𝐆) , corresponding equivalent measurement 

matrix Q is (G). Issue of MIMO channel recovery at RX can 

therefore be expressed as Eq. (4): 

 

min×   ∥ 𝐲 − 𝚽𝐱 ∥2
2 (4) 

 

Due to frequent as well as innovative sparsity requirements 

in constraint, which are considerably varied from traditional 

CS-recovery issue with a basic sparsity (l0-norm) constraint, 

issue (4) is exceedingly difficult. Additionally, equivalent 

measurement matrix needs to be carefully planned in order to 

ensure non-zero members of vector may be recovered with a 

high degree of probability while only requiring a few 

measurements. 

 

 

3. SYSTEM MODEL 

 

We'll take into account a MIMO method with a transmitter 

as well as receiver. Mt antennas are used in the transmitter, 

and Mr antennas are used in the receiver. At every symbol time, 

transmitter provides pilot symbols that the reception already 

knows about for purpose of channel estimation. The receiver 

then feeds back to transmitter received SNR values that were 

calculated at its antennas. Each symbol time is believed to 

have a number of mini-time slots, first Np consecutive mini-

time slots of which are reserved for transmission of pilot 

symbols. Received signal at receiver is given by Eq. (5) at nth 

symbol time. 

 

𝑅(𝑛) = 𝐻(𝑛)𝑆(𝑛) + 𝑄(𝑛) (5) 

 

where, 𝑄(𝑛) ∈ 𝐶𝑀𝐹×𝑁𝑝  is matrix of received noises. Also, 

𝑆(𝑛) ≜ [𝑠1(𝑛),⋯ , 𝑠𝑁𝐹(𝑛)] ∈ 𝐶
𝑀4×𝑁𝑝 is matrix of pilot 

symbols, where 𝑠𝑚(𝑛) ∈ 𝐶
𝑀𝑥1 is vector of pilot symbols. The 

pilot symbol matrix S shall simply be referred to as pilot signal 

in this article. ||𝑆 ∥𝐹
2= 𝑇𝑟(𝑆𝑆𝐻) ≤ 𝑃 , where P stands for 

maximum transmit power at transmitter, limits transmit power 

of pilot signal. 

By vectorizing R(n) of (1) and utilizing result of 

𝑣𝑒𝑐(𝐴𝑋𝐵) = (𝐵𝑇⊗𝐴)𝑣𝑒𝑐(𝑋)we have by Eq. (6): 

 

𝑟(𝑛) = (𝑆𝑇(𝑛) ⊗ 𝐼𝑀∗)ℎ(𝑛) + 𝑞(𝑛) (6) 

 

where, 𝑠1(𝑛),⋯ , 𝑠𝑁𝐹(𝑛).  The elements of 𝑔(𝑛)|(𝑆𝑇(𝑛) ⊗

𝐼𝑀𝑟)ℎ(𝑛)|)and h(n) is variance of every element of q, give 

received SNR (or SSI/CQI) values calculated at antennas of 

receiver during pilot signal transmission (n). In this study, it is 

presumed that the transmitter only receives the magnitudes of 

received SNR values elements of 𝑔(𝑛)|(𝑆𝑇(𝑛) ⊗ 𝐼𝑀𝑟)ℎ(𝑛)|). 

As a result, at nth symbol time, Eq. (7) provides feedback 

signal that transmitter has received. 

 

𝛾(𝑛) = 𝑔(𝑛)|(𝑆𝑇(𝑛) ⊗ 𝐼𝑀𝑟)ℎ(𝑛)|) (7) 

 

where, η(n) is noise-plus-error component of SNR feedback, 

which accounts for limitations of SNR estimate, measurement, 

quantization, etc. 

 

3.1 Channel estimation 

 

To acquire the best precoder design, it is critical to evaluate 

channel with high accuracy because it is a key component of 

precoder design. We take into account channel vectors at BS j 

that were calculated utilizing pilot channel preparation to find 

channel estimation. Consider BS and UEs operate in perfect 

synchrony and use the time-division duplex (TDD) protocol, 

in which uplink channel estimation training phase comes after 

the DL data transmission process. There are τp=K pilots, and 

UE I uses the same pilot in each cell. We employ the common 

estimation method of MMSE because it can evaluate channel 

more accurately than other methods using total UL pilot power 

of ρ tr per UE. Estimates of of ℎ𝑙𝑖
𝑗

 as Eq. (8) are obtained by 

the MMSE with BS j. 

 

ℎ𝑙𝑖
𝑗
= 𝑅𝑙𝑖

𝑗
𝛹𝑙𝑖
𝑗
𝑦𝑗𝑙𝑖
𝑝
∼ 𝑁𝐶(0, 𝛷𝑙𝑖

𝑗
) (8) 

 

where, 𝑅𝑙𝑖
𝑗
∈ 𝐶𝑀×𝑀  is spatial correlation matrix, 𝛹𝑙𝑖

𝑗
=

(∑
𝑙′=1
𝐿  𝑅

𝑙′𝑖

𝑗
+

1

𝜌′
𝐼𝑀)

−1

 is inverse of correlation matrix in 

evaluation of channel between BS j and UE i in cell l, IM is 

M×M identity matrix, 𝑦𝑗𝑙𝑖
𝑝
= ∑

𝑙′=1
𝐿  ℎ

𝑙′𝑖

𝑗
+

1

𝜏𝜌

𝑎2

𝜌
𝑛𝑙𝑖 is processed 

received pilot signal, 𝑛𝑙𝑖 ∼ 𝑁𝐶(0, 𝐼𝑀)  is noise, σ2 is noise 

variant, 𝑁𝐶𝑐(0, 𝛹𝑙𝑖
𝑗
)  is circularly symmetric complex 

Gaussian distribution with zero-mean, 𝛷𝑙𝑖
𝑗
= 𝑅𝑙𝑖

𝑗
− 𝐶𝑙𝑖

𝑗
 and 

𝐶𝑙𝑖
𝑗
= 𝑅𝑙𝑖

𝑗
− 𝑅𝑙𝑖

𝑗
𝛹𝑙𝑖
𝑗
𝑅𝑙𝑖
𝑗

. Estimator error is ℎ𝑙𝑖
𝑗
∼ 𝑁𝐶(0𝑀, 𝐶𝑙𝑖

𝑗
) 

that is independent of ℎˆ𝑖∗
𝑗

. 

 

HetNet based multiuser propagation model: 

Standard multipath models applied at lower frequencies can 

be utilised to characterise the mmWave MIMO channel. Think 

of a MIMO system that uses Nr receive and Nt transmit 

antennas. The HetNets cell model has been shown in Figure 1. 

aT(θT) and aR(θR) indicate array phase profile as a function 

1953



 

of angular directions θR and θT of arriving or departing plane 

waves, respectively, and are used to define the transmit and 

receive antenna arrays in 2D channel models. The downlink 

channel model is displayed in Figure 2, which also shows the 

system architecture. 

The steering vector for an N-element ULA is given by Eq. 

(9): 

 

𝑎(𝜃) = [1, 𝑒−𝑗2𝜋𝜗 , 𝑒−𝑗4𝜋𝜗 , ⋯ , 𝑒−𝑗2𝜋𝑣(𝑁−1)]
𝑇
 (9) 

 

In this case, normalised spatial angle ϑ is related to physical 

angle θ∈[−π/2, π/2] as ϑ=d λ sin(θ), where d stands for antenna 

spacing and for operating wavelength λ. Normally, d=λ/2 

Steering vectors are functions a(θ, φ)=aaz(θ) ⊗ael(φ) of both 

horizontal angle θ and elevation angle φ in 3D channel 

methods. Given steering vectors, the multi-path model in Eq. 

(10) can be used to describe the MIMO channel. 

 

𝐲(𝑡) =∑  

𝑁0

ℓ=1

 𝛼ℓ𝑒
𝑗2𝜋𝜈ℓ𝑡𝐚R(𝜃R,ℓ, 𝜙R,ℓ)𝐚T

∗ (𝜃T,ℓ, 𝜙T,ℓ)𝐱(𝑡

− 𝜏ℓ) + 𝑣(𝑡) 

(10) 

 

where, Np is the number of pathways, v(t) is noise vector, x(t) 

is transmitted signal vector, y(t) is received signal vector. Each 

path Lis defined by 5 parameters: The frequency domain 

representation of the channel is frequently helpful. The 

channel response is typically time-varying by Eq. (11): 

 

𝐻(𝑡, 𝑓)

= ∑𝑙=1
𝑁𝑝  𝛼𝑙𝑒

𝑗2𝜋(𝜈𝑙𝑡−𝜏𝑙𝑓)𝑎𝑅(𝜃𝑅,𝑙 , 𝜙𝑅,𝑙)𝑎𝑇
∗ (𝜃𝑇,𝑙 , 𝜙𝑇,𝑙). 𝜈𝑙𝑇

≪ 1 

𝐻(𝑓)

= ∑𝑙=1
𝑁𝑝  𝛼𝑙𝑒

−𝑗2𝜋𝜏𝑙𝑓𝑎𝑅(𝜃𝑅,𝑙 , 𝜙𝑅,𝑙)𝑎𝑇
∗(𝜃𝑇,𝑙 , 𝜙𝑇,𝑙) 

(11) 

 

Assume that the channel varies sufficiently slowly 

throughout the signal period T, meaning that all of the 

pathways' Doppler shifts are tiny, 𝜈𝑙𝑇 ≪ 1∀𝑙,𝑙 = 1,… , 𝑁𝑝. (5) 

can then roughly be stated as Eq. (12): 

 

 
 

Figure 1. HetNets cell model 

 

 
 

Figure 2. The block diagram of a user and the BS 

 

𝐇(𝑡, 𝑓)

=∑  

𝑁𝑝

ℓ=1

𝛼ℓ𝑒
𝑗2𝑡(𝜈𝑟𝑡−𝜏𝑡𝑓)aR(𝜃R,ℓ, 𝜙R,ℓ)ar

∗(𝜃T,ℓ, 𝜙T,ℓ) 
(12) 

 

The narrowband spatial methods for channel matrix is 

obtained by Eq. (13) if the channel W's bandwidth is also 

sufficiently short such that τ`W 1∀`, `=1, ..., Np. 

 

𝜏𝑙𝑊 ≪ 1∀𝑙, 𝑙 = 1,… , 𝑁𝑝 (13) 

 

We have by Eq. (14) the received Tup block pilots stacked 

into a vector: 
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𝑦𝑘,𝑞 ≜ [
1

𝑥𝑘,𝑞,1
𝑦𝑘,𝑞,1
𝑇 , … ,

1

𝑥𝑘,𝑞,𝑏
𝑦𝑘,𝑞,𝑇
𝑇 ]

𝑇

= 𝑊𝑞
𝐻ℎ𝑘,𝑞 +𝑊𝑞

𝐻𝑛˜𝑘,𝑞, 

(14) 

 

𝑛˜𝑘,𝑞 ≜ [
1

𝑥𝑘,𝑞,1
𝑛𝑘,𝑞,1
𝑇 , … ,

1

𝑥𝑘,𝑞,𝛽
𝑛𝑘,𝑞,𝑇𝑒𝑝
𝑇 ]

𝑇

∈ 𝐶𝑀𝑇𝑇𝑞𝑝×1. Denote 

ℎ𝑘 ≜ [ℎ𝑘,𝑝𝑘,1
𝑇 , … , ℎ𝑘,𝑝𝑘,𝑝

𝑇 ]
𝑇

∈ 𝐶𝑀𝑃×1. Collecting yk,q at different 

subcarriers, we have by Eq. (15): 

 

𝑦𝑘 ≜ [𝑦𝑘,𝑝𝑘,1
𝑇 , … , 𝑦𝑘,𝑝𝑘,𝑝

𝑇 ]
𝑇

= 𝑊𝐻ℎ𝑘 + 𝑛𝑘 (15) 

 

where, 

 

𝐖 ≜

[
 
 
 
 
𝐖𝑝𝑘,1

0 ⋯ 0

𝟎 𝐖𝑝𝑘,2
⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐖𝑝𝑘,𝑃]

 
 
 
 

∈ ℂ𝑀𝑃×𝑁kF𝑃𝑇𝑝‾  (16) 

 

And the 𝐧𝑘 ≜ [(�̂�𝑝𝑘,1
𝐻 �̃�𝑝𝑘,1)

𝑇
, … , (�̂�𝑝𝑘,𝑃

𝐻 �̃�𝑝𝑘,𝑝)
𝑇
]
𝑇

∈

ℂ𝑁kr𝑃𝑇ep×1. 
From (16), hk can be written as Eq. (17): 

 

ℎ𝑘 =∑  

𝐿𝑘

𝑙=1

𝛼𝑘,𝑙𝐃𝑘(𝜓𝑘,𝑙 , 𝜏𝑘,𝑙)1 (17) 

 

where, 

 

𝑝𝑘(𝜓𝑘,1,, 𝑇𝑘,1) ≜ [𝑎
𝑇 (𝛯𝑘,1 ((𝑝𝑘,1

− 1)𝜂)) 𝑒−𝑗2𝜋(𝑝𝑘,1−1)𝑝𝑛𝑘,1 4 

… , 𝑎𝑇 (𝛯𝑘,1 ((𝑝𝑘,𝑝 − 1)𝜂)) 𝑒
−𝑗2𝜋(𝑝𝑘,𝑝,1)𝜂𝜂,1]𝑇

∈ 𝐶𝑀𝑃×1 

(18) 

 

Eq. (18) is considered as channel basis for user 𝑘based on 

AoA 𝜓𝑘/  and path delay 𝜏𝑘,𝑙 . Denote 𝛼𝑘 ≜

[𝛼𝑘,1, … , 𝛼𝑘 , 𝐿𝑘]
𝑇
∈ 𝐶𝐿𝑘×1, 𝜓𝑘 ≜ [𝜓𝑘,1… ,𝜓𝑘 , 𝐿𝑘]

𝑇
∈ 𝐶𝐿𝑘×1 , 

and 𝜏𝑘 ≜ [𝜏𝑘,1, … , 𝜏𝑘,𝑙 , ]
𝑇
∈ 𝐶𝐿,𝑘 × 1 . Eq. (19) can be 

expressed in vector/matrix form as: 

 

ℎ𝑘 = 𝑃𝑘(𝜓𝑘 , 𝜏𝑘)𝛼𝑘 (19) 

 

where, by Eq. (20): 

 

𝑃𝑘(𝜓𝑘 , 𝜏𝑘) ≜ [𝑝𝑘(𝜓𝑘,1, 𝜏𝑘,1),… , 𝑝𝑘(𝜓𝑘,𝐿𝑘 , 𝜏𝑘,𝐿𝑘)]

∈ 𝐶𝑀𝑃×𝐿𝑘 
(20) 

 

Assume that the channel gains of the various multipath 

components are independent of one another and have a zero 

mean. 

 

𝐸{𝛼𝑘𝛼𝑘
𝐻} = 𝑑𝑖𝑎𝑔 {𝐸 {|𝛼𝑘,1|

2
}… , 𝐸 {|𝛼𝑘,𝐿𝑘|

2
}} ≜ 𝛬𝑘 (21) 

 

where, the average power of corresponding multipath 

component is 𝐸 {|𝛼𝑘,𝑙|
2
}. Covariance matrix of uplink channel 

for user k is represented as Eq. (22) based on the description 

above. 

 

𝑅𝑘
𝑈 ≅ 𝐸{ℎ𝑘ℎ𝑘

𝐻} = 𝑃𝑘(𝜓𝑘 , 𝜏𝑘)𝛬𝑘𝑃𝑘
𝐻(𝜓𝑘,𝜏𝑘)

∈ 𝐶𝑀𝑃×𝑀𝑃 
(22) 

 

As 𝑟𝑎𝑛𝑘(𝑅𝑘
𝑈) ≤ 𝑟𝑎𝑛𝑘(𝛬𝑘) = 𝐿𝑘&𝛥𝑃, 𝑅𝑘

𝑈 is a pretty low-

rank matrix. Given that 
1

√𝑀𝑃
𝑃𝑘(𝜓𝑘 , 𝑇𝑘) is a tall matrix with 

unit-length asymptotically mutually orthogonal columns, Eq. 

(23): 

 

𝑅𝑘
𝑈

= (
1

√𝑀𝑃
𝑃𝑘(𝜓𝑘 , 𝜏𝑘)) (𝑀𝑃𝛬𝑘) (

1

√𝑀𝑃
𝑃𝑘
𝐻(𝜓𝑘 , 𝜏𝑘)) 

(23) 

 

Offers an accurate representation of eigenvalue 

decomposition. The received signals are projected to their 

respective signal subspaces at BS I where receive 

beamforming operations designed to eliminate intra-cell 

interference are subsequently carried out. After projection to 

signal subspace as well as reception beamforming, the 

received signal is given as Eq. (24): 

 

𝑟𝑖 = [𝑟𝑖,1, ⋯ , 𝑟𝑖,𝑠]
𝑇
= 𝐹𝑖

𝐻𝑈𝑖
𝐻𝑦𝑖 (24) 

 

In (25), the jth spatial stream, ri,j, is written as: 

 

𝑟𝑖,𝑗 = √𝑃[𝑖,𝑗]𝑥[𝑖,𝑗]

+ ∑  

𝐾

𝑘=1,𝑘≠𝑖

  ∑  

𝑆

𝑚=1

 √𝑃[𝑘,𝑚]𝐟𝑖,𝑗
𝐻 𝐔𝑖

𝐻𝐇𝑖
[𝑘,𝑚]

𝐰[𝑘,𝑚]𝑥[𝑘,𝑚]

+𝐟𝑖,𝑗
𝐻 𝐔𝑖

𝐻𝐳𝑖 .

 (25) 

 

From (26), achievable rate of user j in BS i is given as: 

 

𝑅[𝑖,𝑗] = log(1 + 𝛾[𝑖,𝑗]) = log (1 +
SNR[𝑖,𝑗]

∥∥𝐟𝑖,𝑗∥∥
2
+ 𝐼𝑖,𝑗

) (26) 

 

where, SINR γ[i,j] and the sum of residual interference of user 

j in BS i, are denoted. After ZF detection, the total residual 

interference can be expressed as Eq. (27): 

 

𝐼𝑖,𝑗 ≜ ∑  

𝐾

𝑘=1,𝑘≠𝑖

∑  

𝑆

𝑚=1

|𝐟𝑖,𝑗
𝐻𝐔𝑖

𝐻𝐇𝑖
[𝑘,𝑚]

𝐰[𝑘,𝑚]|
2

⋅ SNR[𝑘,𝑚] (27) 

 

From (28), total achievable DoF is described as follows: 

 

DoF = lim
SNR→∞

 
∑  𝐾
𝑖=1  ∑  𝑆

𝑗=1  𝑅
[𝑖,𝑗]

log2
𝑝𝑚𝑎𝑥

𝑁0

. (28) 

 

3.2 Interference alignment using hybrid transfer 

convolutional network (HTCN) 

 

Assume the HTC network, depicted in Figure 3, has N 

layers. The output is obtained in two phases for j-th node in 

layer I, designated as nij.zij j, the weighted total of all the inputs 

to node nij, is computed first. The output yij of node ni j via Eq. 

(29) is then obtained by sending zij to a non-linear function f 

(). 

1955



 

 

 
 

Figure 3. Architecture of HTCN 

 

𝑧𝑖𝑗 =∑  

𝐿𝑖

𝑖=1

𝑤𝑘𝑗
𝑖 𝑦𝑖𝑗 = 𝑓(𝑧𝑖𝑗), 

(29) 

 

where, Li-1 is number of nodes for layer i-1 and 𝑤𝑘𝑗
𝑖  is weight 

from node ni-1,k to node nij. Logistic function f(z)=1/[1+exp(-

z)], hyperbolic tangent function f(z)={exp(z)-exp(-

z)]/[exp(z)+exp(-z)], and ReLUf(z)=max(0, z), are all options 

for the non-linear function f(). are the preferred choices. 

Backward error feedback: Initial weights are either 

empirical or random values. These weight values are modified 

using backward error feedback technique, which involves 

providing feedback on the classification accuracy to increase 

accuracy of learning methods final output. Error derivative is 

yNjtNj for a node of deepest layer, let's say node nNj, where yNj 

and tNj are generated output as well as correct output. Then 

lower layer connection error derivative by Eq. (30): 

𝜕𝐸

𝜕𝑧𝑁𝑗
=
𝜕𝐸

𝜕𝑦𝑁𝑗

𝜕𝑦𝑁𝑗

𝜕𝑧𝑁𝑗
 (30) 

 

where, 𝜕𝐸/𝜕𝑦𝑁𝑗 = 𝑦𝑁𝑗 − 𝑡𝑁𝑗  and j=1, 2, ⋯, LN. A weighted 

total of error derivatives of all inputs to j-th node of layer i(i=1, 

2, ⋯, N-1), designated as ∂E/∂yij, is initially computed. Next, 

the lower layer connection's error derivative by Eq. (31): 

 
𝜕𝐸

𝜕𝑧𝑖𝑗
=
𝜕𝐸

𝜕𝑦𝑖𝑗

𝜕𝑦𝑖𝑗

𝜕𝑧𝑖𝑗
 (31) 

 

where, 
𝜕𝐸

𝜕𝑦𝑗𝑗
= ∑𝑘=1

𝐿𝑖+1  𝑤𝑗𝑘
𝑖+1 𝜕𝐸

𝜕𝑧=1,𝑙
, 𝑖 = 1,2,⋯ ,𝑁 − 1 , and j=1, 

2,⋯, Li. 

The agent's objective is to maximise the total reward Qt via 

Eq. (32): 

 

𝑚𝑎𝑥
𝜋
 𝑄𝑡 = 𝑚𝑎𝑥𝐸𝜋 (𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾

2𝑟𝑡+2 +⋯ ∣ 𝑠𝑡

= 𝑠, 𝑎𝑡 = 𝑎, 𝜋) 
(32) 

 

where, γ is a discount on future reward since present action at 

effects both the current reward and the future reward with 

decreasing strength. The agent randomly selects a sample of 

stored experience each time it needs to take an action 

throughout learning method. So, by Eq. (33): 

 

𝐿𝑖(𝜃𝑖) = 𝐸(𝑠,𝑎,𝑟,𝑠′)∈𝑈(𝐷) ((𝑟 + 𝛾𝑚𝑎𝑥
𝑎′
 𝑄(𝑠 ′, 𝑎′, 𝜃𝑖

−)

− 𝑄(𝑠, 𝑎, 𝜃𝑖))

2

) 

(33) 

 

NN is utilized to parameterize reward Q for each action, and 

each potential action is given its own output unit. Therefore, 

only state representation is used as input to network for each 

potential action, producing the projected Q value for a 

particular action. 

Eq. (34) can be used to mathematically represent the 

optimization problem. 

 

𝑚𝑎𝑥
𝑃𝑀𝐷.𝑃𝐶𝐷.𝑃𝑆𝑈𝐸 

 𝑔𝑜(𝑃𝑀𝐷𝑖 , 𝑃𝐶𝐷 , 𝑃𝑆𝑈𝐸) 𝑠. 𝑡.  𝛾𝑀𝐵𝑆 ≥ 𝑇, 0

≤ 𝑃𝑀𝐷𝑖 , 𝑃𝐶𝐷 , 𝑃𝑆𝑈𝐸 ≤ 𝑃𝑚𝑎𝑥 , 𝑖
= 1,2, … , 𝑁 

(34) 

 

where, 

 

𝑔𝑜(𝑃𝑀𝐷𝑖 , 𝑃𝐶𝐷 , 𝑃𝑆𝑈𝐸)

= ∑𝑖=1
𝑁  𝑤𝑖𝑙𝑜𝑔2(1 + 𝛾𝑀𝐷𝑖)

+ 𝑤𝑐𝑙𝑜𝑔2(1 + 𝛾𝐶𝐷)
+ 𝑤𝑠𝑙𝑜𝑔2(1 + 𝛾𝑆𝐶𝐵𝑆) 

(35) 

 

where, T is SINR threshold that gratifies MBS's minimum 

acceptable QoS and wi, wc, and ws are non-negative weights. 

The power PMUE is expressed in terms of powers of other 

users by Eqs. (36) and (37), utilizing lower bound to satisfy 

minimal QoS for MUE user. 

 

𝑃MUE =

ℎ

𝑇

𝑣 − 𝑇𝑣 ′
(∑𝑖=1

𝑁  𝑞𝑖𝑃MD𝑖 + 𝑟𝑃CD + 𝑠𝑃SUE + 𝜎MBS
2 ) 

 

where, 

 

1956



 

𝑎𝑖
′ = 𝛼𝑑MD𝑖

𝛿  

𝑏𝑖 = 𝑑MD𝑖,CD
𝛿 [(1 − 𝛼)|ℎ̂MD𝑖,CD|

2
+ 𝛼] 

𝑐𝑖 = 𝑑MD𝑖,SUE
𝛿 [(1 − 𝛼)|ℎ̂MD𝑖,SUE|

2
+ 𝛼] 

𝑑𝑖 = 𝑑MD𝑖,MUE
𝛿 [(1 − 𝛼)|ℎ̂MD𝑖,MUE|

2
+ 𝛼] 

𝑎𝑗
′ = 𝑑MD𝑖,PMD𝑗

𝛿 ((1 − 𝛼)|ℎ̂MD𝑖,PMD𝑗|
2
+ 𝛼) 

 

 

𝛾CD =
(1 − 𝛼)|ℎ̂CD|

2
𝑑CD
𝛿 𝑃CD

𝑒 ′𝑃CD + ∑𝑖=1
𝑁  𝑓𝑖𝑃MD𝑖 + 𝑔𝑃SUE + ℎ𝑃MUE + 𝜎CD

2  (36) 

 

where, 

 

𝑒 ′ = 𝛼𝑑CD
𝛿 , 𝑓𝑖 = 𝑑CD,MD𝑖

𝛿 [(1 − 𝛼)|ℎ̂CD,MD𝑖|
2
+ 𝛼] , 𝑔 = 𝑑CD.𝑆SUE

𝛿 [(1−𝛼)|ℎ̂CD,SUE|
2
+ 𝛼] 

 

ℎ = 𝑑CD.MUE
𝛿 [(1 − 𝛼)|ℎ̂CD.MUE|

2
+ 𝛼] 

 

𝛾SCBS =
(1 − 𝛼)|ℎ̂SUE|

2
𝑑SUE
𝛿 𝑃SUE

𝑘 ′𝑃SUE + ∑  𝑁
𝑖=1   𝑙𝑖𝑃MD𝑖 +𝑚𝑃CD + 𝑛𝑃MUE + 𝜎SCBS

2  (37) 

 

where, 

 

𝑘 ′ = 𝛼𝑑𝑑SUE 
𝛿 , 𝑙𝑖 = 𝑑SCBS.MDi 

𝛿 [(1 − 𝛼) ∣ ℎ̂ SCBS, MDi+𝛼], 𝑚 = 𝑑𝛿SCBS.CD 
𝛿 [(1 − 𝛼)|ℎ̂SCBS,CD |

2
+ 𝛼] and 𝑛 =

𝑑SCBS.MUE: 
𝛿 [(1 − 𝛼)|ℎ̂SCBS.MUE |

2
+ 𝛼]. 

 

𝛾MBS =
(1 − 𝛼)|ℎ̂MUE|

2
𝑑MUE
𝛿M 𝑃MUE

𝑣 ′𝑃MUE + ∑ 𝑖=1

𝑁
 𝑞𝑖𝑃MD𝑖 + 𝑟𝑃CD + 𝑠𝑃SUE + 𝜎MBS

2
 

 

where, 

 

𝑣 ′ = 𝛼𝑑MUE,
𝛿 𝑞𝑖 = 𝑑MBS,MD𝑖

�̌� [(1 − 𝛼)|ℎ̂MBS,MDi|
2
+ 𝛼] , 𝑟 = 𝑑MBS,CD

𝛿 [(1 − 𝛼)|ℎ̂MBS.CD |
2
+ 𝛼]  

𝛾𝑀𝐷𝑖 =
(1 − 𝛼)|ℎˆ𝑀𝐷𝑖|

2𝑑𝑀𝐷𝑖
𝛿 𝑃𝑀𝐷𝑖

(𝑎𝑖
′ + 𝑑𝑖ℎ

′𝑞𝑖)⏟𝜎𝑖
′𝑃𝑀𝐷𝑖 + (∑ 𝑗=1𝑗≠𝑖

𝑁
 𝑎𝑗
′𝑃𝑀𝐷𝑗 + 𝑑𝑖ℎ

′ ∑
𝑗=1𝑗≠𝑖

𝑁
 𝑞𝑗𝑃𝑀𝐷𝑗)

 

+(𝑏𝑖 + 𝑑𝑖ℎ
′𝑟)⏟𝑏𝑖

′𝑃𝐶𝐷 + (𝑐𝑖 + 𝑑𝑖ℎ
′𝑠)⏟𝜖𝑖

′𝑃𝑆𝑈𝐸 + 𝜎𝑀𝐷𝑖
2  

 

 

Next, the weighted sum of logarithms in issue is 

transformed using the Lagrangian dual transform. 

 

max𝑷,𝜸  𝑔𝛿0(𝑷, 𝜸) 

 

s.t. 0 ≤ 𝑃MD , 𝑃CD, 𝑃SUE ≤ 𝑃max , 𝑘 = (1 − 𝛼)|ℎ̂SUE|
2
𝑑SUE 
𝛿 ⋅

𝛾MD, 𝛾CD , and γSCBS are introduced as an auxiliary variable 

introduced for every SINR ratio term, while 𝑃  is set of 

{𝑃𝑀𝐷 , 𝑃𝐶𝐷 , 𝑃𝑆𝑈𝐸} . The fractional SINR term is then moved 

outside of logarithm using quadratic transform, and all of the 

optimization variables are thus expressed in linear terms. The 

above reformulation is then used to create an iterative 

algorithm. The ideal value for P MD is equal to P MD when 

𝑃𝑀𝐷 , 𝑃𝐶𝐷 , and 𝑃𝑆𝑈𝐸  are held constant. Setting 𝜕𝑔0/𝜕𝛾𝑖 , 𝜕𝑔0/

𝜕𝛾𝐶𝐷 , and 
𝜕𝑔0

𝜕𝛾𝑆𝐶𝐵𝑆
to zero results in 𝛾 = 𝛾𝑀𝐷𝛾𝐶𝐷 , 𝛾𝑆𝐶𝐵𝑆 . When 

powers PMD, PCD, and PSUE are kept constant, optimization of 

Pi only affects the terms of g 0 that have a sum-of-ratio form. 

When powers PMD, PCD, and PSUE are kept constant, the 

optimization of Pi only affects the terms of g0 that have a sum-

of-ratio form. Because entire system performance depends on 

a number of fractional characteristics, the system in this 

situation must cope with various ratios. 

 

 

4. EXPERIMENTAL RESULTS 

 

This section assesses effectiveness of macro-small cellular 

network using PC methods with imprecise channel state data. 

Sum rate, coverage probability, and SINR are used to gauge 

performance. These simulations are performed using 

MATLAB software. The MBS is simulated as being at the 

centre of a single macro-cell. Within the cell radius, MUE and 

one MD pair are distributed at random. Considering uplink 

connection between cellular users as well as their matching BS, 

the SUE is considered to be situated near border of small-

coverage cell's boundary. Additionally, a single CD pair is 

offered where its users are divided into various levels. It is 

expected that all simulation runs take place in an outdoor, 

typical metropolitan setting with stationary users. Table 1 lists 

the simulation parameters that were employed. 

For uncoordinated interference with=0.8, we take into 

account faulty CSI. First, we begin with a case of (10 6, 4)3 

MIMO interference with a single uncoordinated interference 

source with a transmit power of P1=0 dB. Additionally, for the 

proposed l2 and Schatten-p norm reduction techniques, we use 

Y=1d throughout this section. The average multiplexing gain 

(or DoF) is then depicted in Figure 2 is a function of the rank 

of uncoordinated interference, which runs from 1 to 4, when 

each user's transmit power is P=30 dB. The suggested 

1957



 

strategies, as seen in the figure, boost average multiplexing 

gain, with the l2 norm minimization technique performing best 

in this case. It is also important to note that the suggested 

approaches perform significantly better than all other ways 

when the rank of uncoordinated interference is higher than 3. 

All other methods cannot deliver any average multiplexing 

advantage in this case. We take into account a (10 6, 4)3 

MIMO interference system that has two uncoordinated 

interference sources. While keeping the rank of the second 

uncoordinated source fixed at 1, we depict the average 

multiplexing benefit as a function of the first uncoordinated 

source's rank. As can be shown, the proposed methods 

significantly outperform the other strategies. For instance, all 

existing strategies fail to achieve any average multiplexing 

advantage when the rank of the first uncoordinated source is 

equal to 2, but our suggested solutions significantly enhance 

IA performance. When our rank minimization method aims to 

reduce the interference's dimensional footprint, which raises 

the DoF, such gains are attained. The sum-rate also rises as a 

result, especially for medium and high SNR. On the other side, 

the Leakage Minimization technique seeks to reduce the 

interference's energy. However, compared to the rank 

minimization method, such lower-energy solutions result in a 

lower DoF. Additionally, the WMSE approach compromises 

the sum-rate by causing an unequal rate distribution among the 

users, with some transmitters having substantially lower rates 

than the others at medium and high SNR. 
 

Table 1. Simulation specifications 
 

Noise Spectral Density  -174dBm/Hz 

Small Cell Radius 20m 

Macrocell Radius 500m 

System Bandwidth 80MHz 

Estimation Error Variance a Varies between [0-1] 

Path Loss Coefficient 4 

D2D Range 50m 

Initial Power Level Pinitial Pmax/2 

Monto-Carlo Iterations 10k 

Maximum Power Level Pmax 23dBm 

 

Table 2. Comparative analysis between BER vs SNR 
 

SNR LSFD DOA_MIMO HetNet_MUP_HTCN 

10 77 78 80 

15 78 81 82 

20 81 82 83 

25 83 83 85 

30 85 86 88 

 

 
 

Figure 4. Comparative analysis for BER vs SNR 

The above Table 2 and Figure 4 shows comparative analysis 

between BER vs SNR between proposed and existing 

technique. The amount of errors you are willing to accept is 

known as the bit error rate (BER). Usually, this is a value 

between 0.1 and 0.000001 (every 10th bit is terrible!) (Only 

one in a million is bad). This ratio and the decibel-measured 

SNR are closely related (dB). When BER decreases, the SNR 

rises, and vice versa when BER increases. 

The below Table 3 and Figure 5 shows comparative analysis 

between proposed and existing technique in analyzing spectral 

efficiency. The maximum amount of data that are delivered to 

a specific number of users per sec while maintaining an 

acceptable QoS is the definition of spectral efficiency, also 

known as bandwidth efficiency or spectral capacity, in cellular 

networks. 

 

Table 3. Comparative analysis of spectral efficiency 

 
Number of 

Cells 
LSFD DOA_MIMO HetNet_MUP_HTCN 

100 66 71 78 

200 69 75 81 

300 71 79 83 

400 73 81 85 

500 75 83 90 

 

A system's spectrum efficiency can be computed using the 

following formula if the channel bandwidth is 2 MHz and it 

can support a raw data rate of, say, 15 Mbps. If there is an 

overhead of 2 Mbps, net data rate is 13 Mbps. SE=13×106 / 

2×106=6.5 bits/second/Hz. 

 

 
 

Figure 5. Comparative analysis of spectral efficiency 

 

Table 4. Comparative analysis of energy efficiency 

 
Number of 

Cells 
LSFD 

DOA_

MIMO 

HetNet_MUP

_HTCN 

100 81 83 89 

200 83 86 91 

300 85 89 93 

400 88 91 95 

500 89 93 96 

 

The Table 4 and Figure 6 show comparative analysis for 

energy efficiency between proposed and existing technique. 

The average rate per unit area to ratio of average power 

consumption per unit area can be used to calculate EE of a 

multicell uplink massive MIMO system. MIMO can support 

simple linear transceivers' high spectral efficiency (SE) and is 

anticipated to deliver excellent EE. 

1958



Figure 6. Comparative analysis of energy efficiency 

Table 5. Comparative analysis of power consumption 

Number of 

Cells 
LSFD 

DOA_

MIMO 

HetNet_MUP

_HTCN 

100 65 61 55 

200 68 63 56 

300 71 65 59 

400 73 68 61 

500 75 71 63 

Table 5 and Figure 7 show comparative analysis of power 

consumption between proposed and existing technique. Power 

consumption model that takes into account base station 

residually lossy variables, analogue device circuit power 

dissipation, and transmit power on power amplifier (BSs). We 

evaluate tendency of EE as number of antennas increases as 

well as observe that EE through new EE formulation based on 

proposed power consumption method. For real power 

consumption method, RF circuit power consumption and 

transmission power consumption should be taken into account. 

Total power consumption likewise rises proportionally as 

number of transmit antennas grows because circuit power 

consumption does as well. 

Figure 7. Comparative analysis of power consumption 

It is simple to acquire the matrix that represents this linear 

mapping, and determining whether or not IA is feasible 

involves determining whether or not the matrix has full rank. 

Proper but impractical systems relate to situations where the 

input space's dimension and the solution variety's dimension 

coincide, but the mapping is not subjective, that is, the solution 

variety is mapped to a collection of zero-measure MIMO 

interference channels. We used a variety of instances to 

evaluate our feasibility test; some of them served to confirm 

previous findings, while others demonstrated the lack of 

tightness of the current DoF outer boundaries in this situation 

or offered proof of the benefits of using different-sized 

antennas and stream distribution to maximise the DoF. A 

thorough application of our test in symmetrical settings has 

enabled us to formulate a hypothesis on the DoF of the K-user 

interference channel that generalises previously established 

findings for K=3. 

5. CONCLUSIONS

This research proposes novel technique in6G MIMO 

channel estimation with interference alignment based on 

heterogeneous network with deep learning techniques. here 

the channel estimation is carried out using HetNet based 

multiuser propagation model.  the interference alignment of 

the network has been carried out using hybrid transfer 

convolutional network. However, as the effect of circuit power 

consumption is more severe when transmitter is outfitted with 

a large number of antennas. To determine precise power 

consumption of huge MIMO systems. Multiple cellular 

systems now support more energy-efficient communication as 

cellular method mounts large MIMO methods at BSs. We can 

determine ideal number of transmit antennas at BSs in relation 

to EE using results for the multi-cell system. The outcome of 

this research contributes to the well-organized installation of 

massive MIMO systems at BSs by emphasising importance of 

EE in communication networks. The proposed technique 

attained BER of 88%, spectral efficiency of 90%, energy 

efficiency of 96%, power consumption of 63%. In the future, 

we'll work to locate best active transmit antenna set, improve 

power consumption methods for EE, and resolve issue of user 

QoS restrictions such data rate requirements and 

communication dependability, among others. Future study 

may focus on discovering algorithms with reduced complexity 

that need less overhead, which is critical for big networks. 

Another intriguing future subject is creating completely 

distributed IA techniques, particularly for relay-aided settings. 
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