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Moving object detection from video sequences remains a focal point of research. To address 

the limitations evident in current methodologies, a synthesis of optical flow method and 

salient object fusion algorithm has been applied. Utilising the Graph-based Visual Saliency 

(GBVS) algorithm, significant target region signals from both static and dynamic images 

can be obtained. This technique captures valuable image target information, highlighting 

conspicuous targets within dynamic visuals. Concurrently, target signals can be isolated 

employing the Harmony Search (HS) algorithm, enhancing the accuracy in identifying 

moving objects. A weighted fusion of the extracted salient regions by the GBVS algorithm 

and the moving objects identified by the HS algorithm was executed in this study. This 

amalgamation demonstrates efficacy in extracting static objects in rudimentary 

environments and complex backgrounds alike. MATLAB simulation experiments have 

indicated that such a multi-modal fusion not only diminishes background noise but also 

proficiently isolates the entirety of the target. Building on traditional frame difference and 

background difference methods and considering the properties of the field programmable 

gate array (FPGA) alongside off-chip synchronous dynamic memory's access control 

prerequisites, adaptations for these algorithms were conceived using FPGA logic units. 
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1. INTRODUCTION

In today's digital age, a staggering volume of information is 

encountered daily. It has been documented that over 75% of 

all perceived information is acquired through human vision [1]. 

Video target detection, a paramount research direction within 

the realm of computer vision, has traditionally focused on the 

minutiae of images or enhancing their visibility. However, 

during the image acquisition phase, numerous interference 

factors such as variable weather conditions, lighting 

discrepancies, environmental noise, and extraneous 

disturbances like insect interference have been identified [2]. 

Challenges such as indistinct targets, excessive motion speeds, 

overlapping of targets, and irregular object shapes have been 

encountered. Addressing these issues and refining the 

detection in complex backgrounds has been deemed essential. 

The prevailing approach in target detection has been the 

utilisation of moving target detection anchored in machine 

learning. Pedestrian features, encompassing texture, colour, 

and various gradient metrics like Histogram of Oriented 

Gradients (HOG) [3], Haar features, Scale Invariant Features 

(SIFT), and Speeded Up Robust Features (SURF) have been 

meticulously designed. Efficient feature classifiers, including 

Support Vector Machine (SVM) [4], random forests, and deep 

learning methodologies, have been employed to achieve 

precision in pedestrian detection. The predominant method 

involves extracting the HOG of distinct blocks within a sample 

or detection window, followed by training to attain an SVM 

[5] classifier. The codebook background modelling algorithm

has been introduced, which facilitates the extraction of

pedestrian foreground images. This substantially minimises

the search ambit during retrieval, and the application of

random forest methodologies, coupled with Haar and HOG

features, have been observed for training and classification. 

With the swift progression of microelectronics technology 

in recent years, a surge in demand for advanced machine 

vision has been noted. Despite significant advancements, 

considerable potential for enhancement remains, particularly 

in resolution and processing speed. Moving object detection 

technology, with its extensive applications in sectors like 

artificial intelligence, healthcare, and security, has grown 

pivotal. A pressing need for a framework capable of real-time 

processing of moving images has emerged. While 

contemporary CPU frequencies approach the GHz range, 

certain scenarios with intensive computational demands, such 

as real-time tracking of mobile targets or concurrent multi-

target tracking, transcend the capabilities of standard 

computing systems. 

2. LITERATURE REVIEW

In the process of video sequence information extraction, the 

foremost step is typically the extraction of requisite target 

information for detection. From daily observations, it has been 

discerned that target detection permeates various sectors. 

Within the expansive field of vision detection, target detection 

stands out as a cornerstone. Targets, based on background 

dynamics, have been broadly categorised into two: those with 

static backgrounds and those embedded in moving 

backgrounds [6]. The latter, characterised by significant 

fluctuations and numerous interfering elements, poses an 

amplified challenge due to simultaneous target and 

background alterations. 

Historically, in the 1970s, inter-frame difference methods 

[7, 8] were introduced, and a mathematical model for video 
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sequence background information was formulated, using a 

singular Gaussian model. Stauffer et al. [8-10] subsequently 

expanded on this by proposing the Gaussian mixture model, a 

method now widely recognised. Efforts were also made by 

Gorelick et al. [10, 11] in motion compensation post 

background region segmentation and the exploration of optical 

flow methods. Over extended periods, the human visual 

system evolved to adeptly locate objects of interest in both 

static and dynamic environments, a capability attributed to a 

rapid visual selection mechanism [12]. 

It has been observed that moving objects induce grayscale 

variations in images. These alterations manifest as optical flow 

changes, with the moving saliency map delineating the 

prominence of such flows. In the context of observing images, 

the visual system is naturally drawn to salient regions, 

indicative of visual saliency [13]. Amidst complex 

environments, the visual attention mechanism serves to 

allocate limited neural resources to areas of interest [14-17]. 

Notably, in the 1980s, a plethora of foundational theories on 

visual attention were postulated. Treisman and Gelade [18] 

proposed the feature integration theory, underscoring the 

importance of attention to visual features. Koch and Ullman 

[19] expanded upon this, introducing a bottom-up research 

mechanism and advocating for an augmented description of 

scene saliency through visual feature graph amalgamation. 

Further, Itti et al. [20] actualised the bio-inspired model earlier 

suggested by Koch and Ullman [19]. It has been noted that the 

human visual attention mechanism operates in two primary 

phases: bottom-up and top-down processes [18, 19]. 

Applications of visual saliency detection technology have 

been diverse. First, image and video compression [20]. 

Compression [20] processes traditionally demand intensive 

computations. During such operations, both near lossless and 

lossless compression predominantly target non-significant 

regions, consequently economising computational resources. 

Meanwhile, lossy compression balances quality preservation 

with an enhanced compression ratio. Second, image search 

process [21]. The essence of this application lies in content 

comparison. By juxtaposing salient areas within image 

contents and contrasting visual attributes, the congruence of 

salient regions becomes instrumental in gauging content 

similarity. Third, image segmentation [22]. The inherent 

robustness of visual saliency against noise has been employed 

to tackle challenges in differentiating targets from 

backgrounds in traditional imaging. Finally, automatic target 

detection [23]. This process essentially constitutes the 

sequential identification of visually significant areas, ensuring 

that the recognition efficiency remains unimpaired by non-

salient regions. 

In-depth examinations have illuminated the profound 

congruence between visual saliency detection technology and 

human vision principles. Such systems are believed to 

optimise image processing efficiency, holding both theoretical 

and practical significance for advancing the scientific domain. 

Yet, from contemporary outcomes of visual saliency detection 

methodologies, it is evident that issues of accuracy and 

precision remain to be refined to ensure the efficacy of visual 

system processing. 
 

 

3. COMPARATIVE ANALYSIS OF STATIC 

BACKGROUND TARGET DETECTION 
 

Although dynamic background detection predominantly 

incorporates block matching methods [24] and optical flow 

estimation methods [25], this section emphasizes a 

comparative simulation of three quintessential techniques 

relevant to static backgrounds. 

 

3.1 Frame difference method 

 

 
 

Figure 1. Illustration of the difference method 

 

In the inter-frame difference approach, two consecutive 

frames from a video sequence are initially read. The edge 

contours of moving objects within these frames are then 

distinguished. Given the consistent shooting interval, the 

background is presumed static. A disparity between two 

successive frames indicates motion, and any alterations 

between them suggest the presence of moving objects. An 

established threshold aids in automatically recognising these 

moving objects by contrasting the two frames. For this 

simulation, frames 149 and 150 from an avi video format were 

employed, both in their original colour and after grayscale 

processing. As exhibited in the figure, frames 149 and 150 

represent the initial colour frames (Figure 1). Considering 

minimal changes typically exist between sequential video 

frames, the presence of moving objects across two consecutive 

frames results in content alterations. By distinguishing the 

edge contours of moving objects between these frames, an 

inter-frame difference binary image is derived. Subsequent 

morphological operations further enhance the clarity of the 

results. 

 

3.2 Background difference method 

 

 
 

Figure 2. Illustration of the background difference method 

 

The figure-background difference method serves as an 

alternative approach for detecting moving objects (Figure 2). 

In this technique, a parameter model of the background image 

difference within a moving video sequence is employed. 

Typically, the pixel difference of the background image is 

characterised using a predefined parameter model. 

Subsequently, a calculation is made to compare the difference 

between the current image and the mathematical model of the 

established background. Moving objects are delineated based 

on the degree of change observed. Regions with significant 

differences are classified as areas containing moving objects. 

In contrast, zones with negligible differences are categorised 

as the background. It is crucial to underscore that an image 

devoid of any moving objects forms the background. 
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Moreover, there's a continual need to adapt the background 

model to accommodate background transformations [26]. The 

light flow method, while not directly connected to the scene, 

primarily hinges on the disparity between the velocity vectors 

of the background and the target. This method facilitates the 

determination of the velocity of an independent moving target 

[27]. 

 

 
 

Figure 3. Background difference simulation diagram 

 

Figure 3 showcases a MATLAB simulation of the inter-

frame difference method. The 150th frame of colour images in 

the avi format was utilised. The depiction includes: (a) the 

original 150th frame of the video in colour, (b) the background 

image post grayscale conversion, (c) a representation where 

the pixel difference of background images is delineated by the 

established parameter model. In this representation, 

foreground computations are undertaken, foreground pixels 

are retained, and the background is updated. Regions with 

pronounced differences signify the range of the moving target, 

whereas areas with minimal differences represent the moving 

background. The culmination of these steps results in the final 

image. 

 

3.3 Optical flow method 

 

When both a camera and its target are in motion 

simultaneously, an evolving image is generated on the 

camera's final imaging plane. Due to irregularities in the 

object's surface lighting, the relative movement between the 

camera and the object induces variations in illumination. 

These fluctuations in illumination are referred to as light flow 

[28]. The optical flow method, pivotal in video analysis, is 

designed to detect the instantaneous velocity of moving target 

pixels. The aim of this method is to estimate the actual three-

dimensional motion through the two-dimensional velocity 

field [29]. Utilising the optical flow method to acquire 

information on moving targets can mitigate challenges 

introduced by irregular object movements or background noise. 

Nonetheless, under conditions of significant auditory noise or 

abrupt lighting changes, the detection results derived from the 

optical flow method can occasionally manifest substantial 

inaccuracies. Rapidly altering backgrounds can be 

problematic for differentiation solely based on image 

variations. However, when backgrounds remain static or 

change slowly, the results are notably discernible. The optical 

flow field's pixel density can be divided into three categories. 

First, dense optical flow method. In this approach, each point 

within a designated area is individually analysed for light loss, 

requiring point-by-point matching. This method demands a 

considerable computational load, complicating target tracking. 

Second, sparse optical flow method. Only points with 

distinguishable features that satisfy specific conditions are 

selected for analysis, eliminating the need for point-by-point 

matching. Finally, semi-dense optical flow. Building upon the 

sparse method, this technique introduces unique points. The 

light loss of these points is then calculated to enhance gradient 

visibility. 

Optical flow method can be broadly subdivided into five 

types based on their calculation methods: First, gradient 

method. Image brightness remains constant, converting the 

image to grayscale, subsequently facilitating the calculation of 

pixel velocity vectors. Second, region matching method [30]. 

Either through region or feature matching, this approach 

processes video sequences to locate, track, and derive useful 

displacements of moving targets. All identified valid 

displacements represent target motion vectors. Third, 

frequency calculation method. Employing an adjustable speed 

filter, images are processed using a spatio-temporal filter. This 

approach amalgamates time and space processes to estimate 

velocity vectors in a consistent flow field accurately, yielding 

both frequency and phase data. Fourth, phase calculation 

method. Determining the optical flow field through image 

phase phase-related calculations. Even during environmental 

emergencies or disruptions, this method maintains 

performance, making it preferable when selecting brightness 

data in exceptional scenarios. Finally, neurodynamic 

calculation method [31]. The neurodynamic model of visual 

motion perception, constructed using neural networks, 

emulates the function and structure of biological visual 

systems. 

The differential method, a technique derived from global 

energy functionals, utilises the spatial gradient function over a 

unit time to ascertain the minimum value, subsequently 

calculating the image time vector. Characterised by its 

rigorous logical design, the differential method finds support 

in numerous conceptual frameworks. Given that gradient-

based algorithms hold the distinction of being amongst the 

most classical computational techniques, the term "differential 

method" often serves as a direct abbreviation. In everyday 

discourse, this abbreviation is frequently adopted. Among the 

myriad of methods available for optical flow computation, the 

differential method is reported to be the most extensively 

studied and commonly employed in standard experiments [32]. 

In 1950, Gibson [33] introduced the concept of an 

instantaneous velocity of image flow on a target's imaging 

surface, defining the surface velocity of image flow in 

grayscale mode [34]. Later, in 1981, the optical flow method 

was postulated by American scientists Horn and Sehunck [35, 

36]. They emphasized optical flow as a representation of 

object motion, deriving the foundational optical flow 

constraint equation based on image conservation theory. The 

implementation of the optical flow method is contingent upon 

three primary assumptions. First, brightness across adjacent 

frames remains invariant. Second, adjacent frames exhibit 

notable target motion amplitude. Finally, spatial consistency is 

maintained across adjacent frames. The HS algorithm, also 

termed the dense optical flow method, incorporates an 

overarching assumption of zero velocity change, producing a 

relatively smooth optical flow field. 

In Figure 4, a simulation diagram of the MATLAB optical 

1943



 

flow method is presented. This .avi video format sequentially 

displays two images, with an intentional selection of two 

frames showcasing significant differences to underscore the 

methodology's effectiveness (Figure 5). 

 

 
 

Figure 4. Optical flow methodology 

 

 
 

Figure 5. Optical flow vector diagram 

 

 
 

Figure 6. Results of optical flow binarization 

 

Figure 6 portrays the resultant binarization of the optical 

flow for the image, highlighting moving objects through 

enhanced white areas. Despite prevalent interference elements 

within the image, discernible movement of objects against a 

static backdrop is evident. 

Consider a pixel, denoted as I(x,y,t), positioned at (x, y) in 

an image at time T. Should this pixel undergo a movement by 

ΔxΔy after a duration Δt, its behaviour can be expressed using 

the Taylor series expansion, as follows: 

( )

( )

, ,

, ,

I x x y y t t

I I I
I x y t x y t

x y t


+ + +

  
= +  +  +  +

  

 (1) 

 

Under the assumption that the grey level remains constant 

over time, the equation can be represented as: 

 

( ) ( ), , , ,I x x y y t t I x y t+ + + =  (2) 

 

σ is the second-order and higher-order terms representing Δt, 

Δy and Δx can be obtained from the above formula: 

 

( ) 0
x I y I I

t
t x t y t


    

+ + +  =
    

 (3) 

 

Analysing the derived formulae, it is observed that both Δx 

and Δy display variations in relation to Δt. Consequently, as Δt 

approaches zero, the ensuing behaviour is deduced: 

 

0
I dx I dy I

x dt y dt t

  
+ + =
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 (4) 

 

u, v is the velocity component in both horizontal and vertical 

directions. From this representation, the following has been 

derived: 

 

0x y tI u I u I+ + =  (5) 

 

This equation is recognised as the fundamental optical flow 

constraint equation. It elucidates the intrinsic relationship 

between time, spatial attributes, and velocity inherent in 

moving entities. Through this understanding, the intensity 

diminution across the entire range of images has been 

determined. 

A novel smoothing constraint was introduced by Horn et al. 

with the aim of enhancing the homogeneity of optical flow. 

This constraint sought to minimise the parameter Es. The 

specified smoothing constraints are given as: 

 
2

2 22 2

s

u u v v
E dxdy

x y x y

          
= + + +       

           

 (6) 

 

Employing the fundamental optical flow equation, an 

avenue for minimising the optical flow error has been 

identified: 

 

( )
2

c x y tE I u I v I dxdy= + +  (7) 

 

When the constraints highlighted in the two preceding 

equations are evaluated, it is discerned that the calculated light 

loss should adhere to particular stipulations. 
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 (8) 
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When confronted with pronounced image noise, confidence 

levels tend to diminish. Under such circumstances, it has been 

observed that the adoption of a more substantial weight 

coefficient is judicious. Superior image quality invariably 

leads to enhanced precision in computations. A diminutive 

weight coefficient, on the other hand, can potentially curtail 

the reliance on smoothing conditions. Pertaining to derivatives, 

the following equations are presented: 

 
22

x x y x tI u I I v λ u I I+ = −  −  (9) 

 
2 2

y x y y tI v I I u λ v I I+ = −  −  (10) 

 

Values 𝑢̄  and 𝑣̄  are discerned as the mean values, while 

further relations with 𝛻𝑢 = 𝑢 − 𝑢̄  and 𝛻𝑣 = 𝑣 − 𝑣̄  are 

explicated in: 

 

( )2 22

x x y x tI u I I v λ u I I + + = − −  (11) 

 

( )2 2 2

y x y x yλ I v I I u λ v I I+ + = − −  (12) 

 

By coalescing Eqs. (5) and (7), the subsequent results are 

procured: 
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+ +
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The relaxation iteration method furnishes solutions as: 
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This method is widely acknowledged as the HS optical flow 

method. Standard practice dictates the initial light loss value 

to be configured as (0,0). For achieving commendable 

accuracy, it has been noted that iterations often surpass the 

count of 20. 

 

 

4. VISUAL ATTENTION MECHANISM ALGORITHM 

 

In environments with intricate visual backgrounds and 

multiple target objects, the primary intrigue often gravitates 

towards objects of interest. These objects are swiftly and 

precisely identified amongst prominent target entities. Such 

behavioural patterns are referred to as the visual attention 

mechanism. The human visual system, refined over extended 

evolutionary periods, doesn't merely process information 

straightforwardly; rather, it undergoes multiple intricate 

phases. The intricacy of this system not only pertains to its 

detailed nature but also its complexity. A myriad of stages is 

often navigated to actualise a comprehensive visual system. 

The inherent finesse of this mechanism is manifested in the 

judicious allocation of resources. During computational 

processing of videos, non-essential information is habitually 

disregarded, thereby reducing computational demands. The 

focus is intensified on pertinent information, thus endorsing 

the efficacy of employing human visual system mechanisms 

in realms such as target recognition, image compression, and 

retrieval. 

The attention mechanism encompasses three pivotal 

components: bottom-up, top-down, and the attention 

inhibition principle. The bottom-up mechanism is a data-

driven detection mode that operates devoid of pre-existing 

experiential knowledge. Through the synthesis of 

psychological theory and cognitive neuroscience, a 

hypothetical system is constructed, and a computation library 

is designed to emulate the human visual system's functionality. 

In contrast, the top-down mechanism necessitates pre-existing 

empirical knowledge of semantic feature location. Before 

employing this approach, it is imperative that target features 

and specific tasks are pre-defined. 

 

4.1 Calculation principles 

 

The simulation of visual salience mirrors the biological 

visual attention mechanism, necessitating adherence to its 

inherent principles. Several axioms underlie visual attention, 

including several principles. First, centre-neighbourhood 

principle [34]. It is observed that the visual centre is the most 

sensitive region for visual neurons. External stimuli typically 

either augment or diminish this sensitivity, accentuating the 

contrast between centres and their surroundings. Second, 

principle of high-frequency occurrence inhibition. This 

principle asserts that the visual system tends to overlook 

recurring features, directing its focus towards anomalous 

attributes. This proclivity explains the human tendency to be 

captivated by conspicuous objects. Saliency detection models, 

especially those based on statistical paradigms, often harness 

these anomalous features for modelling. Third, two-colour 

opposition principle. Drawing from the differential responses 

of the cerebral cortex to identical wavelength light 

stimulations, this principle underlines the cerebral cortex's 

contrasting reactions to varying wavelengths. It stands as a 

foundational pillar of early colour saliency theories. Finally, 

principle of contrast. Objects are frequently contrasted against 

their respective backdrops. Two distinct variants of this 

principle exist. Global contrast necessitates the computation of 

disparities between every pixel and the overall scene, entailing 

substantial computational demands. Conversely, local contrast 

exclusively quantifies the deviation between a centre and its 

immediate periphery, thereby minimising computational 

requirements. 

Regarding saliency analysis algorithms, three prevalent 

methodologies are identified. Firstly, algorithms grounded in 

the low-level visual information system, with the Itti algorithm 

serving as a quintessential exemplar. The second category 

encompasses methods such as the AC and SR algorithms. The 

third paradigm synthesises elements from the former 

methodologies, epitomised by the graph theory-based GBVS 

algorithm. This algorithm exclusively employs mathematical 

computations to discern saliency values. 

 

4.2 Analysis of the GBVS algorithm 

 

Given an object 𝛭: [𝑛]2 → 𝑅 , feature extraction is 

performed either through localisation of 𝐴: [𝑛]2 → 𝑅., or by 
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employing a node M(i,j). In the Bruce algorithm, the histogram 

automatically computes the proportion of diverse features in 

the vicinity of nodes containing unprocessed information. This 

procedure is continued until a probability distribution map is 

derived from the feature map. 

Given the formulas: 

 

( ) ( )( ), log ,A i j p i j= −  (17) 

 

( ) ( ) , Pr ,p i j M i j neighborhood=  (18) 

 

The disparity between M(i,j) and M(p,q) is determined 

through the subsequent equations: 
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Figure 7. Illustration of saliency in complex background 

 

In these equations, σ represents a free variable. Following 

numerous iterations, a stable distribution is attained. The lesser 

the visual feature similarity between nodes, the larger the 

weight. This leads to an increased probability of state 

transition, culminating in an extended accumulation period on 

the respective node. Conversely, when similarities are 

pronounced, the accumulation period is abbreviated. A marked 

difference in visual characteristics highlights their significance. 

The principal eigenvector of the Markov matrix corresponds 

to the eigenvalues of the primary level. Moreover, the 

eigenvalues of the level variables exhibiting the maximum 

modulus among the matrix's eigenvalues are also denoted as 

primary eigenvalues. These correspond to the most pivotal 

nodes on the graph. Subsequent to this, the relation system of 

the principal eigenvector materialises as a two-dimensional 

graph. 

Figure 7 portrays the saliency map's simulation against 

intricate backgrounds. The initial diagram presents the native 

colour image, succeeded by a grayscale rendition processed 

via the GBVS algorithm. The subsequent illustration provides 

a binary representation of the GBVS-processed grayscale 

image. The final representation superimposes the saliency 

region onto the original image, thus offering a more lucid 

visualisation of the salient region. 

 

 
 

Figure 8. Saliency display in simple background 

 

In contrast, Figure 8 delineates the saliency map's 

simulation against more rudimentary backgrounds. The 

sequence of illustrations mirrors that of Figure 8, culminating 

in an overlay of the saliency region on the original image for 

enhanced visual clarity. 

When juxtaposed, the saliency maps of Figure 8 (complex 

background) with Figure 9 (simple background) evince that 

the GBVS algorithm's simulation is predisposed to produce 

nebulous and imprecise saliency maps in intricate 

environments. In stark contrast, salient figures extracted from 

visuals characterised by unadorned backgrounds and 

conspicuous targets are relatively more coherent. In general 

terms, the detection outcomes from the GBVS algorithm are 

susceptible to misinterpretation, erroneously identifying 

irrelevant positions within the backdrop as salient regions. 

This often culminates in an expansive nebulous zone, 

compromising the overall detection efficacy. Conversely, the 

detection precision in simpler background proves superior. 

 

4.3 Weighted fusion algorithm 

 

The algorithm's primary notion surrounding the detection of 

salient moving objects can be distilled as follows: Initially, a 

video sequence is acquired. Subsequently, saliency detection 

is undertaken using the GBVS algorithm, culminating in the 

segregation and reconstruction of salient moving objects. 

Concurrently, the HS optical flow algorithm is employed to 

dissect two consecutive frames of the video sequence, thus 
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enabling the identification of the salient moving objects. In the 

final step, the discerned salient information is amalgamated 

with the motion data, resulting in the extraction of salient 

moving objects. 

 

 
 

Figure 9. Flow chart depicting convergence 

 

As depicted in the aforementioned figure, the GBVS 

algorithm's application to the first video frame yields the 

salient object. The optical flow method, when applied to the 

initial two frames of the video sequence, discerns the moving 

object. The culmination of this process sees the fusion of the 

moving object with the salient object. 

The optical flow vector of the ongoing video frame, in both 

X and Y directions, can be computed through Eqs. (15) and 

(16). The optical flow field at the specific point is then 

ascertained through the root mean square, as denoted in Eq. 

(22): 

 

2 2

x yV v v= +  (22) 

 

The resultant regional saliency computations are integrated 

with the target optical flow field from Eq. (22), as depicted in 

Eq. (23). Within this equation, the weight value is adjustable 

contingent on experimental outcomes, typically oscillating 

between 0.8 and 1.5. β is the weight value. That is, S is the 

salient image obtained by using GBVS algorithm in MATLAB. 

 

( )*G V S S=  +  (23) 

 

In the context of Eq. (23), it is observed that the saliency 

map attenuates the background domain within the optical flow 

vector. Subsequent weighted fusion of the two values 

augments the range while diminishing the background 

interference, thereby achieving the desired detection target. 

Comparative results using different β values have 

illuminated the influence on image luminance, presenting a 

relatively comprehensive and pronounced depiction of moving 

objects (Figure 10). 

 
 

Figure 10. Comparative results using different β values 

 

 
 

Figure 11. Comparative analysis of different algorithms 

 

The illustrations follow a sequence wherein the initial row 

displays frames of original images from diverse environments: 

outdoor roads, intricate outdoor parks, minuscule outdoor 

objects, and sizable indoor entities. The ensuing row 

showcases authentic binary images. The Gaussian Mixture 

Model (GMM) derived segmentation results, constituting the 

third row, exhibit significant omissions. The fourth row, which 

employs the Kernel Density Estimation (KDE), manifests 

certain false detections. The final row amalgamates the GBVS 

algorithm with the HS algorithm, effectively suppressing noise 

while fully extracting the moving target. Comparative analysis 

suggests that this fusion yields results superior to the 

previously mentioned methods (Figure 11 and Figure 12). 
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Figure 12. Comparative analysis across varied scenarios 

 

 
 

Figure 13. FPGA-based experimental outcomes 

 

A hardware-infused parallel acceleration scheme for 

moving image detection has been proposed to enhance 

recognition efficiency and performance. To assess the efficacy 

of this system in moving image processing, a traditional CPU 

scheme is established as a benchmark for juxtaposition. The 

implementation specifics are as follows: OpenCV has been 

utilized to replicate the experimental algorithm on the PC 

platform, outfitted with a 12th Gen Intel (r) Core (TM) i7-

12700h, operating at a frequency of 2.30 GHz. It is noteworthy 

that during the programming phase, parallel acceleration 

processing was eschewed, and OpenCV's pertinent functions 

were invoked to instantiate the inter-frame difference 

algorithm. The outcomes are illustrated in Figure 13. 

 

 

5. CONCLUSION 

 

Moving target detection, an integral facet of surveillance 

video systems, has been approached in this research to 

delineate moving targets from their backgrounds. This 

delineation aids subsequent operations, particularly in target 

detection within intricate backgrounds, and sets the stage for 

proficient target tracking. In the endeavour to detect saliency, 

priority was given to the extraction of pivotal information from 

images whilst concurrently filtering out superfluous data. 

Recognising the susceptibility of optical flow to various 

factors, leading to its potential instability, a moving target 

detection algorithm was postulated, amalgamating the optical 

flow technique with saliency detection. 

A thorough investigation into the significance detection 

algorithm based on image GBVS was undertaken, culminating 

in the enhancement of the image fusion methodology. 

Comparative analysis, adjusting the weighted fusion weights, 

revealed commendable detection outcomes. MATLAB 

simulations facilitated a juxtaposition between traditional 

methodologies and the algorithm proposed herein, extending 

this comparison across diverse environments. It was discerned 

that the newly proposed methodology exhibited superior 

capabilities in isolating the complete moving target as opposed 

to traditional approaches. 

In a subsequent evaluation, the frame rates of target 

detection, when accelerated by both PC and FPGA, were 

juxtaposed. Analyses illuminated that video disruptions, 

emanating from the lack of parallel acceleration on PCs, were 

expected. This resulted in suboptimal real-time performance. 

In stark contrast, FPGA's processing time was found to be 

negligible in comparison to the single-frame image 

transmission time, ensuring seamless and real-time video 

output. This marked enhancement in processing speed can be 

attributed to the FPGA hardware's prowess in accelerating 

parallel pipeline operations within image processing. Certain 

processes were completed in mere nanoseconds, a feat 

unattainable by CPU-based PC serial processing platforms. 

Concerning video stream transmission, the adoption of the 

AXI bus transmission was noted, with the AXI data 

transmission segment leveraging the Xilinx official IP core. 

Despite achieving the desired functionality, it was observed 

that the code encapsulated by the official IP core was 

encumbered with redundancies—components not utilised 

within this experiment. These superfluous elements, while 

inactive, still consumed computational resources. Therefore, 

future endeavours could be channelled towards refining the 

system's performance by re-evaluating the foundational code 

of the AXI protocol, streamlining and repackaging it as 

necessary. 
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