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In many educational institutions, safety management traditionally depends upon manual 

video surveillance, leading to potential delays in the identification and alerting of perilous 

activities, notably the possession of controlled knives and smoking behaviors exhibited by 

students. These activities possess significant consequences for both the psychological and 

physical well-being of students. Recognizing this pressing need, an augmented object 

detection method for campus security, rooted in YOLOv7, is presented. The EIoU (Efficient 

Intersection over Union) loss function has been substituted to expedite model convergence 

and heighten detection fidelity. Additionally, the integration of the CBAM (Convolutional 

Block Attention Module) attention mechanism with the DCNv2 (Deformable ConvNets v2) 

deformable convolutional kernel not only mitigates the challenge of information inundation 

but also enhances feature extraction capabilities, facilitating adjustments to geometric 

deformations. Experimental findings indicate that this proposed method achieves a detection 

accuracy of 92.6% across various categories on a dataset comprising three categories, 

spanning a total of 4500 images, and attains an mAP of 96.4%. In comparison to the 

conventional YOLOv7 algorithm, enhancements in detection accuracy and mAP by 6.9% 

and 6.6%, respectively, have been observed, affirming the efficacy of the presented 

algorithm.  
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1. INTRODUCTION

With the evolution of societal dynamics, emphasis on 

campus security has progressively intensified. Educational 

campuses, hosting a multitude of students and faculty, 

frequently witness activities leading to safety breaches and 

emergent situations, encompassing illicit possession of knives, 

smoking, altercations, and other deviant behaviors. Significant 

risks to campus harmony, order, and student welfare are posed 

by such occurrences. Traditional monitoring systems on 

campuses have been found to predominantly depend on 

manual scrutiny and video reviews for anomaly detection, 

rendering them prone to inefficiencies and errors. 

Nevertheless, advances in computer vision and deep 

learning have substantially matured object detection and 

recognition technologies. It has been observed that by 

harnessing these technologies for early identification and 

intervention of campus hazards, automation and management 

levels of monitoring systems can be enhanced, effectively 

mitigating campus safety breaches and consequently ensuring 

the protection of both educators' and learners' lives and assets. 

The realm of campus target detection and recognition, 

rooted in computer vision, seeks to implement real-time 

identification and preemptive alerts for on-campus targets via 

video surveillance. It has been noted that with the escalating 

progression of artificial intelligence, rapid advancements have 

been witnessed in campus anomaly detection. Within deep 

learning, predominantly two methodologies for target 

detection have been identified: two-stage and one-stage 

detection methods. The former, a two-stage detection, initially 

manifests candidate regions, subsequently leveraging 

convolutional neural networks for target classification and 

localization. Renowned algorithms within this methodology 

encompass R-FCN [1], Fast RCNN [2], and Mask-RCNN [3]. 

For instance, a face detection system based on R-FCN was 

proposed by Ruan et al. [4]. Despite achieving commendable 

accuracy in intricate backgrounds, its detection latency was 

found to be extensive. In contrast, one-stage detection, 

representative algorithms of which include the YOLO series 

[5, 6], SSD series [7, 8], and RetinaNet [9-11], directly employ 

convolutional neural networks for target classification and 

location prediction. They have been observed to offer more 

expedient detection, aligning better with real-time 

requirements. For instance, an improved YOLOv5 algorithm 

tailored for airport security was implemented by Guo et al. 

[12], enhancing detection velocity and precision upon loss 

function alteration. Similarly, a cigarette detection model 

founded on YOLOv5, with an integrated SENet attention 

mechanism, was presented by Li et al. [13], showcasing 

efficient detection for minute targets such as cigarettes. 

An algorithm geared towards campus safety object 

detection, rooted in the YOLOv7 single-stage object detection 

framework, is elucidated in the subsequent sections. Emphasis 

has been laid on the detection and classification of three 

pivotal categories: faces, knives, and cigarettes. Relative to its 

predecessor, YOLOv5, the YOLOv7 framework displays 

enhanced accuracy and velocity but showcases limitations in 

petite object detection. Modifications including CIoU-Loss 

replacement with EIoU-Loss [14], and integration of the 

CBAM attention mechanism [15-17] and deformable 

convolutions [18-20], have been observed to collectively 

bolster the algorithm's efficacy in campus safety object 
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detection. 

The contributions of this research comprise: (1) 

Construction of a dataset mirroring genuine campus 

management scenarios, encompassing three primary 

categories and aggregating 4500 real-life instances. (2) 

Integration of strategies such as the EIoU loss function, 

CBAM, and the DCNv2, resulting in considerable 

enhancement of model detection accuracy. (3) Implementation 

of ablation studies to ascertain the influence of each introduced 

modification on model efficiency. 

The ensuing sections of this study are structured as follows: 

Section 2 delineates the related work; Section 3 explicates the 

method's design and data architecture; Section 4 undertakes 

experimental comparative analyses; Section 5 encapsulates the 

methodology's strengths and areas of enhancement, paving the 

path for future exploration. 

 

 

2. PRELIMINARIES 

 

2.1 YOLOv7 architecture 

 

The YOLO algorithm, recognized as a quintessential one-

stage target detection approach, capitalizes on neural networks 

for object recognition and positioning. Notably, it boasts rapid 

execution, facilitating its integration into real-time systems. 

As the latest iteration in the YOLO series, YOLOv7 [21, 22] 

is observed to surpass extant detectors in terms of speed and 

accuracy across the spectrum of 5-160 FPS. 

 

 
(a) Overall network architecture 

 
(b) Network architecture of each module 

 

Figure 1. Structure of YOLOv7 

 

As depicted in Figure 1, the YOLOv7 architecture is 

trifurcated into three distinct components: the input, the 

backbone, and the head networks. Initially, images undergo a 

preprocessing stage wherein their dimensions are conformed 

to a standard 640×640×3. Subsequent to this preprocessing, 

images are channeled into the backbone network for salient 

feature extraction. This network then predicts three core tasks 

associated with image detection: classification, front and back 

background classification, and border. The culmination of this 

pipeline produces the detection results. The Backbone network, 

intricately designed, comprises 50 layers. These layers 

encompass CBS composite modules, the efficient converging 

structure known as ELAN, and the MP modules, with SiLU 

serving as the activation function. In the MP module, a 

Maxpool layer is superimposed atop the CBS layer, 

bifurcating the design into an upper and a lower branch. This 

design culminates in a Concat operation that synergizes 

features extracted from both branches, thereby enhancing the 

network's feature extraction prowess. The ELAN module, an 

amalgamation of assorted convolutions, regulates both the 

shortest and the longest gradient paths, ensuring that deeper 

networks assimilate and converge effectively. The head 

network, on the other hand, is an intricate blend of the 

SPPCSPC module, a suite of CBS modules, an UPSample 

module, a REPCONV module, and the Elan-w module. This 

ensemble ultimately yields three feature maps of varying 

dimensions. Within the SPPCSPC module, four different 

maxpools exist, specifically tailored for 5, 9, 13, and 1-sized 

entities, facilitating the handling of objects of disparate sizes. 

The REPCONV module bifurcates into training and 

deployment segments. Through a judicious layering of these 

models, YOLOv7 exhibits a commendable blend of precision 

and efficiency. 

 

2.2 Loss function of YOLOv7 

 

YOLOv7 adopts CIoU-LOSS [23-25] as the loss function 

of the detection frame, and its formulation is provided below:  
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Figure 2. Schematic diagram of CIoU 

 

Figure 2 elucidates the concept further, where 𝝆𝟐(𝒃, 𝒃𝒈𝒕) 
signifies the Euclidean distance between the center points of 

the real frame and the prediction frame. Herein, c denotes the 

diagonal span of the smallest enclosing region encompassing 

both the prediction box and the real box.  
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where, v is an parameter elucidating the consistency of aspect 

ratios between the prediction frame and the real frame. hgt and 

wgt represent the height and width of the real frame, while h 

and w encapsulate the height and width of the prediction frame. 

 

 

3. RECOGNITION OF CAMPUS SECURITY TARGET 

 

3.1 Target categories and sample compilation 

 

As depicted in Figure 3, the experimental dataset was 

categorized into three distinct classes: faces, knives, and 

cigarettes. The images within each class were compiled from 

three primary sources: (1) Downloaded from the internet; (2) 

Captured using camera devices; (3) Modified by rotations, 

pans, zooms, and brightness adjustments to the 

aforementioned images. Each class encompasses 1500 images, 

from which 1200 were used for training purposes and the 

remaining 300 were designated for verification. 

 

 
 

Figure 3. Some of the samples 

 

3.2 Dataset annotations and enhancement 

 

 
 

Figure 4. Dataset annotations 

 

LabelImage, an open-source annotation tool, was employed 

to tag the three aforementioned classes. As illustrated in Figure 

4, txt tag files in accordance with the YOLO format were 

generated. The tag parameters are divided into five tuples: 

(class_id, X, Y, W, H), defined as follows:  
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where, (x1, y1) and (x2, y2) represents the coordinates of the 

upper left and lower right corners of the labeled inspection 

frame, respectively. h and w indicate the height and width of 

the image, whilst class_id denotes the specific category under 

training. 

For YOLOv7, a data enhancement technique termed 

“Mosaic data enhancement” was implemented. This method 

amalgamates four images through arbitrary zooms, crops, and 

layouts to generate a singular, novel image. Such an 

enhancement considerably diversifies the detection dataset. 

Notably, the random scaling introduces numerous diminutive 

targets, subsequently augmenting the network's stability. 

Simultaneously, it reduces GPU memory usage and facilitates 

direct computation on the quartet of images. 

 

    
(a) Concept Map                       (b) design sketch 

 

Figure 5. Mosaic data enhancement 

 

Figure 5 offers a visual representation of this method. Four 

distinct images were randomly selected and colour-coded to 

delineate their individuality. These images underwent 

arbitrary zooms, crops, and arrangements to seamlessly fit 

within a specified frame, whilst extraneous sections were 

discarded. 

 

3.3 Model improvement and training 

 

Within this study, an augmented object detection algorithm, 

centred upon YOLOv7, was devised specifically for the 

campus environment. Initial steps involved the substitution of 

the EIoU loss function to expedite model convergence and 

elevate detection precision. The integration of the CBAM 

attention mechanism and the Deformable ConvNets v2 was 

subsequently pursued. This aimed to effectively circumvent 

information overload issues whilst bolstering the capacity for 

feature extraction and adaptation to geometric deformities. 

 

3.3.1 Improvement of the loss function 

Though CIoU-Loss has demonstrated considerable 

improvements in terms of convergence speed and detection 

accuracy, the parameter , which ascertains the aspect ratio's 

consistency between the prediction and real boxes, has not 

been adequately defined. Here, parameter  merely indicates 

the difference in aspect ratio, neglecting the genuine 

relationship between the width and height of the prediction 

box in comparison with the target box. Such an oversight 

results in potential non-simultaneous regression of the 

prediction box's width and height once they converge to a 

linear ratio. 

To better address the limitations inherent to CIoU-Loss, the 

study introduced EIoU-Loss as a replacement. EIoU-Loss is 

partitioned into three primary components: (1) Overlap loss 
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between the prediction frame and the real frame; (2) Loss of 

center distance between the prediction frame and the real 

frame (Ldis); (3) The width and height losses of the prediction 

box and the real box (Lasp). The formula can be written as: 
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where, the first two components of EIoU-Loss retain the 

CIoU_Loss framework. Here, the aspect ratio's loss term is 

split into the difference between the prediction frame's width 

and height and that of the enclosing minimal frame. Such 

partitioning has been observed to foster accelerated 

convergence of the prediction frame and ameliorate regression 

accuracy. 

 

3.3.2 Attention mechanism 

Given the observation that the categories of face, cigarette, 

and knife typically constitute only a minor portion of the 

image, with the predominant region being natural background, 

the CBAM attention mechanism was embedded into 

YOLOv7's backbone network (see Figure 6). The objective 

was to diminish extraneous feature information unrelated to 

the primary target and enhance the feature extraction efficacy 

of the object detection model. Emulating the human visual 

attention system, CBAM re-calibrates extracted target features, 

automatically sieving out inconsequential data, thus 

optimizing visual information processing efficiency and 

precision. 

 

 
 

Figure 6. Location of improvements in CBAM attention 

mechanism 

 

Further, the comprehensive CBAM attention mechanism is 

depicted in Figure 7, comprising both a Channel Attention 

Module and a Spatial Attention Module. 

 

 
 

Figure 7. Structure of CBAM attention mechanism 

For the Channel Attention Module, a 1D convolution was 

applied to the input feature map 𝐹 ∈ 𝑅𝐶∗𝐻∗𝑊 to yield 𝑀𝑐 ∈
𝑅𝐶∗1∗1 . Subsequently, this output was multiplied with the 

original feature map. The outcome of this process then served 

as input for the Spatial Attention Module. Here, a 2D 

convolution was employed to obtain 𝑀𝑠 ∈ 𝑅
𝐶∗1∗1, which was 

then multiplied with the original feature map. The formulas for 

calculating this sequence are:  

 

FFMF C = )('

 
(9) 
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(10) 

 

where, ⊗ represents the multiplication of two matrices. 

 

3.3.3 Deformable convolution 

In deep learning, convolutional kernels are instrumental in 

feature extraction. However, conventional kernels, being static 

in size, often exhibit limited generalization capabilities, 

constraining adaptability to unforeseen modifications. 

Conversely, deformable convolutional kernels append 

direction parameters to each constituent element of the 

original structure. This flexibility broadens the extraction 

range for target features during training, enhancing the 

network's ability to adjust to geometric deformations. This 

methodology has been incorporated into the primary ELAN 

module of the backbone network, supplanting the 

conventional 3×3 convolution, as illustrated in Figure 8. 

 

 
 

Figure 8. Improved location of DCNv2 

 

The equation is: 
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DCNv2's innovation lies in its introduction of a moderating 

factor Δmk, determining weights for the offset of input feature 

map sampling points, effectively eliminating irrelevant 

contextual information. 

 

 

4. EXPERIMENTAL RESULTS 

 

4.1 Experimental environment and parameters 

 

Experiments were conducted within the deep learning 

framework, Pytorch. Table 1 shows the specific configuration 
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of the training environment. Prior to training, internal 

parameters of YOLOv7 were adjusted, with the corresponding 

experimental parameters detailed in Table 2. 

 

Table 1. Experimental environment 

 
Name Parameters 

CPU 
AMD Ryzen9 4900H CPU @ 

3.30GHz 

GPU NVIDIA GeForce GTX 2080TI 11G 

Framework Pytorch1.8.0 

Programming 

language 
Python3.8 

 

Table 2. Experimental Parameters 

 

Name Parameters 

Epochs 200 

Batch-size 32 

Weights yolov7.pt 

Image-size 640×640 

 

4.2 Evaluation indicators 

 

For performance assessment, the mean average precision 

(mAP) was adopted, calculated using the following formula: 
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where, k signifies the number of samples, P denotes accuracy, 

and 𝛥𝑅 reflects the change in recall rate, the formulas are: 
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In these equations, TP (True Positive) indicates instances 

where positive samples were correctly classified as positive; 

FN (False Negative) when positive samples were mis-

classified as negative; FP (False Positive) where negative 

samples were wrongly predicted as positive; and TN (True 

Negative) when negative samples were aptly classified as 

negative. 

 

4.3 Comparison and analysis of results 

 

To ascertain the effectiveness of the proposed algorithm, an 

ablation comparison experiment was undertaken, examining 

the impact of individual improvements on model performance. 

Three distinct improvements, namely the EIoU-Loss function, 

the CBAM attention mechanism, and the DCNv2 deformable 

convolution, were sequentially integrated into the YOLOv7 

model. Under consistent experimental conditions, 200 

iterations were performed, adopting mAP as the performance 

benchmark. The outcomes are summarized in Table 3, where 

a √  indicates the application of a specific improvement 

strategy. 

From Table 3, it can be inferred that YOLOv7-1 represents 

the original YOLOv7 algorithm with an mAP of 89.8%. For 

the YOLOv7-4 iteration, CIoU-Loss was substituted with 

EIoU-Loss, followed by the inclusion of the CBAM attention 

mechanism, and the final phase encompassed the integration 

of the deformable convolutional kernel DCNv2 in lieu of the 

original 3×3 convolution. It was observed that each 

incremental improvement bolstered performance. Compared 

to the foundational algorithm, the mAP surged by 6.6%, 

underscoring the enhancements' effectiveness. Notably, 

despite a marginal increase in detection time (0.4 ms), the 

criteria for real-time detection were still met. The training 

process is shown in Figure 9. 

 

Table 3. Performance comparison of different improvement 

algorithms 

 

Model 
EIoU-

Loss 
CBAM DCNv2 mAP/% 

Speed/ 

ms 

YOLOv7-

1 
× × × 89.8 2.2 

YOLOv7-

2 
√ × × 91.0 1.8 

YOLOv7-

3 
√ √ × 94.3 2.4 

YOLOv7-

4 
√ √ √ 96.4 2.6 

 

 
(a) YOLOv7-1 

 
(b) YOLOv7-2 

 
(c) YOLOv7-3 
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(d) YOLOv7-4 

 

Figure 9. Training process of each model 

 

Figure 10 offers a comparative view of detection effects 

before and after the improvement. (a) is the detection effect of 

the original YOLOv7 algorithm, and (b) is the detection effect 

of the improved YOLOv7 algorithm. It becomes evident that 

the improved algorithm not only heightens detection accuracy 

but also mitigates false detection and omissions. 

 

 
(a) Test results of YOLOv7 

 
(b) Test results of the proposed method 

 

Figure 10. Comparison of effects before and after algorithm 

improvement 

 

4.4 Comparison of mainstream algorithms 

 

For a comprehensive assessment, the enhanced YOLOv7 

model was juxtaposed with established models such as 

YOLOv3, Fast R-CNN, and YOLOv5s. Table 4 showcases the 

results, adopting mAP and average detection speed as 

evaluation metrics. As per the findings in Table 4, the 

enhanced YOLOv7 model surpasses YOLOv3 and YOLOv5s 

in terms of detection speed and accuracy. It's noteworthy that 

while Faster R-CNN exhibits a marginally superior accuracy, 

its detection speed is considerably languid, rendering it 

unsuitable for real-time detection requirements. 

 

Table 4. Comparison of mainstream algorithms 

 
Model mAP/% Speed/ms 

Faster R-CNN 97.72 168.9 

YOLOv3 90.07 7.2 

YOLOv5S 92.76 5.4 

The proposed method 96.4 2.6 

5. CONCLUSIONS 

 

To address the prevailing challenges of campus security 

management, an enhanced target detection algorithm 

predicated on YOLOv7 has been presented. Distinct 

modifications were incorporated into the foundational 

YOLOv7 structure. Firstly, the CIoU loss function was 

substituted with the EIou loss function, which was observed to 

expedite convergence speed and elevate detection accuracy. 

Subsequently, in response to the challenges posed by 

inconspicuous feature information during the detection of 

diminutive targets, a CBAM attention mechanism was 

integrated into the backbone network. Such an inclusion 

facilitated automatic delineation of pivotal target areas, 

mitigating distractions from extraneous background elements 

and augmenting the proficiency and precision of visual data 

processing. Lastly, the 3×3 convolutions in the initial Elan 

module of the backbone network were replaced with 

deformable convolutions, enhancing the algorithm's 

adaptability to target geometric variations and its learning 

efficacy. 

Through a series of comparative experiments, the 

effectiveness of these modifications was conclusively 

validated. Notably, enhancements led to a discernible increase 

in detection speed, complemented by a marked improvement 

in accuracy. Looking ahead, to further hone its applicability to 

the domain of campus security, considerations for future 

studies include the introduction of a broader array of potential 

security threats and behaviors to the dataset. Furthermore, 

optimization of the network structure is envisaged, with an 

emphasis on streamlining network parameters to achieve a 

lightweight design. Such refinements aim to build upon the 

current findings, aspiring to further augment detection 

precision and speed. 
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