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As technology persistently advances, breakthroughs in machine learning and image 

processing have been harnessed for the meticulous measurement and analysis of natural 

resources. In the pursuit of addressing the imperative task of feature extraction and 

measurement within forestry, an integration of convolutional neural networks (CNNs), 

traditional machine learning, and image processing techniques has been devised. High-

resolution 3D image data were procured using the D435i depth camera, targeting the detailed 

representation of tree structures. Upon acquisition, refined strategies encompassing pass-

through filtering and K-means clustering were utilised for noise mitigation and 

segmentation. For feature discernment, CNNs were synergised with other machine learning 

models, facilitating comprehensive and automated extraction of the tree's structural and 

morphological nuances. The Random Sample Consensus (RANSAC) algorithm was 

subsequently invoked for meticulous cylindrical shape fitting, culminating in precise 

estimations of tree diameter-at-breast-height. Rigorous experimental validation revealed not 

only eminent accuracy but also unparalleled robustness across a gamut of scenarios and 

environments. When juxtaposed with conventional forestry measurement techniques, this 

methodology unmistakably signals a promising trajectory for forthcoming forestry 

applications. 
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1. INTRODUCTION

Historically, forestry measurement has been deemed critical 

for global forest resource management and research. As 

elucidated by Clark et al. [1], parameters such as tree height, 

diameter-at-breast-height (DBH), and biomass have been 

instrumental in garnering insights into forest health, ecological 

function, and biodiversity. With the mounting implications of 

climate change, the significance of forests in regulating the 

global climate, as delineated by Bonan [2], has seen a marked 

increase. 

Conventionally, manual calipers and altimeters, as 

documented by Husch et al. [3], have been ubiquitously 

employed across myriad studies and initiatives. However, with 

the progression of time, the limitations of such methodologies, 

primarily attributed to their cumbersome operations and 

languid data processing capabilities, have been accentuated. It 

has been observed that the rampant strides of globalisation and 

industrialisation have heightened the exigency for rigorous 

and expansive forestry measurements, a sentiment mirrored in 

the investigations of Safe’i et al. [4]. 

Recently, Gril et al. [5] highlighted the advanced 

capabilities of airborne LiDAR in forest microclimate 

measurement within the expansive Blois forest in France. 

Their work emphasized LiDAR's precision in mapping 

understory temperature variations influenced by canopy 

structures. Compared to traditional methods, LiDAR 

effectively produced high-resolution thermal environment 

maps, with significant implications for conservation and 

climate change mitigation. Concurrently, the exploration into 

the incorporation of machine learning for tree identification 

and measurement, conducted by Anderson and Gaston [6], has 

illuminated novel horizons for the field. The multifarious 

potentialities of modern technological interventions in forestry 

measurement have been further corroborated by works such as 

those by Nelson et al. [7] and Turner et al. [8]. 

Yet, notwithstanding these innovations, formidable 

challenges remain entrenched in the domain. Certain 

techniques have been indicated by Roberts et al. [9] to 

manifest limitations, especially when employed across a 

spectrum of forest types. Moreover, a compelling emphasis on 

extensive field validation for these nascent methodologies, 

particularly within intricate forest terrains, was elucidated by 

Asner and Mascaro [10]. 

In response to these outlined challenges, the present 

research endeavours to delve into the adept amalgamation and 

finetuning of extant measurement paradigms to adeptly serve 

the multifaceted requisites of global forestry measurement. By 

intertwining multi-source data, machine learning, and time-

honoured measurement techniques, a rejuvenated pathway in 

forestry measurement scholarship is anticipated. 
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2. IMAGE ACQUISITION TECHNIQUES 

 

2.1 3D camera technology 

 

With the emergence of 3D camera technology, a 

transformative measurement epoch has been instigated in the 

realm of forestry [11-13]. Predominantly hinging upon 

infrared, lasers, or alternative sensors, this technology has 

been recognised for its capacity to authentically delineate the 

three-dimensional structure of trees, furnishing 

comprehensive data sets conducive to in-depth analyses. The 

Intel RealSense D435i depth camera, favoured for its superior 

resolution and wide field of view, has been deployed. Such 

attributes facilitate the intricate capture of forest nuances, 

encompassing elements like leaves and branches. 

 

2.2 Drone-based aerial photography 

 

Drone technologies have been acknowledged for offering 

expansive and proficient image acquisition of arboreal terrains. 

In alignment with the methodology delineated by the authors 

[5], drones have been fitted with the 3D camera. During their 

aerial manoeuvres, images are systematically captured along 

pre-determined flight corridors and elevation levels, assuring 

uninterrupted and holistic canopy imaging. Such strategies 

prove especially advantageous for extensive forested expanses, 

more so in locales marked by intricate topographies or situated 

in remote precincts. A representation of drones, equipped with 

the D435i depth camera, is portrayed in Figure 1. 

 

 
 

Figure 1. Representation of a drone equipped with the D435i 

depth camera 

 

2.3 Image processing and point cloud generation 

 

For the extraction of pertinent information, the accumulated 

3D image data underwent rigorous processing. Specifically, 

"ForestScan", a software tailored for forest imagery, was 

employed. This software is recognised for its capability to 

expeditiously transmute original 3D imagery into point cloud 

data, which subsequently serves as a cornerstone for ensuing 

analyses and modelling. During the point cloud generation, the 

succeeding equation was employed: 

 

( , , ) ( , ) ( )P x y z I x y D z=   (1) 

 

where, P epitomises the point cloud's location in a 3D 

continuum, I denotes the pixel's position in the image, and D 

symbolises the depth value pertaining to the correlated pixel. 

 

2.4 Application of image fusion techniques in tree 

measurement 

 

In the realm of expansive tree measurements, particularly in 

scenarios involving continuous 3D camera imaging, multiple 

instances exist where specific regions undergo multiple 

captures. This amplifies the indispensability of image fusion 

techniques [14-19]. The principal objective of such fusion 

remains the amalgamation of myriad images into a cohesive 

3D tableau, subsequently augmenting data comprehensiveness 

and precision in measurements. 

For the enhancement of image fusion efficiency, 

methodologies grounded in machine learning were employed 

[20-22]. Overlaps amidst images were initially pinpointed 

using feature point detection. Following this, neural network 

models were instituted to refine these overlapping image sets, 

ensuring the resultant 3D tableau adhered to exacting 

standards of accuracy and coherence. 

Prior to fusion, images were subjected to preprocessing 

techniques, notably pass-through filtering and K-means 

clustering segmentation. Given that pre-fusion image quality 

exerts a direct influence on post-fusion outcomes, these initial 

steps were deemed imperative. During subsequent feature 

extraction and measurements, fused images presented data of 

enhanced cohesion and comprehensiveness, accentuating the 

research's precision and resilience. 

 

2.5 Data validation and quality control 

 

For the affirmation of data integrity and precision, 

multifarious validation protocols were put in place. Initially, 

terrestrial measurement apparatuses were deployed for field 

assessments of specific trees, and these readings were 

juxtaposed against data derived from the 3D cameras and 

drones. Further, parallelisms were drawn with extant studies 

to corroborate the congruity of the measurement results. 

 

 

3. IMAGE PRE-PROCESSING 

 

3.1 Pass-through filtering 

 

The evolution of three-dimensional camera technologies, 

specifically the Intel RealSense D435i depth camera (as 

depicted in Figure 1), has allowed for the acquisition of an 

abundant assemblage of point cloud data. However, it is 

observed that this vast volume of data can be tainted with noise 

and extraneous information. The necessity for image pre-

processing, therefore, arises to refine this data and prepare it 

for ensuing analyses. 

Within the available arsenal of pre-processing tools, pass-

through filtering is frequently employed. Through this 

technique, data points within a stipulated boundary are 

selectively filtered. When considering objects located 1 to 3 

meters from the camera, for instance, extraneous data points 

can be systematically excluded by the application of pass-

through filtering. This procedure can be represented 

mathematically as: 

 

filtered original min original maxP P P P P=  ∣  (2) 

 

where, 𝑃filtered symbolises the refined point cloud data. 

𝑃original stands for the initial point cloud data, while 𝑃𝑚𝑖𝑛 and 

𝑃𝑚𝑎𝑥  represent the pre-set minimum and maximum distance 

parameters, respectively. 

 

3.2 K-means clustering 

 

In scenarios presenting intricate backgrounds and diverse 

entities, the mere filtering of data proves insufficient. The 
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segmentation technique of K-means clustering is often utilised 

in such contexts. This method facilitates the division of point 

cloud data into K distinct clusters. Data points incorporated 

within these clusters are observed to exhibit spatial 

resemblances, setting them apart from constituents of 

alternative clusters. The method is mathematically expressed 

as: 

 

2

1 i

k

i

i x C

J x 
= 

= −  (3) 

 

where, J denotes the cost function, which seeks to minimise 

the aggregate distance of each point from its corresponding 

cluster centre. Ci is the designated cluster and μi symbolises 

the central point of that cluster. 

 

3.3 Cylindrical fitting 

 

Upon successful segmentation, the shape-fitting of point 

cloud data is undertaken to unravel detailed attributes 

pertaining to trees. The Random RANSAC algorithm is 

frequently applied for such cylindrical fitting exercises. This 

algorithm can be delineated by: 

 
2 2 2( ) ( )x a y b r− + − =  (4) 

 

Within this equation, (x,y) represents a particular point in 

the point cloud data, (a,b) signifies the cylinder’s core, and r 

demarcates the cylinder's radius. 

Following the execution of the aforementioned pre-

processing stages, optimised data is derived, thereby 

solidifying the foundation for forthcoming analytical 

procedures and measurements. Figure 2 visually represents the 

point cloud image subsequent to pass-through filtering, 

accentuating the clear silhouette of the tree. 

 

 
 

Figure 2. Point cloud image post pass-through filtering 

 

 

4. IMAGE FEATURE EXTRACTION 

 

4.1 Deep learning and CNNs 

 

Following rigorous image pre-processing, a pivotal step is 

undertaken: the extraction of salient features from the 

optimised images. This process is deemed crucial for 

impending analyses and model training exercises. 

In the contemporary era, significant strides have been 

observed in the domain of deep learning pertaining to image 

feature extraction. Among these advancements, CNNs, a 

subset of deep learning mechanisms, have been recognised for 

their unparalleled efficacy across diverse image analysis tasks. 

For the purposes of this study, the employment of a deep CNN 

model was necessitated for the autonomous extraction of key 

features intrinsic to tree images. 

The remarkable efficacy of CNNs in image analysis can be 

attributed to their inherent capability to systematically learn 

and distil hierarchical image features, transitioning seamlessly 

from rudimentary edges and textures to intricate shapes and 

patterns. This intricate process of feature extraction is 

predominantly achieved through successive convolutional 

operations. 

The underlying principle of these convolution operations 

can be mathematically articulated as: 

 

out in *F F K b= +  (5) 

 

where, 𝐹𝑖𝑛  represents the input feature map, 𝐹out  the output 

feature map, K the convolutional kernel, * denotes the 

convolution operation, and b the bias term.  

Within these operations, a diminutive, fixed-size 

convolutional kernel is navigated across the entire image, 

wherein it executes element-wise multiplication and 

summation tasks over the encompassed pixels. This 

methodology aids in discerning local features embedded 

within the image, encompassing aspects like edges, textures, 

and overarching shapes. By orchestrating multiple 

convolutional layers in tandem, the network attains the 

prowess to discern more abstract and intricate image features. 

 

 
 

Figure 3. Architectural representation of the deep CNN model 
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For the meticulous extraction of tree-centric features, a deep 

CNN model, replete with an array of convolutional layers, 

pooling layers, and fully connected layers, was chosen. The 

intricate structure of this model is delineated in Figure 3. 

Additionally, to augment the clarity of tree features within 

images, the K-means clustering segmentation algorithm was 

integrated during the image pre-processing phase. Its 

exhaustive workflow is elucidated in Figure 4. 

 

 
 

Figure 4. Schematic of the K-means clustering segmentation 

process 

 

Eq. (6) presents the mathematical description of the 

convolution operation: 

 

( , ) * ( , )Y x y K F x y b= +  (6) 

 

where, F is the input feature map, K the convolutional kernel, 

* denotes the convolution operation, and b is the bias term. 

 

4.2 Feature vectorisation 

 

 

 

 
 

Figure 5. Point cloud imagery subsequent to K-means 

clustering segmentation 

 

Subsequent to the extraction process, features undergo a 

process of vectorisation, culminating in the formation of a 

dense feature vector. Within this vector, a distinctive 

numerical description for each tree is encapsulated, 

encapsulating its geometric structure and appearance attributes 

as represented in the image. A comparative analysis of feature 

manifestations stemming from diverse extraction 

methodologies is depicted in Figure 5. 

The rationale behind vectorising features lies in its ability to 

transform raw data into a format that machine learning models 

can comprehend. By representing trees as numerical vectors, 

not only is data compression achieved, but also the nuances of 

tree structure and appearance are captured in a standardised 

manner, aiding subsequent analyses. This standardised 

representation simplifies complex, high-dimensional data into 

a format that is more manageable and conducive for machine 

learning and statistical analyses. It should be highlighted that 

the selection of appropriate vectorisation techniques is 

contingent upon the nature of the data and the specific 

objectives of the study. 

 

 

5. EXPERIMENTAL SETUP 

 

To assess the efficacy of the presented strategies 

encompassing image collection, preprocessing, and feature 

extraction, a series of experiments were undertaken. 

 

5.1 Experimental environment and dataset 

 

A diverse range of twenty trees spanning various species 

was chosen for the study. Photographic data were captured at 

intervals encompassing early morning, midday, and dusk, 

allowing for the scrutiny of the camera's performance across 

varying illumination conditions. Every image was sourced 

utilising the D435i camera, capturing tree depictions from 
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multiple angles, distances, and light settings. 

Utilised hardware and software configurations included: 

•Hardware: An Intel i7 processor complemented with 16GB 

RAM and an NVIDIA GTX 1080Ti graphics card. 

•Software configurations encompassed Python 3.7, 

TensorFlow 2.3, and OpenCV 4.2. 

 

5.2 Data augmentation 

 

For bolstering the model's resilience across assorted 

settings, the dataset was subjected to augmentation techniques. 

Methods such as image rotation, scaling, cropping, and the 

introduction of noise were incorporated. As a result of these 

augmentations, the dataset swelled to quintuple its original 

size. 

 

5.3 Experimental methods 

 

The amassed dataset was partitioned into three distinct 

subsets: training (70%), validation (15%), and testing (15%). 

Model training was executed utilising the training subset, 

while parameter tuning was facilitated through the validation 

subset. Subsequently, performance evaluation was carried out 

on the test subset. 

To furnish a holistic comparison between the strategies 

delineated in this study and alternative methodologies, the 

ensuing reference techniques were enlisted: 

(1) Traditional image processing techniques: These 

predominantly hinged on rule-based image analytics such as 

edge detection and threshold segmentation. 

(2) Deep learning approaches: Such methods predominantly 

leveraged CNNs for the automated extraction and analysis of 

image features. 

(3) K-means clustering segmentation: This unsupervised 

machine learning technique was employed for tasks 

encompassing image segmentation and feature extraction. 

The choice of the D435i camera was predicated on its 

capacity for high-resolution imaging, coupled with its inherent 

capability to perform optimally across diverse lighting 

conditions. The inclusion of multiple times of day in the data 

capture process aimed to ensure that the resultant models 

would exhibit robustness, irrespective of the time of day 

during real-world application. The chosen augmentation 

techniques were based on their widespread adoption in 

contemporary literature and their demonstrated efficacy in 

bolstering model generalisation. The decision to incorporate 

both traditional and modern methodologies in the comparative 

analysis aimed to offer readers a comprehensive perspective 

on the relative merits of the presented strategies in contrast to 

well-established methods. 

 

 

6. EXPERIMENTAL RESULTS AND ANALYSIS 

 

6.1 Experimental results 

 

From the analyses of the test set data, it was observed that 

the proposed model attained an accuracy rate of 93.5%. For 

the diameter measurement at breast height (specifically 1m 

above the ground) across the selected 20 trees with diameters 

oscillating between 5-40cm, the recorded accuracy, when 

juxtaposed against caliper-based measurements, exhibited a 

maximum deviation of under 3mm. Such precision meets the 

stringent requirements of practical deployments. 

To facilitate a more discernible comparison of the proposed 

model's efficacy relative to alternate techniques, evaluation 

outcomes across different metrics for each approach were 

systematically catalogued. For a more vivid illustration, 

specific trees were selected for visual demonstration, as 

delineated in Figure 6. Additionally, a three-dimensional 

modelling of these trees was executed, the outcomes of which 

are depicted in Figure 7. Once subjected to processing via the 

RANSAC algorithm, the resultant cylindrical fitting effect is 

portrayed in Figure 8. 

 

 
 

Figure 6. Tree measurement representation 

 

 
 

Figure 7. Depiction of original image point cloud data 

 

The achieved accuracy rate, notably surpassing the 90% 

threshold, is indicative of the model's robustness, particularly 

when considering the inherent complexities of tree 

measurements. The variance in diameters, spanning from as 

slim as 5cm to as wide as 40cm, underscores the model's 

versatility in handling diverse scenarios. The decision to 

juxtapose the model's readings against caliper-based 

measurements was predicated on calipers being a gold 

standard in such measurements, offering a high level of 

precision. The minimal deviation of under 3mm serves as 

testament to the model's reliability. The visual illustrations 

provided, from basic measurements to complex 3D modelling, 

aim to offer readers a holistic understanding of the study's 

breadth and depth, while the incorporation of the RANSAC 
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algorithm underscores the emphasis on precision and accuracy 

in the study's methodology. 

 

 

 

 
 

Figure 8. Cylindrical fitting of point cloud data following 

RANSAC algorithm implementation 

 

6.2 Discussion of results 

 

Upon analysis of the data, it was discerned that the proposed 

technique exhibits an exemplary capability in tree image 

feature extraction, displaying not merely impressive accuracy 

but consistent stability as well. In contrast to conventional 

image processing, machine learning methodologies were 

found to adeptly discern intricate image features, thereby 

obviating the traditionally laborious extraction procedures. 

Subsequent experiments revealed that an enhanced 

performance was manifested when engaging with specific tree 

varieties. Such an observation was largely ascribed to the 

composition of the training dataset and the prevalence of 

particular tree species within it. Furthermore, concerning the 

modulation in lighting conditions, a minor decline in 

performance under the intense luminescence of midday 

sunlight was identified; nevertheless, accuracy indices 

sustained commendably elevated levels during the nascent 

hours of morning and the twilight of dusk. In juxtaposition 

with alternate machine learning paradigms, the introduced 

model was discerned to outperform in the domain of tree 

image analysis. In essence, the method proffered can be 

characterised as a highly adept and stable solution in the realm 

of tree imagery analysis. 

The superior performance of the proposed model 

underscores the evolving paradigm of tree image analysis. The 

results affirm the growing consensus that machine learning, 

with its capability to automatically discern and adapt to 

intricate patterns, holds a transformative potential in forestry 

informatics. The variance in model performance across tree 

species, as evidenced by the data, serves as an imperative to 

ensure diverse and representative datasets. The minor 

susceptibility to intense sunlight could be attributed to the 

heightened variability in shadows and contrast during such 

periods. Nevertheless, the resilience of the model during 

suboptimal lighting conditions of morning and dusk is 

noteworthy. While the study has illuminated the strengths of 

the proposed methodology, it also underscores the broader 

shift towards data-driven methodologies in the forestry sector. 

 

 

7. CONCLUSION 

 

Within the current technological context, the application of 

image analysis and feature extraction has proliferated across 

numerous sectors, with marked emphasis observed in the 

realms of forest ecology and urban greening. In this inquiry, 

an innovative methodology, employing the Intel RealSense 

D435i depth camera for tree image capture, was assessed, and 

its efficacy was confirmed via empirical evaluation. 

The chief inferences derived encompass: 

(1) Camera Competence: The Intel RealSense D435i depth 

camera's prowess was made evident in image acquisition. 

Quality and authenticity of images under diverse lighting 

scenarios were notably achieved. The mounting of this camera 

on an aerial drone is illustrated in Figure 1 of the referenced 

text. 

(2) Image Refinement: Techniques adopted herein 

facilitated the refinement of tree images. Target objects were 

effectively delineated, and unrelated background noise was 

mitigated using pass-through filtering combined with K-

means clustering segmentation. A comprehensive portrayal of 

this process can be witnessed in Figure 4 of the core document. 

(3) Methodological Stability: Variability in lighting, 

angular positioning, and relative distance was shown to exert 

limited influence on the performance of the image refinement 

technique, underscoring the resilience of the methodology. 

(4) Benchmarking: Initial comparative trials underscored 

that the image refinement approach delineated in this research 

surpassed traditional methods in efficacy and precision 

concerning tree imagery. A more granular analysis of 

comparative data is poised for future deliberation. 

Looking forward, the envisagement is toward the further 
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enhancement of the image refinement procedure and the 

augmentation of the dataset magnitude. A broadened 

exploration into its utility in diverse practical contexts within 

forest ecology and urban greening is also projected. The 

findings of this research not only promulgate a potent 

mechanism for tree image feature extraction but also serve as 

a beacon for analogous tasks in image recognition and analysis. 
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