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Accurate identification and feature extraction of stratum images play a crucial role in 

geological exploration, resource prospecting, and mining operations. Traditional methods of 

stratum image identification largely rely on human experience and manual operations, which 

are inefficient and prone to errors. In recent years, deep learning technology has provided 

new methods for the identification and feature extraction of stratum images, but existing 

deep learning models still face challenges in computational efficiency, multi-scale feature 

extraction, and uneven sample distribution. This paper proposes a stratum image feature 

extraction network based on the pyramid model and constructs a lightweight stratum 

identification model for real-time recognition. By introducing a classification-regression 

network structure and anchor-based sample supervision rules, this study aims to improve the 

accuracy and efficiency of the model, providing an effective solution for real-time 

recognition of stratum images.  
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1. INTRODUCTION

With the development of industry and science and 

technology, the role of stratum image recognition and feature 

extraction in geological exploration, resource prospecting, and 

mining has become increasingly prominent [1-4]. Especially 

in the extraction of oil and natural gas, accurately identifying 

and predicting the distribution and properties of strata are 

crucial for optimizing resource extraction strategies and 

improving safety [5, 6]. Traditional methods for stratum image 

recognition largely depend on human experience and 

inefficient manual operations, limiting work efficiency and 

potentially leading to high error rates [7-11].  

In recent years, the rapid rise of deep learning technology 

has brought revolutionary changes to the field of image 

recognition and analysis, including the feature extraction and 

identification of stratum images [12, 13]. Using deep learning 

technology, key features can be automatically extracted from 

complex stratum images, realizing more accurate and efficient 

stratum classification and prediction. This not only helps 

improve resource utilization but also provides more scientific 

and reliable decision support for geological exploration and 

extraction activities [14, 15].  

Although deep learning has achieved preliminary 

applications in stratum image recognition, existing methods 

still have some shortcomings. First, most models have a large 

number of parameters, leading to low computational 

efficiency, making them unsuitable for real-time applications. 

Secondly, traditional feature extraction networks find it 

challenging to effectively capture multi-scale information 

from images. Especially for pyramid-structured stratum 

images, high-level semantic information and low-level detail 

features are often difficult to consider simultaneously [16-18]. 

Additionally, the uneven distribution of samples in object 

detection also poses challenges to model training [19-23]. 

In response to these issues, this study proposes a stratum 

image feature extraction network based on the pyramid model. 

This network effectively integrates high-level semantic 

features with low-level feature maps, achieving 

comprehensive feature capture of pyramid-structured stratum 

images. Furthermore, this study constructs a lightweight 

stratum identification model for real-time recognition. On this 

basis, a classification-regression network structure is 

introduced, and an anchor-based sample supervision rule is 

proposed, ensuring high accuracy recognition even when 

facing uneven sample distribution. This research not only 

provides new methods and insights for real-time recognition 

of stratum images but also has significant application value 

and broad research prospects. 

2. CONSTRUCTION OF STRATUM IMAGE FEATURE

EXTRACTION NETWORK BASED ON PYRAMID

MODEL

For the recognition and feature extraction of stratum images, 

the information they contain is both rich and complex, 

especially the structural information and relative positional 

information brought by their stratified structure. These pieces 

of information are crucial for accurately identifying the nature 

and types of strata. However, traditional fixed-scale feature 

extraction networks may be affected by the contextual 

relationship between local feature blocks when processing 

stratum images, leading to key information in the stratified 

structure of strata being disrupted by horizontal segmentation, 

thereby affecting the recognition performance of the model. 

Figure 1 shows the architecture of the traditional fixed-scale 

feature extraction network model. This paper introduces the 

Traitement du Signal 
Vol. 40, No. 5, October, 2023, pp. 2251-2257 

Journal homepage: http://iieta.org/journals/ts 

2251

https://orcid.org/0009-0002-5571-2446
https://orcid.org/0009-0009-2407-1456
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400542&domain=pdf


 

pyramid model to attempt multi-scale feature extraction, 

avoiding the damage to this structural information caused by 

horizontal segmentation in traditional networks. At the same 

time, it ensures that the model can capture features of various 

scales, from large to small and from the whole to the local. 

This is crucial for enhancing the model's discriminative 

capability and generalization ability. 

 

 
 

Figure 1. Architecture of traditional fixed-scale feature 

extraction network model 

 

The multi-scale feature extraction network model 

constructed in this paper adopts a 6-layer pyramid structure. 

The core idea of this structure is to extract and integrate local 

features from different scales to ensure that key information 

can be captured at all scales. The input to the network model 

is the output tensor from the fixed-scale feature extraction 

network. This means that preliminary feature extraction has 

been completed, and the focus of the subsequent work is on 

further integrating and optimizing these features. These fixed-

scale local feature tensors originate from some soft 

segmentation technique. Soft segmentation typically better 

preserves some of the key characteristics and contextual 

information of the original image. At each level of the pyramid, 

the horizontal local feature tensors are combined in different 

ways. In this manner, each layer can generate local features of 

a different scale. 

 

 
 

Figure 2. Features of the pyramid model 

 

Figure 2 gives a schematic of the features of the pyramid 

model. Suppose tensor YA is the feature map D11 of the top 

layer M1 of the pyramid model. The second layer M2 of the 

pyramid model produces two feature maps: D21, which 

consists of horizontal local feature tensors o1o2o3o4o5, and D22, 

which consists of o2o3o4o5o6. The third layer M3 of the pyramid 

model produces three feature maps: D31 formed by o1o2o3o4, 

D32 formed by o2o3o4o5, and D33 formed by o3o4o5o6. The 

fourth layer M4 of the pyramid model produces four feature 

maps: D41 consisting of o1o2o3, D42 consisting of o2o3o4, D43 

consisting of o3o4o5, and D44 consisting of o4o5o6. The fifth 

layer M5 of the pyramid model produces five feature maps: 

FD51 formed by o1o2, D52 formed by o2o3, D53 formed by o3o4, 

D54 formed by o4o5, and D55 formed by o5o6. The sixth layer 

M6 of the pyramid model produces six feature maps: D61 

consisting of o1, D62 consisting of o2, D63 consisting of o3, D64 

consisting of o4, D65 consisting of o5, and D66 consisting of o6. 

The following equations give the expression for the pyramid 

model: 
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(1) 

 

Given the 6-layer pyramid model produces 6 different 

scales of local feature maps, these feature maps might vary in 

size and characteristics. Adaptive pooling allows for dynamic 

pooling according to the specifics of each feature map, 

ensuring key information from each scale is effectively 

retained, thereby enhancing the robustness of the feature 

descriptor. Let the function FL denote rounding down, the 

following equations give the parameter settings in adaptive 

pooling: 
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Figure 3. The adopted ResNet50 network architecture 

 

Figure 3 illustrates the ResNet50 network architecture 

adopted in this study. The original ResNet50, as a base 

network, outputs a feature map with dimensions of 1×1×2048. 

This is a relatively high dimension, and directly using such 

features for further processing and learning might complicate 

the model and increase computational burdens. In this paper, 

during the rock layer image feature classification phase, a 

classifier composed of a fully connected layer and a Softmax 

function were primarily employed. One of the main 

advantages of the Softmax function is its ability to transform 

input features into a probability distribution, meaning that the 

model can predict not only which class of rock layer the image 

belongs to but also provide the confidence level of that 

prediction. This is instrumental in interpreting the model's 

prediction and offering additional decision-making bases. 
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Following this phase, we can obtain the probability 

distribution of input features belonging to different rock layers. 

Subsequently, the Identity function was used to finalize the 

feature classification for the input image. The Identity function 

ensures that the output feature description from the model 

retains its continuity, which might be beneficial for feature 

interpretability and subsequent processing. 

Assuming the convolution operation is represented by ⊗, the 

parameters in the convolution layer are represented by ϕI, the 

feature vector is represented by d, the predicted value for the 

input image u is represented by 𝑜̂𝑢 , the real probability is 

represented by ou, the image label is represented by y, the 

following equations depict the feature classification process: 
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3. CONSTRUCTION OF THE REAL-TIME 

LIGHTWEIGHT ROCK LAYER RECOGNITION 

MODEL 

 

Real-time rock layer image recognition models are not only 

crucial for scientific research and industrial applications but 

also have immense potential value and necessity in many 

practical working conditions. They can bring us higher 

efficiency, safety, and economic benefits. For example, in the 

exploration of oil and natural gas, real-time rock layer 

recognition can quickly determine whether the current drilling 

depth has reached the target layer or is nearing a potential oil 

and gas reservoir. This can not only reduce unnecessary 

drilling time and costs but also minimize potential damage to 

the subterranean environment. In situations like tunnel 

excavation or foundational construction, real-time rock layer 

recognition can provide immediate information about the 

underground materials. This aids in choosing the appropriate 

excavation strategy and preventing potential risks, such as 

cemented rock and flowing sand layers. 

 

 
 

Figure 4. Improved SSD classification regression network structure 

 

The lightweight rock layer recognition model for real-time 

recognition tasks built in this paper integrates the high-level 

semantic hierarchical features of the rock layer into the low-

level feature map, using the fused feature map for lightweight 

rock layer recognition. High-level semantic features typically 

contain global and contextual information about the image, 

while low-level feature maps focus more on the details of the 

image. Integrating the two ensures that the model can not only 

capture the overall structure of the rock layer during real-time 

recognition but also accurately recognize specific rock layer 

details. Furthermore, this paper introduces the SSD (Single 

Shot multi-box Detector) classification regression network 

and proposes an anchor-based sample supervision rule in 

response to the problem of the sample supervision method in 

the network model suppressing real object features. SSD is an 

efficient network structure that performs excellently in object 

detection tasks. Introducing SSD helps the model to more 

accurately locate and recognize various parts of the rock layer, 

thereby enhancing the accuracy of real-time recognition. 

Figure 4 shows the improved SSD classification regression 

network structure. 

The adopted SSD classification regression network employs 

a 3×3 convolution kernel for convolution operations, ensuring 

that the size of the feature map remains unchanged, while 

extracting deep features of the input image. Such deep feature 

extraction is crucial for rock layer recognition, as the 

complexity and diversity of rock layers require the model to 

have robust feature extraction capabilities. The feature map 

after deep feature extraction is connected to two 1x1 

convolutional layers, namely the classification layer and the 

position regression layer. The classification layer is primarily 

responsible for predicting whether each anchor box contains a 

rock layer and its type. The position regression layer mainly 

predicts the specific position of the rock layer in the image, 

such as the coordinates of the bounding box. Each unit on the 

feature map corresponds to an anchor point on the original 

image, and these anchor points are mapped based on the height 

and width of the feature map. Each anchor point will have 

multiple anchor boxes, with the centers of these boxes being 

the corresponding anchor points. Anchor boxes are 

responsible for predicting rock layers of different shapes and 

sizes, ensuring that the model can recognize rock layers of 

various sizes and forms. Let the feature map of the u-th layer 

produced when mapping the feature map unit to the pixel of 

the original image anchor point be represented by Ou ∈EG×Q×V. 

The total span from the input original image to this layer is 

represented by a. Mapping each unit (z, t) of Ou back to the 

pixel of the input original image anchor point can be obtained 

through the following formula: 
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(5) 

 

The anchor-based sample supervision rule proposed in this 

paper focuses on whether the anchor points fall within the real 
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object box. This allows the model to more accurately 

determine whether a given area truly contains the target (rock 

layers in the context of this paper). This helps to reduce false 

positives (incorrectly identifying non-target areas as the target) 

and false negatives (failing to identify genuine target areas). 

By judging the relative position of the anchor points to the real 

object box, the model's spatial localization ability is enhanced. 

This is especially important in rock layer image recognition, 

as the structure and hierarchical information of the rock layers 

play a crucial role in the accuracy of the recognition results. 

Figure 5 shows a schematic diagram of the anchor-based 

sample supervision rule. 

 

 
 

Figure 5. Schematic diagram of the anchor-based sample 

supervision rule 

 

The feature fusion network outputs multi-level feature maps, 

each of which is followed by the SSD classification and 

regression network. Given that each unit of the feature map 

corresponds to multiple anchor boxes, a large number of 

candidate regions will be produced during the model 

prediction phase. This setup can increase the diversity of 

detection, improving the detection accuracy of objects of 

different sizes, shapes, and positions. However, this can also 

lead to a lot of overlapping and redundant detection boxes, 

which might detect the same object multiple times. Hence, this 

paper introduces non-maximum suppression (NMS) to help 

select the detection box with the highest confidence while 

suppressing other highly overlapping boxes, enhancing 

detection accuracy and reducing false positives. 

Here are the specific steps for NMS: 

(1) Sort all candidate regions in descending order based on 

class confidence scores. This means the highest-scoring 

candidate region is considered first. 

(2) From the sorted list, select the candidate region with the 

highest confidence score and mark it as "retained". For the 

marked candidate region, calculate its overlap with all other 

unmarked candidate regions in the list. This is typically done 

by calculating the Intersection over Union (IoU) between the 

two regions. Assuming the candidate region's area is 

represented by Ao and the real object box's area by Ay, then the 

formula for calculating the overlap is: 
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(3) If an unmarked candidate region overlaps with the 

currently marked region beyond a predetermined threshold, 

discard the unmarked region since it likely represents the same 

object as the marked region. Return to step 2, select the 

highest-scoring unmarked candidate region from the list and 

mark it. 

(4) Repeat the above step, calculating the overlap of this 

region with all other unmarked regions, and discard those that 

exceed the threshold. When all candidate regions have been 

marked, the algorithm stops. In the end, only the candidate 

regions marked as "retained" will be considered as the 

detection result. 

When using a target detection framework like SSD, anchor 

boxes are typically used as references to predict object 

positions. These anchor boxes provide an initial, fixed 

bounding box for object detection, uniformly distributed 

across the input image at different scales and aspect ratios. 

However, the actual position of the object might slightly 

deviate from the anchor box. Therefore, these anchor boxes 

need some fine-tuning to more accurately cover the target 

object. Assuming the predicted anchor box position correction 

parameter is represented by y*, and the anchor box's positional 

correction parameter relative to the real object box is also 

represented by y, the box's center coordinates and its width and 

height are represented by z, t, q, and g respectively. The 

candidate region is denoted by variables zo, z, and z*. The 

formulas for calculating y and y* are: 
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By fine-tuning the anchor boxes, the model can more 

accurately capture the position and shape of the target object, 

thereby enhancing the model's detection precision. Output 

offset and scale parameters are easier to learn compared with 

the object's absolute coordinates, and this is because the model 

only needs to focus on how to fine-tune a given anchor box, 

rather than predicting an entirely new bounding box from 

scratch. Training the position regression layer is essentially the 

process of making y approach y *. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

This paper introduces a stratum image feature extraction 

network based on the pyramid model. The network effectively 

integrates high-level semantic features with low-level feature 

maps, realizing comprehensive feature capture for pyramid-

structured stratum images. As seen from Figure 6, after an 

initial decline over some time, the training loss (trainLoss) 

tends to stabilize, indicating that the model has achieved some 

convergence on the training set. The validation loss (valLoss) 

also stabilizes after its initial drop and remains within a range 

similar to the training loss. This suggests that the model doesn't 

exhibit significant overfitting, meaning the degree to which the 
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model fits the training data is consistent with its performance 

on validation data. In the initial few epochs, both the training 

and validation losses drop rapidly, implying that the model has 

learned many vital features about the data at the beginning 

stages. Subsequently, the rate of decline in the loss slows down 

but continues to decrease, indicating that the model is still 

learning, albeit at a reduced pace. In the subsequent epochs, 

especially after 30 epochs, both training and validation losses 

become relatively stable, suggesting that the model might have 

approached its optimal performance. 

In conclusion, the stratum image feature extraction network 

based on the pyramid model exhibits good convergence and 

stability without apparent overfitting. This possibly indicates 

that the proposed network structure and method are effective 

in the task of stratum image feature extraction. 

 

 
 

Figure 6. Loss curves of the stratum image feature extraction 

network 

 

Table 1. Comparison of the proposed model and other models 

 
Method Base Network Loss Function Rank-1 mAP 

Triplet Network CNN Triplet loss 75.6% - 

Siamese Networks DenseNet121 Comparison loss 82.1% 62.3% 

Autoencoders DenseNet121 Reconstruction loss 88.31% 71.25% 

Region-based CNN GoogleNet Classification loss 86.36% 72.13% 

Attention Mechanism GoogleNet Classification loss 88.9% 72.56% 

Transfer Learning ResNet50 Classification loss 92.4% 78.56% 

GAN ResNet50 Classification loss 91.23% 76.23% 

Feature Pyramid Networks ResNet50 Classification loss 93.21% 76.42% 

The proposed model ResNet50 Classification loss 92.35% 78.94% 

From Table 1, it is evident that the method using ResNet50 

as the base network achieved favorable results on both the 

Rank-1 and mAP (Mean Average Precision) evaluation metrics, 

with the Rank-1 accuracy of the three methods exceeding 90%. 

DenseNet121 and GoogleNet, when used as base networks, 

also performed well, but overall were not as effective as the 

methods using ResNet50. Except for the Triplet Network and 

Siamese Networks, all other methods adopted classification 

loss. These two unique loss methods performed slightly lower 

on the Rank-1 metric compared to other methods, especially 

the Triplet Network. Autoencoders, using reconstruction loss, 

achieved 71.25% on the mAP metric, demonstrating their 

advantage in feature extraction. Feature Pyramid Networks 

achieved the best results on the Rank-1 metric, reaching 

93.21%. However, on the mAP, its performance was slightly 

below that of the model in this paper. The model in this paper 

achieved the best results on the mAP metric, reaching 78.94%, 

and also performed very well on Rank-1, reaching 92.35%. On 

the Rank-1 metric, Feature Pyramid Networks, Transfer 

Learning, GAN, and the model from this paper all achieved 

accuracy rates over 90%. On the mAP metric, both Transfer 

Learning and the proposed model achieved results over 78%, 

indicating strong robustness. 

In conclusion, the method using ResNet50 as the base 

network excelled in extracting features from stratum images, 

especially those adopting classification loss. The model in this 

paper is comparable in overall performance to other top-tier 

methods, especially achieving the best results on the mAP 

metric, demonstrating the model's robustness and 

generalization capability. 

Figure 7 presents the CMC (Cumulative Match 

Characteristic) curves for four base network models (CNN, 

GoogleNet, DenseNet121, and the proposed model). As 

evident from the chart, the CNN model has the lowest 

recognition rate at Rank-1. However, as the Rank increases, its 

recognition rate gradually rises and stabilizes, eventually 

nearing the rates of other models. At initial Rank values, 

GoogleNet outperforms CNN but is slightly inferior to 

DenseNet121 and the proposed model. In subsequent Rank, 

GoogleNet's growth trend is similar to that of CNN, ultimately 

reaching a comparable steady state. The performance of 

DenseNet121 is relatively good across the entire Rank 

spectrum, especially in the initial Rank. It consistently 

maintains the second position, indicating its efficacy in 

extracting features from stratum images. Across all values of 

Rank, the proposed model consistently exhibits the best 

performance. From the figure, it is evident that its recognition 

rate is always higher than the other three models, particularly 

in the Rank-1 to Rank-10 range, where its advantage is even 

more pronounced. 

 

 
 

Figure 7. Comparison of CMC curves of four base network 

models 

 

In conclusion, the CMC curve of the proposed model is 

superior, especially at the initial Rank values, highlighting its 
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notable performance and robustness in feature extraction from 

stratum images. Among the four models, DenseNet121 ranks 

second, also showcasing relatively stable and superior 

performance. GoogleNet and CNN have comparable 

recognition rates overall but are both outperformed by 

DenseNet121 and the proposed model. For tasks related to 

feature extraction from stratum images, the proposed model 

offers a more optimal choice, especially in scenarios 

demanding high accuracy. 

 

Table 2. Experimental results of lightweight rock layer recognition model 

 

Model Feature Fusion Network Sample Supervision Method mAP 

Before SSD improvement 

/ 
/ 22.6% 

Anchor 24.5% 

With NMS introduced  
/ 28.9% 

Anchor 31.4% 

After SSD improvement 

/ 
/ 21.5% 

Anchor 22.3% 

With NMS introduced  
/ 26.7% 

Anchor 28.8% 

Further, a real-time lightweight stratum recognition model 

was developed with the classification-regression network 

structure introduced, and a sample supervision rule was 

proposed based on anchor points, allowing the model to still 

achieve high-precision recognition in case of imbalanced 

sample distribution. Table 2 lists the mAP results of two 

models (before and after SSD improvement) under different 

feature fusion networks and sample supervision methods. 

From the table, it's evident that regardless of whether it's 

before or after the SSD improvement, using NMS always 

enhances the mAP. This indicates that NMS effectively filters 

out redundant detection frames, improving model accuracy. 

For both pre-improvement and post-improvement SSD models, 

using anchor-based sample supervision boosts the mAP, 

aligning with the paper's statements. By using anchor-point-

based sample supervision, the model maintains high 

recognition accuracy even with imbalanced sample 

distribution. Compared to the model before SSD improvement, 

the post-improvement SSD model has a slightly reduced mAP 

under the same conditions. This may suggest that some newly 

introduced structures or methods during the improvement 

might not have achieved the desired effect. However, it's also 

possible that in the pursuit of lightweight and real-time 

features, some recognition accuracy was sacrificed. 

In conclusion, introducing NMS positively impacts the 

model's mAP. The anchor-based sample supervision method 

effectively enhances the accuracy of stratum recognition, 

especially in case of imbalanced samples. While the SSD 

model's enhancements might prioritize lightweight and real-

time capabilities, there might be a trade-off in terms of 

accuracy. However, the specific decisions would depend on 

the actual application scenarios and requirements. 

Table 3 demonstrates the performance of the pre-

improvement and post-improvement real-time stratum 

recognition models in terms of CPU usage, startup time, and 

recognition time. As per the table, the CPU usage of the post-

improvement model is slightly higher than the pre-

improvement model, increasing from 5.74% to 6%. This 

suggests that the improved model might have incorporated 

more complex structures or algorithms, leading to an increase 

in CPU usage. The startup time for the post-improvement 

model is marginally shorter, decreasing from 2.16s to 2.14s. 

Though the difference is minimal, it indicates enhanced startup 

speed in the improved model. The recognition time of the post-

improvement model reduced from 51ms to 41ms, implying 

that the improved model might require less computational time 

during the recognition process. 

Table 3. Test results of real-time stratum recognition 

performance 

 

Model 
CPU 

Usage 

Startup 

Time/s 

Recognition 

Time/ms 

Before 

improvement 
5.74% 2.16 51 

After 

improvement 
6% 2.14 41 

 

In conclusion, the improved real-time stratum recognition 

model has slightly higher CPU usage than its predecessor, 

likely due to the introduction of more intricate structures or 

algorithms. In terms of startup speed, the improved model 

exhibits a slight edge. However, the improved model excels in 

recognition speed, completing the recognition task in a shorter 

span. 

 

 

5. CONCLUSION 

 

This paper presents a pyramid-based stratum image feature 

extraction network that successfully amalgamates high-level 

semantic features with low-level feature maps, ensuring 

comprehensive feature capture of pyramid-structured stratum 

images. Moreover, a lightweight stratum recognition model 

oriented for real-time recognition was devised. By integrating 

a classification-regression network structure and an anchor-

based sample supervision rule, the model maintains high 

precision in recognition even with imbalanced sample 

distribution. 

The loss curves indicate a declining trend for both training 

and validation losses as training epochs progress, signifying 

the model's learning and gradual optimization. The 

performance of this paper's model, in terms of Rank-t and mAP 

metrics, is on par with models based on different base 

networks, underscoring its efficacy. Through the introduction 

of anchor points and the NMS strategy, there's a marked 

enhancement in the model's mAP. While the lightweight 

improved model sees a minor increase in CPU usage and a 

slight reduction in startup time, recognition time is notably 

shortened. 

Successfully, this paper has put forth and validated a 

pyramid-model-based stratum image feature extraction 

network capable of deeply capturing the features of stratum 

images. Additionally, to cater to real-time recognition 

requirements, a lightweight stratum recognition model was 
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developed. By incorporating a classification-regression 

network structure and an anchor-based sample supervision 

rule, the model delivers outstanding performance even with 

imbalanced sample distribution. This research not only paves 

the way for novel methods and perspectives for real-time 

stratum image recognition but also holds significant 

application value and a vast research horizon. 
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