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Precise liver segmentation in Computed Tomography (CT) scans plays a pivotal role in 

numerous biomedical applications, spanning surgical planning, postoperative assessment, 

and pathological detection of hepatic diseases. The task, however, is fraught with challenges 

due to the inherent complexities of liver morphology, including indistinct boundaries, 

irregular shapes, and complex architecture. Consequences of under-segmentation and over-

segmentation of the liver in CT images can lead to inaccurate localizations and diagnoses of 

liver diseases, underscoring the necessity for accurate segmentation. This study introduces 

an Encoder-Decoder Convolutional Neural Network, termed ESP-UNet, which is designed 

to reduce under-segmentation and over-segmentation, thereby enhancing the accuracy of 

liver segmentation. The proposed ESP-UNet employs Kirsch's filter to bolster the texture 

and edge information of liver images, thus aiding in improved segmentation performance. 

The efficacy of the ESP-UNet segmentation technique was evaluated using the LiTS dataset, 

with performance metrics including accuracy, Dice Score Coefficient (DSC), Volume 

Overlapping Error (VOE), and Relative Volume Difference (RVD). The algorithm yielded 

impressive results, with a Dice Score of 0.959, a VOE of 0.089, a Jaccard Index (JI) of 0.921, 

and an RVD of 0.09. Despite requiring a larger number of trainable parameters and an 

increased network complexity due to the parallel UNet, the proposed ESP-UNet not only 

enhances liver segmentation but also has the potential to improve the detection of liver 

cancer at the image borders. A comparison with existing state-of-the-art liver segmentation 

techniques revealed that ESP-UNet offers superior performance, validating its potential as 

a useful tool in the diagnosis and treatment of liver diseases. 
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1. INTRODUCTION

Cancer is the second most common cause of death 

worldwide, according to the WHO. The World Health 

Organization (WHO) reports that 8.8 million people died from 

it in 2015, with liver cancer accounting for 788,000 of those 

deaths [1]. The liver is the body's biggest gland. The liver 

digests, detoxifies, and metabolisms. Liver cancers are 

classified as primary or secondary. Primary liver cancer begins 

in liver tissue. Primary liver cancer includes hemangioma and 

hepatocellular carcinoma (HCC). HCC is the most prevalent 

liver cancer caused by liver tissue malignant cell development. 

Blood vessels form a hepatic hemangioma [2]. Secondary 

metastatic liver cancer occurs when cancer spreads from 

another bodily organ [3]. The liver's texture and shape alter due 

to an abnormality. Liver, vascular, and tumor excision and 

segmentation are needed for illness diagnosis. Due to liver 

homogeneity, poor contrast, form, and adjoining abdominal 

organs, proper liver segmentation is difficult. Medical imaging 

methods including CT, MRI, and US may identify liver 

disorders [4]. The last decade saw the adoption of statistical, 

threshold-based, fuzzy logic-based, clustering, artificial neural 

network (ANN) models, and machine learning-based (ML) 

ALS schemes [5]. Hand-crafted features have lesser 

interconnectivity, feature distinctiveness, and correlation to 

original image features. The conventional ML classifier’s 

effectiveness is highly reliant on these features which quality 

and distinctiveness can be easily degraded by noise, blur, 

illumination variance, etc.  

This paper presents liver segmentation using edge-

strengthening parallel UNet to improve the segmentation 

performance of the boundary area of the liver. The chief 

contributions of this article are summarized as follows: 

• Encoder-Decoder Convolutional Neural Network

(ESP-UNet) with edge-enhanced features for liver

segmentation to tackle the problem of under-

segmentation and over-segmentation.

• Performance estimation of ESP-UNet on LiTS dataset

based on accuracy, dice score coefficient (DSC),

Volume Overlapping Error (VOE), Jaccard Index (JI),

and Relative Volume Difference (RVD).

In recent years, deep learning (DL) becomes extremely 

popular for medical image segmentation because of its ability 

to deal with complex segmentation problems, accurate 

segmentation, ability to work for the datasets, etc. Vadali et al. 

[6] suggested a model for analyzing liver cancer using a support

vector machine (SVM) algorithm in MATLAB. The proposed
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model works in four stages, image resizing, segmentation using 

stage level set scheme to remove an unwanted area, post-pra 

processing, and classification stage. In the last stage, the VM is 

used for the classification of images into benign and malignant. 

The proposed model achieved a Precision rate of 86.7%. 

Mouhni et al. [7] highlight the recent surge in using Deep 

Neural Network algorithms, particularly CNNs, for medical 

imaging. They point out the challenge of acquiring large 

datasets, especially for rare diseases. To address this, they 

introduced Federated Learning (FL) as a potential solution, 

allowing multicenter dataset training without breaching data 

privacy. The study offers a comprehensive review of FL in 

medical image analysis and its associated strategies. Later, 

Dutta and Dubey [8] proposed a model based on MRI images. 

The watershed technique was utilized to separate cancer cells 

from an MRI scan image, and Otsu's method was used to 

improve the image. The wavelet transform method is used to 

extract features. The wavelet transform has a multi-resolution 

analytic that can analyze pictures with varied resolution units. 

In 2020, Dong et al. [9] proposed a model using Hybridized 

Fully Convolutional Neural Network (HFCNN) for liver 

segmentation and tumor detection. The model involves training 

various layers of HFCNN. The system uses a 2D CT image as 

input. The proposed framework has shown a high accuracy of 

97.22% for liver volume measurements and a 0.92 average dice 

coefficient. Abdulgani and Al Ahmad [10] anticipated an 

unsupervised method for cancer detection. Here classification 

using optical measurement is utilized that interact differently 

with light as various cells has distinct composition. In the 

proposed work optical measurement is combined with complex 

schemes for the classification of cancer cells. In this approach, 

six different kinds of cells including cancer cells were assessed 

based on transmission characteristics. The optical response of 

individual cells was modeled with some parameters such as 

damping factor, frequency, amplitude, etc. The parameters are 

extracted using Prony method. Further, Xi et al. [11] proposed 

deep patch CNN for segmentation and detecting High-

resolution cancer. High-resolution medical images cannot be 

directly given as input to neural networks, because the large 

size of these images will require very high computing ability 

and large training time. Therefore, medical images are first 

compressed and then given as input to the neural networks. 

Compressing medical images causes the loss of some critical 

information that may be essential for detecting any anomalies 

in medical images. The author offers a novel method for 

building abnormality detectors to address this issue, which 

involves integrating pre-trained deep CNNs with class 

activation mappings and area proposal networks after 

optimizing them on image patches focused on clinical 

abnormalities. On a mammography dataset, the deep patch 

classifier produced an average classification accuracy of 

92.53% as opposed to 81.55% for a conventional method based 

on manually created features. On an ultrasound liver imaging 

data set, the integrated detector was evaluated for anomaly 

detection and received a mean precision of 0.60. Later, Xi et al. 

[12] proposed a novel microcantilever biosensor for detecting 

liver cancer. Cantilever sensors, out of all the biomarker 

sensors, are the most appealing choice for real-world 

applications because of their low cost, high sensitivity, quick 

response, and mobility. Static and dynamic modes are available 

for cantilever-based sensors. The mass loading causes a shift in 

resonance frequency, which the lever senses. Cantilever is 

capable of measuring sensitivity in the fem to gram to atto gram 

range. Subsequently, Sekaran et al. [13] proposed a framework 

that uses a DL strategy named CNN, embedded with Gaussian 

Mixtmaximizationd and Expectation maximization (EM) 

algorithm to predict pancreatic cancer from liver CT images. 

This model was able to predict the cancer spread in the 

pancreas. The experiment was carried out using a cancer 

imaging archive (TCIA) which consists of approximately 

19000 images. The project was named Fishman Afterward with 

high accuracy. Afterward, Khan and Loganathan [14] proposed 

a system (AutoLiv) for the automatic segmentation of liver 

tumors. The authors utilized CT images as the input to the 

system and then applied a threshold-based slope differentiation 

technique [SDD] for segmentation. Upon the segmented image, 

alternative fuzzy c-means clustering [AFCM] is applied to 

detect the tumor. The proposed system is implemented using 

MATLAB and then compared with the existing benchmarks. 

Fan et al. [15] investigated multi-scale context nested UNet 

(MSN-Net) for ALS which helped to decrease the semantic gap 

and gradient vanishing problem. It decomposes the low and 

high levels to enhance the distinctiveness of the network. Bai 

et al. [16] anticipated multi-scale candidate generation (MCG), 

active contour model (ACM) and 3D fractal residual network 

(3D FRN) for ALS to tackle the problem of location, size and 

shape variation of liver tumor. It outperformed the traditional 

ALS approaches but was restricted due to poor performance for 

borderline tumor detection and multiple tumor detection. Li et 

al. [17] explored hybrid densely linked UNet (H-DenseUNet) 

for ALS that resulted in a DSC of 0.93. The H-DenseUNet 

structure is more complex and needs higher trainable 

parameters because of the use of parallel training.  

From the review of various recent liver segmentation 

techniques, it is observed that deep learning-based approaches 

outperform conventional region-based and intensity-based 

methods. However, the results of these methods are greatly 

dependent on structure, contrast, noise, borders, shape, and 

imaging technique of liver images as very few samples are 

generally available for training. The inaccurate border 

segmentation of the liver leads to an inappropriate diagnosis of 

liver disease and imprecise localization of the liver. The 

conventional deep learning techniques provide inferior results 

for the less dataset. Very less concentration is given to the 

border segmentation of the liver which plays an important role 

in the location of the liver in abdominal CT images. Thus, there 

is a need to provide effective liver segmentation which can deal 

with non-uniform illumination conditions, piercing borders, 

under-segmentation, and over-segmentation. 

The rest of the article is arranged as follows: Section 2 

provides a brief discussion of the proposed methodology of 

liver segmentation. Further, Section 3 elaborates on the 

experimental results and discussions. Lastly, Section 4 

provides a succinct conclusion and offers direction for future 

enhancement. 

 

 

2. PROPOSED METHODOLOGY 

 
The intricate structure, poor contrast, blurred edges and 

noise in abdomenal CT images leads to improper segmentation 

of Liver. The proposed method provides the ESP-Unet for 

minimizing the under-segmentation and over-segmentation to 

improve borderline liver segmentation. Therefor it is necessary 

to focus on border segmentation of liver to limit under 

segmentation and over segmentation thus It uses Kirsch’s filter 

for edge strengthening and border line segmentation of liver 

along with Unet. The Unet is capable of handling larger 
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resolution images and best suited for multilabelled object 

segmentation. 

Figure 1 illustrates the process of proposed ESP-UNet liver 

segmentation. The proposed ESP-UNet consists of two UNet 

in parallel arms. The first UNet-1 considers the abdominal CT 

image as input and segments the liver objects from the image. 

The second UNet-2 accepts Kirsch’s filtered gradient image as 

input and provides the border segmentation of the liver from 

the abdominal CT image. The first Unet provides overall 

segmentation of the liver object whereas the second UNet with 

Kirsch’s filter provides the border segmentation of the liver. 

Further, the output of both UNets that provides liver 

segmentation and liver border segmentation respectively are 

superimposed together using the x-or operation to minimize the 

effect of the under-segmentation and over-segmentation. The 

final segmentation results consist of the liver area that lies 

within the boundary of the liver obtained using UNet-2. The 

proposed ESP-UNet aims to provide precise liver segmentation 

that limits under-segmentation and over-segmentation because 

of poor border segmentation of the liver in CT images. 

 

 
 

Figure 1. Overall flow diagram of the proposed system 

 

A. Kirsch’s Filter  

Kirsch’s filter is non-linear edge detection which provides 

the edge concentration in eight directions. It computes the 

gradients in 8 compass directions as North (N), West (W), East 

(E), South (S), South-West (SW), North-West (NW), South-

East (SE), and North-East (NE) as illustrated in Figure 2 [18]. 

These Kirsch’s kernels convolved with the liver image using 

Eq. (1). 

 

Km(n, k) =  ∑ ∑ im(n + i, k + j). Fm(i, j)

1

j=−1

1

i=−1

 (1) 

 

where, Km(n,k) represents Kirsch’s gradient image, Fm is 

Kirsch’s filter kernel, im(n+i,k+j) denotes a Grayscale image. 

Here, n and k stand for total rows and columns. Eq. (2) is 

utilized to estimate the resultant gradient strength in eight 

directions.  

 

Kmax(n, k) =
max (K1(n, k), K2(n, k), K3(n, k), … , K8(n, k)) 

(2) 

 

Kirsch’s edge detector retains the edge details and provides 

better edge accuracy, edge thickness, and less sensitivity to 

internal and external noise. The edge descriptors for the 

original liver image using Kirsch’s filter are given in Figure 3. 

 

 
 

Figure 2. Kirsch’s filter kernels in eight directions a) West b) 

North c) North-West d) North-East e) South f) East g) South-

East h) South-West 

 

 
 

Figure 3. Visualizations of Kirsch’s Filter a) Original Liver 

Image b) Kirsch’s filter gradient (8 directions) c) Overall 

Kirsch’s gradient 
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Figure 4. Flow diagram of proposed liver segmentation using UNet [19] 

 

Table 1. Configuration parameters of UNet 

 
Layer Activation Filter Size Number of Filters Stride Padding 

Input Image 256×256×1 -  - - 

Conv+ReLU 256×256×64 3×3 64 [1, 1] [1,1] 

Conv+ReLU 256×256×64 3×3 64 [1, 1] [1,1] 

MaxPool 128×128×64 2×2 - [2, 2] [0,0] 

Conv+ReLU 128×128×128 3×3 128 [1, 1] [1,1] 

Conv+ReLU 128×128×128 3×3 128 [1, 1] [1,1] 

MaxPool 64×64×128 2×2 - [2, 2] [0,0] 

Conv+ReLU 64×64×256 3×3 256 [1, 1] [1,1] 

Conv+ReLU 64×64×256 3×3 256 [1, 1] [1,1] 

MaxPool 32×32×256 2×2 - [2, 2] [0,0] 

Conv+ReLU 32×32×512 3×3 512 [1, 1] [1,1] 

Conv+ReLU 32×32×512 3×3 512 [1, 1] [1,1] 

Dropout 32×32×512 - - - - 

MaxPool 16×16×512 2×2 - [2, 2] [0,0] 

Conv+ReLU 16×16×1024 3×3 1024 [1, 1] [1,1] 

Conv+ReLU 16×16×1024 3×3 1024 [1, 1] [1,1] 

Dropout 16×16×1024 - - - - 

Transposed Conv+ReLU 32×32×512 2×2 512   

Depth Concatenation 32×32×1024 - - - - 

Conv+ReLU 32×32×512 3×3 512 [1, 1] [1,1] 

Conv+ReLU 32×32×512 3×3 512 [1, 1] [1,1] 

Transposed Conv+ReLU 64×64×256 2×2 256 [1, 1] [1,1] 

Depth Concatenation 64×64×512 - - - - 

Conv+ReLU 64×64×256 3×3 256 [1, 1] [1,1] 

Conv+ReLU 64×64×256 3×3 256 [1, 1] [1,1] 

Transposed Conv+ReLU 128×128×128 2×2 256 [1, 1] [1,1] 

Depth Concatenation 128×128×256 - - - - 

Conv+ReLU 128×128×128 3×3 256 [1, 1] [1,1] 

Conv+ReLU 128×128×128 3×3 256 [1, 1] [1,1] 

Transposed Conv+ReLU 256×256× 64 2×2 256 [1, 1] [1,1] 

Depth Concatenation 256×256× 128 - - - - 

Conv+ReLU 256×256× 64 3×3 256 [1, 1] [1,1] 

Conv+ReLU 256×256× 64 3×3 256 [1, 1] [1,1] 

Conv 256×256× 2 3×3 256 [1, 1] [0,0] 

Softmax 256×256× 2 - - - - 
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B. UNet Segmentation  

The structure of UNet is similar to the English alphabet ‘U’. 

It consists of three essential parts such as the contraction, the 

bottleneck, and the expansion parts given in Figure 4 [18]. The 

contraction part consists of the repetitive use of two 

convolution layers with a 3×3 filter size. At every layer, the 

kernel size is doubled to improve the local and global feature 

representation capability of the complex abdominal CT images. 

Rectified Linear Unit (ReLU) layer to improve the non-linear 

properties of the convolution feature map following each 

convolution layer. The pair of convolution layers is followed 

by a maximum pooling layer with a stride of 2×2 pixels to 

select the imperative features and to tackle the problem of over-

fitting. The bottleneck layer encompasses two convolution 

layers with a 3×3 filter size that combines the contraction and 

expansion section of the network. Each block of the expansion 

layer is a crucial part of the UNet which consists of pair of 

convolution layers with a 3×3 filter size followed by a 2×2 up-

sampling layer. After every expansion block, the convolutions 

layers get halved to maintain the symmetry of the network. In 

UNet, the number of blocks in contraction is equal to the 

number of expansion blocks. The copy and crop block helps to 

retain the original dimensions of the image when the depth of 

the network increased. The copy operation is used to copy the 

image whose depth not increase and the crop operation is used 

to crop the image whose depth is already increased [19-22]. 

The UNet frameworks used in ESP-Net consists of four pair 

of convolution layers in the contraction layer with an increasing 

number of filters that improves feature representation of the 

liver image and helps to acquire the detailed representation of 

the local and global features of liver CT image. The contraction 

blocks consist of 64, 128, 256, and 512 convolutional filters in 

four layers respectively along with stride and padding of one 

pixel. The bottleneck layer includes 1024 convolutional filters. 

The expansion block consists of 512, 256, 128, and 64 

convolution filters in each layer along with an up-sampling 

block. The different parameter configuration of UNet is 

provided in Table 1. 

The Stochastic gradient descent with momentum (SGDM) 

optimization is employed for the learning of UNet architecture 

along with the leaning rate of 0.05. The hyper-parameters 

considered for the learning of UNet are described in Table 2.  

 

Table 2. Hyper-parameters of UNet learning 
 

Parameter Specification 

Learning 

Algorithm 

Stochastic gradient descent with momentum 

(SGDM) optimization 

Initial Learning 

Rate 
0.05 

Maximum 

Epochs 
150 

Mini-batch Size 16 

Regularization L2 Regularization 

Gradient 

Threshold 
0.05 

Momentum 0.9 

 

 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

The suggested ESP-UNet is simulated using Python 3.8 and 

the OpenCV toolbox on a Nvidia GPU having 512 Tensor-core, 

16 GB RAM, and 32 GB graphics, and a Windows operating 

system. The proposed method is validated using the LiTS 

dataset [23], which includes 131 CT volumes with varied tissue 

abnormalities, contrast liver size and tumor levels. The 

performance of the proposed algorithm is evaluated using a 

binary mask of segmented liver (LS) image and ground truth 

(GT) images based on accuracy, DSC, VOE, JI and RVD. The 

DSC provides information regarding complete ALS from 

abdominal images that range between 0 (no overlap) and 1 

(complete overlap). Eq. (3) is used to compute the DSC. 

 

𝐷𝑆𝐶(𝐿𝑆, 𝐺𝑇) =
2 ×  (𝐿𝑆 ∩ 𝐺𝑇)

|𝐿𝑆| + |𝐺𝑇|
 (3) 

 

The RVD signifies the changes that occurred between the 

segmented liver image and GT that lies between 0 (Good 

segmentation) and 1 (worst segmentation). The RVD is 

computed using Eq. (4). 

 

𝑅𝑉𝐷(𝐿𝑆, 𝐺𝑇) =
|𝐺𝑇| − |𝐿𝑆|

|𝐿𝑆|
 

(4) 

 

The VOE represents an overlapping error between the 

segmented liver image and GT that lies between 0 to 1. Zero 

value represents better segmentation. The VOE is computed 

using Eq. (5).  

 

𝑉𝑂𝐸(𝐿𝑆, 𝐺𝑇) = 1 −
2 ×  (𝐿𝑆 ∩ 𝐺𝑇)

|𝐿𝑆| + |𝐺𝑇|
 (5) 

 

The JI measures the similarity between ground truth and 

segmented image. The JI is computed using Eq. (6). 

 

𝐽𝐼(𝐿𝑆, 𝐺𝑇) =
𝐷𝑆

2 − 𝐷𝑆
 (6) 

 

The visualization of the results of the proposed ESP-UNet 

is illustrated in Figure 5. The original liver image is used for 

liver object segmentation and Kirsch’s gradient image 

obtained using eight directional filters is used for the 

borderline liver segmentation. 

 

 
 

Figure 5. Visualization of results of proposed ESP-UNet 

segmentation a) Liver CT image b) Liver segmentation using 

UNet-1 c) GT for Liver d) Kirsch’s filter output e) Final 

segmented liver image 
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The segmentation outcomes of the ESP-Net for sample 

images from the LiTS dataset are illustrated in Figure 6. It is 

noted that the proposed ESP-UNet provides superior 

performance compared with MSN-Net [15] and provides 

sharper border segmentation compared with the previous 

approach. 

 

 
 

Figure 6. Segmentation results of ESP-Net 

 

The performance of the ESP-UNet technique is compared 

with the earlier traditional state of arts for ALS such as ACM-

ResNet [16], H-DenseNet [17], and MSN-Net [15] as 

described in Table 3.  

 

Table 3. Performance comparison of proposed ESP-UNet 

with previous techniques 

 
Author 

and Year 
Method DSC VOE JI RVD 

Trainable 

Parameters 

Bai et al. 

(2019) [16] 

ACM-

ResNet 
0.67 0.324 0.50 0.194 _ 

Li et al. 

(2018) [17] 

H-

DenseUNet 
0.937 0.116 0.88 

-

0.010 
_ 

Fan et al. 

(2020) [15] 
MSN-Net 0.9424 0.04 0.89 - 9.12M 

Proposed 

Method 
ESP-UNet 0.959 0.039 0.921 0.09 ~30M 

 

The proposed ESP-UNet provides 1.76%, 2.34% and 

43.13% improvement in DSC compared with recent MSN-

Net, H-DenseUNet, and ACM-ResNet respectively based on 

liver segmentation on the LiTS dataset. The ESP-UNet 

provides 95.99% overlapping of the segmented liver and GT 

image. The suggested ESP-UNet improves the borderline 

segmentation of the liver that avoids the under-segmentation 

and over-segmentation of the liver. This results in the 

proposed edge strengthening based on Kirsch’s operator and 

UNet gives significant improvement in VOE (2.5%- 87.96%) 

over the traditional techniques. Therefore, the ESP-UNet 

provides a VOE of 0.039 which has shown noteworthy 

improvement over MSN-Net (0.04), H-DenseUNet (0.116), 

and ACM-ResNet (0.324) for the LiTS dataset. The ESP-

UNet-based encoder-decoder network supports diminishing 

under and over-segmentation by limiting the segmentation 

with the help of border segmentation of liver objects using 

Kirsch’s filter and UNet. When the results of ESP-UNet are 

compared based on JI it provides an improvement of 3.48%, 

4.65%, and 84.2% over MSN-Net, H-DEnseUNet, ACM-

ResNet respectively. The ESP-UNet provides the RVD of 0.09 

which shows better segmentation compared with as H-

DenseUNet (-0.01) and ACM-ResNet (0.194). Thus, it 

observed that the proposed ESP-UNet segmentation scheme is 

capable of providing better segmentation in complex CT 

images that considers the border of the liver object to limit the 

under and over-segmentation problem in the traditional liver 

segmentation techniques. The proposed scheme needs a 

training time of 128min and a segmentation time of 1.8 min. 

However, the parallel structure of ESP-UNet increases the 

complexity and total trainable parameters (~30M) of the 

proposed framework. The larger trainable parameters decrease 

the implementation flexibility of the proposed architecture on 

standalone medical diagnosis devices with limited resources. 

The effectiveness of the ESP-UNet is estimated for the LiTS 

dataset having limited samples. However, the performance of 

the proposed ESP-UNet can be varied for the larger dataset.  

 

 

4. CONCLUSIONS 

 

In summary, this article presents Encoder-Decoder 

Convolutional Neural Network with Edge-Enhanced Features 

for Liver Segmentation (ESP-UNet). The novel ESP-UNet 

combines liver segmentation along with liver boundary 

segmentation to minimize the under-segmentation and over-

segmentation of the liver which improves borderline area 

segmentation. It focused on the edge strengthening of the liver 

image using Kirsch’s filter and UNet-2 to segment the border 

of the liver image. The segmented border is further used for 

limiting the under-segmentation and over-segmentation of liver 

segmented using UNet-1. The consequences of the offered 

ESP-UNet are estimated on the LiTS dataset based on various 

performance metrics such as DSC, VOE, JI, and RVD. The 

proposed approach provides the dice score of 0.959, VOE of 

0.089, JI of 0.921, and RVD of 0.09. The suggested ESP-UNet 

provides better segmentation compared with traditional 

techniques such as MSN-Net, H-DEnseUNet, and ACM-

ResNet, etc. The ESP-UNet provides an improvement of 1-

43% in DSC, 2.5%-87.96% in VOE, 3-84% in JI and 3-53% in 

RVD over the traditional segmentation techniques such as 

MSN-Net, H-DEnseUNet and ACM-ResNet for LiTS dataset.  

The limitation of the suggested ESP-UNet is increased 

complexity, huge total trainable parameters and larger training 

as well as segmentation time due to the use of two parallel UNet 

architectures. The extensive hyper-parameter needs such as a 

number of convolution and deconvolution layers, filter size, 

learning rate, learning algorithm, etc. to be manually decided. 

In the future, the suggested algorithm can be improved by 

minimizing the network complexity by using lightweight deep 

learning architecture. Further, efficient optimization techniques 

can be utilized for the selection of the optimal hyper-

parameters of the ESP-UNet. In the future, the effectiveness of 

the suggested ESP-UNet can be validated for the larger and 

real-time dataset.
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