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With the continuous advancement of medical imaging technology, a vast amount of multi-

modal medical image data has been extensively utilized for disease diagnosis, treatment, and 

research. Effective management and utilization of these data becomes a pivotal challenge, 

particularly when undertaking image matching and retrieval. Although numerous methods 

for medical image matching and retrieval exist, they primarily rely on traditional image 

processing techniques, often limited to manual feature extraction and singular modality 

handling. To address these limitations, this study introduces an algorithm for medical image 

matching grounded in multi-task learning, further investigating a semantic-enhanced 

technique for cross-modal medical image retrieval. By deeply exploring complementary 

semantic information between different modality medical images, these methods offer novel 

perspectives and tools for the domain of medical image matching and retrieval. 
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1. INTRODUCTION

In the medical domain, a massive volume of image data is 

generated daily, attributed to the rapid advancements in 

medical imaging technologies. This data, sourced from an 

array of medical imaging equipment including MRI, CT, and 

X-rays [1-3], offers invaluable insights into patient conditions

and holds significant implications for disease diagnosis and

treatment [4, 5]. Nevertheless, the multi-modal, high-

dimensionality, and intricate structure of these medical images

have rendered their management and interpretation

particularly challenging, especially when engaging in image

matching and retrieval tasks [6-9].

Accurate matching and retrieval of multi-modal medical 

images hold profound implications in the medical field [10-

13]. These processes can assist clinicians in gaining a more 

comprehensive understanding of a patient's disease trajectory, 

bolstering clinical decision-making and availing precious data 

resources for medical research [14, 15]. With the evolution of 

digital medicine and artificial intelligence technologies, a 

focal point for researchers has become how to harness cutting-

edge computational methodologies for an in-depth analysis 

and extraction of these medical images, aiming to elevate the 

quality and efficiency of healthcare services. 

At present, a majority of the methodologies for medical 

image matching and retrieval still anchor their foundations in 

traditional image processing techniques [17, 18]. While these 

methods might demonstrate efficacy when handling single-

modal medical images, their effectiveness tends to diminish 

with multi-modal images, as capturing intricate relationships 

and complementary information between varying modalities 

proves elusive [19, 20]. Additionally, many methodologies are 

tethered to manually extracted features, an approach that's not 

only labor-intensive but might also overlook the nuanced 

semantic information embedded within the images [21-23]. 

Crucially, these methods often falter when confronted with 

large-scale and high-dimensional medical image datasets. 

To address these challenges, an algorithm grounded in 

multi-task learning for medical image matching is introduced 

in this study. With the incorporation of a hierarchical 

convolutional network designed for multiple tasks, this 

algorithm is capable of concurrently processing various 

modalities of medical images, optimally extracting 

interrelated information between them, thus achieving 

enhanced accuracy in medical image matching. Furthermore, 

a semantic-enhanced technique for cross-modal medical 

image retrieval, underpinned by an innovative multi-modal 

multi-granularity semantic enhancement network, is 

investigated. This method is designed to deeply explore the 

complementary semantic information between different 

modalities of medical images, aiming for more precise cross-

modal medical image retrieval. Such investigations not only 

present fresh perspectives and methodologies in the medical 

image matching and retrieval domain but also furnish the 

medical field with more efficacious and intelligent tools, 

poised to catalyze further advancements in medical image 

processing technologies. 

2. THE MEDICAL IMAGE MATCHING ALGORITHM

BASED ON MULTI-TASK LEARNING

Within the medical domain, both images and descriptive 

texts serve as important data forms, offering detailed insights 

into patient conditions. Typically, medical images convey 

visual information about diseases, while descriptive texts 

elucidate diagnoses, treatment recommendations, and other 

pertinent textual descriptions. Thus, the effective matching 

and categorization of medical images and descriptive texts is 

deemed paramount. 
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The learning of inter-modal associations primarily delves 

into establishing connections between two distinct data 

modalities, such as images and texts. Such a learning approach 

assists in comprehending the mutual relationships between 

modalities, enabling cross-modal data matching and retrieval. 

Conversely, the learning of intra-modal associations is chiefly 

concerned with data relationships within a single modality. For 

instance, within the image modality, classification tasks might 

be centred on categorizing medical images into various disease 

types. Within the text modality, classification endeavours 

might focus on categorizing diseases into distinct classes 

based on descriptive texts. By concurrently engaging in both 

inter and intra-modal associative learning, knowledge can be 

garnered from two different perspectives, potentially 

enhancing the model's generalization capabilities and reducing 

the risk of overfitting. Figures 1 and 2 respectively depict the 

convolutional processing of medical images and their 

corresponding descriptive texts. 

 

 
 

Figure 1. Convolutional processing of medical images 

 

 
 

Figure 2. Convolutional processing of descriptive texts for 

medical images 

 

Lower-level features closely resemble the original data and 

contain a plethora of detailed information, such as textures and 

colours in images, and vocabulary and basic semantics in texts. 

This information is deemed pivotal in preliminary 

classification and matching. For these lower-level features, the 

intrinsic structure of data can be better captured through self-

supervised methods, facilitating effective representation 

learning even in the absence of explicit labels. In image-text 

matching tasks, a more meticulous capture of the correlations 

between the two modalities for these lower-level features 

becomes necessary. Soft bidirectional ranking loss ensures 

that both similarities and differences between the two 

modalities are aptly considered. Thus, for the low-level 

features of images and texts, self-supervised clustering loss 

and soft bidirectional ranking loss are respectively utilized for 

image-text classification and matching tasks. 

Higher-level features predominantly capture abstract and 

higher-order information, like structures and object relations 

in images, and advanced semantics and context in texts. Such 

information proves crucial for intricate classification and 

matching tasks. For these higher-level features, the uniqueness 

and categorical characteristics of each instance become more 

vital during classification tasks. Instance loss ensures that, at 

this abstract level, each instance is correctly classified. 

Moreover, for these higher-level features in matching tasks, 

comparisons need to be made on a broader semantic scale, 

ensuring accurate matching of the advanced semantics of both 

modalities. Hence, for the high-level features of images and 

texts, instance loss and soft ranking loss are respectively 

employed for image-text classification and matching tasks. 

Figure 3 presents a schematic diagram of the image-text 

classification and matching task learning processes. 

Learning visual and linguistic representations for medical 

images and their descriptive texts is both a complex and 

pivotal endeavour. Utilising a ResNet-50 pre-trained on 

ImageNet as the image encoder ensures a robust feature 

extraction capability right from the model's initiation, 

especially in capturing fundamental concepts and object 

characteristics in images. Extracting both high and low-level 

features ensures that information is harvested at various scales. 

While higher-level features tend to capture an image's holistic 

and abstract information, the lower-level features reflect the 

image's details and texture. This complementarity is believed 

to enhance the model's matching and classification accuracy. 

The selection of the output from the third residual module of 

text convolution as the low-level textual feature indicates an 

emphasis on mid-level textual data. Such features capture 

certain key nuances of textual data, vital for ensuring text 

richness and integrity. 

 

 
 

Figure 3. Learning processes for image-text classification and matching tasks 
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In medical imaging, minute detail variations might signify 

entirely distinct medical conditions. Emphasis is placed on the 

individuality of instances by the instance loss function, 

ensuring that these subtle yet pivotal differences are captured. 

Such a function ensures that instances within the same 

category are drawn closer while those from different 

categories are kept distinct. Effective learning in the presence 

of noisy data is facilitated by this loss since it prioritizes the 

characteristics of individual instances over entire categories. 

Additionally, the distinction between instances that might 

appear similar but belong to different categories is enhanced, 

an aspect that becomes particularly salient in medical imaging 

where numerous conditions might bear striking visual 

resemblances. Within the instance loss function framework, 

medical images and their accompanying descriptive texts are 

treated as cross-modal data pairs, and an individual label, 

denoted by ufg, is assigned. Assuming the image concept 

representation of the medical image and its descriptive text is 

represented by Mg
u, and the textual concept representation is 

denoted by Mg
y, the criteria "1{}" must satisfy 1{true}=1 and 

1{false}=0. The transformation matrix of the fully connected 

layer is represented by QgEv×2048, the number of all 

classification possibilities and that of ufg is represented by 

O=[O1, ..., Ov], and the weights of the fully connected layer are 

denoted by Qg. The following definitions are given: 
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Annotation of medical data is both costly and time-

consuming. Utilization of unlabelled data for learning is 

facilitated by the self-supervised clustering loss, optimizing 

the usage of available data. Efforts are made to ensure that 

similar instances are clustered together, while different 

instances are separated. Reliance on labelled data is not 

required by this loss function, making it especially valuable in 

the realm of medical imaging where extensive labelled 

datasets might not be accessible. It is adept at capturing the 

inherent structure of data, which becomes particularly 

significant given the intricate and latent relationships 

potentially present in medical images and their descriptive 

texts. The k-means algorithm is employed by the self-

supervised clustering loss function. This algorithm divides the 

sample data into j(j≤v) datasets, represented by A={A1, ..., Ak}, 

with the volume of training set data denoted by v. Post 

encoding of medical images using ResNet-50, the resulting 

feature dataset is denoted as Z={z1, ..., zv}, where 

zuE2048(u∈[1,v]). For the initialization of the clustering 

model, random initialization for the j cluster centers ω={ω1, ..., 

ωj} is necessitated, where ωkE2048(k[1,j]). Assuming the 

cluster index assigned to sample zu is represented by xu, the 

optimization objective function for clustering is given as 

follows: 
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In order to minimize the previously mentioned objective 

function, the cluster center ik must be updated, and the update 

formula is: 
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Specifically, an iteration termination condition of K≤1e-5 

was set in the experiments conducted. Constraints are also 

established for the visual feature class labels of medical 

images and their descriptive text modalities, resulting in the 

cluster labels X={x1, ..., xv}, also referred to as appearance 

labels ufl. Analogous to the structure of the instance loss 

function, the image self-supervised clustering loss function is 

denoted by Ml
u, while the text self-supervised clustering loss 

function is denoted by Ml
y. Assuming the appearance features 

are represented by cl and yl, and the weight matrix of the fully 

connected layer is represented by QlEj×2048, this layer is 

tasked with categorizing cl and yl into j categories. The 

probabilities of cl and yl belonging to different categories are 

represented by Ou,lEj and Oy,lEj respectively, yielding the 

following calculation formulas: 

 

( ),

l l

u lO SOFT MAX Q c=  (8) 

 

  ,

1

1 log
j

l b

u l u l

b

M uf b O
=

= − =  (9) 

 

( ),

l l

y lO SOFT MAX Q y=  (10) 

 

  ,

1

1 log
j

l b

y l y l

b

M uf b O
=

= − =  (11) 

 

The hyper-parameter is represented by η, and the cosine 

similarity function is denoted as A(.,.). Positive sample pairs 

and negative sample pairs are denoted by (cg
1o, yg

1o) and (cg
1b, 

yg
1o) respectively. Traditional bidirectional ranking loss 

functions are: 
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However, within the actual dataset of matching medical 

images with descriptive texts, a significant majority of sample 

combinations might be mismatches. The difficult-negative 

mining strategy focuses on those negative samples currently 

deemed "difficult to differentiate" rather than all negative 

samples. Such a strategy can effectively prevent models from 

overly focusing on easily distinguishable samples, thus 

mitigating the risk of overfitting. For matching tasks between 

medical images and descriptive texts, models must consider 

the profound connections of both modalities. Such tasks 
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involve not only recognizing and learning the correlation 

between images and texts but also managing a large number 

of negative samples and ambiguous matches. Against this 

backdrop, the use of the aforementioned loss function is 

deemed unsuitable. Assuming the mean value of all concept 

feature negative samples within the cluster where yg
2o resides 

is represented by y-g
2b, and the mean value of all appearance 

feature negative samples within the cluster where yl
2o resides 

is represented by y-l
2b, the improved bidirectional ranking loss 

functions are given as:  
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The BR loss function aims to minimize the distance between 

matched image and text pairs while maximizing the distance 

between unmatched pairs. Bidirectional ranking loss considers 

both Image-To-Text and Text-To-Image sorting relationships, 

ensuring bidirectional consistency in matches. By combining 

the two, not only can match accuracy be improved, but also 

the stability and robustness of the model's matching results can 

be enhanced. A soft ranking loss function was constructed by 

integrating the BR loss function and bidirectional ranking loss. 

Unlike traditional classification loss functions, the soft ranking 

loss function priorities the relative relationships between 

samples rather than the absolute classification of each sample. 

This function provides a larger margin of error for models, 

allowing a certain level of errors while still promoting correct 

ordering. It also enables models to recognize and learn varying 

degrees of matches, ranging from complete matches to 

complete mismatches, rather than a simple binary match/non-

match decision. For concept and appearance features, the 

corresponding loss function expressions are provided below: 
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3. CROSS-MODAL RETRIEVAL OF MEDICAL 

IMAGES BASED ON SEMANTIC ENHANCEMENT 

 

Medical images and their accompanying textual 

descriptions contain vast inter-modal complementary 

information. This is evident as images provide a visual 

representation of a patient's pathological features, whereas 

textual descriptions offer insights into intricate details or 

clinical backgrounds that might be challenging to discern from 

the image alone. To harness this wealth of data effectively, 

extracting inter-modal complementary semantic information 

becomes paramount. In pursuit of this goal, a multi-modal, 

multi-granularity semantic enhancement network is proposed 

for the mining of inter-modal complementary semantic 

information. By extracting this complementary semantic 

information, a more precise alignment between images and 

textual descriptions is achieved, thereby improving retrieval 

accuracy. The general framework of this multi-modal, multi-

granularity semantic enhancement network is illustrated in 

Figure 4. 

Consider a medical image dataset, which is represented by 

F={a1
u,a2

u,...,aW
u,}B

u=1 and describes B semantic concepts. 

Within this, Fu={a1
u,a2

u,...,aW
u,} encapsulates W different 

modality samples of the u-th semantic concept. When a query 

item as
u from the s-th modality is being considered, the 

objective of cross-modal retrieval in medical images is to find 

the most relevant results in the n-th modality of medical 

images, that can ensure 1≤s, n≤W and s≠n, and this is the target 

of the cross-modal retrieval tasks of medical images. In this 

study, the image s and description text n executing the medical 

image cross-modal retrieval tasks are referred to as the primary 

modalities, denoted as ZYMT={as
u,an

u}B
u=1. The remaining W-

2 types of modalities are termed auxiliary modalities, 

represented as FZMT={a1
u,...,as-1

u,as+1
u,...,an-

1
u,an+1

i,...,aW
u,}B

u=1. Subsequently, the following three matrices 

are defined: 

Definition 1 (Primary similarity matrix O): it represents the 

similarity matrix between medical images and their associated 

textual descriptions. A high value in this matrix indicates a 

strong match between a medical image and its textual 

description. It is composed of the similarity between image s 

and description text n modalities within ZYMT. It’s assumed 

that the cross-modal similarity between as
u and an

u is 

represented by Ouk. 

Definition 2 (Auxiliary similarity matrix S): it is the 

similarity matrix among all auxiliary modalities. Given the 

presence of multiple auxiliary modalities, an auxiliary 

similarity matrix can be established for each. Similarities 

between samples from different modalities in ZYMT and 

FZMT give rise to this matrix, where the cross-modal 

similarity between the u-th sample from a modality in ZYMT 

and the jk-th sample from an auxiliary modality in FZMT is 

denoted by Suk. 

Definition 3 (Cross-modal affinity matrix V): it denotes the 

affinity between the primary and auxiliary modalities, 

capturing the complementary information between them. 

When the u-th sample from a modality and the k-th sample 

from another different modality describe the same semantic 

concept, then Vuk=+1; otherwise, Vuk=-1. This matrix serves 

the purpose of providing supervisory information for cross-

modal retrieval. 

In the context of multi-modal learning, leveraging 

information from auxiliary modalities to enhance the retrieval 

performance of primary modalities becomes critical. The 

primary modalities (medical images and their descriptive texts) 

might not capture all semantic nuances. Auxiliary modalities, 

such as patient medical records or physiological signals, might 

hold essential information complementary to medical images 

or their textual descriptions. Joint optimization of the primary 

and auxiliary similarity matrices aids in capturing this 

additional semantic information. 

When dealing with intricate data, especially medical images, 

features of different granularities or scales are pivotal. Coarse-

grained features encapsulate global information like overall 

shape or structure, while fine-grained features focus on local 

details, such as texture or edges. The proposed method, 

M2HSE, is designed to address both types of features by 

constructing global-level and local-level sub-networks. Within 

each sub-network, besides computing the primary similarity 

matrix, 2(W-2) auxiliary similarity matrices are also calculated. 

These auxiliary matrices consider the similarity between other 

modalities and the primary modality, thus offering a rich set of 

cross-modal association information. 
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To ensure synergy and balance among different similarity 

matrices, the adopted M2HSE introduces a multi-spring 

balance loss function. This loss function is likely designed to 

ensure a balance between the primary similarity matrix and 

auxiliary similarity matrices during the optimization process, 

allowing for an equitable integration of information across 

different modalities and granularities. By jointly optimizing 

the primary and auxiliary similarity matrices, the M2HSE aims 

to thoroughly exploit the complementarities between various 

modalities. Structural information about medical images 

might be provided by one modality, while another might offer 

functional or physiological details. The amalgamation of this 

information has the potential to produce a more precise and 

comprehensive interpretation of medical images. 

Let the global-level joint optimization objective function be 

denoted by KH, and the local-level joint optimization objective 

function also be represented by KM. The loss function is 

denoted by G(·), with the global-level primary similarity 

matrix and global-level auxiliary similarity matrices being 

represented as OH and {SH
u|u=1,...,2(W-2)}, respectively. The 

local-level primary similarity matrix and local-level auxiliary 

similarity matrices are denoted as OM and {SM
u|u=1,...,2(W-2)}. 

Parameters for the two subnetworks are denoted by ΦH and ΦM, 

while the multi-modal complementarity adjustment 

coefficients for the two subnetworks are denoted by 

hyperparameters {βu|u=1,...,2(W-2)} and {αu|u=1,...,2(W-2)}, 

leading to the Eq. (18):  
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(18) 

 

A multi-modal approach is adopted in this study, leveraging 

various feature extraction techniques to enhance the cross-

modal retrieval performance between medical images and 

descriptive text. Convolutional Neural Networks (CNN) have 

demonstrated superiority in image processing, capturing local 

patterns and hierarchical structures within images. Meanwhile, 

Bidirectional Gated Recurrent Units (Bi-GRU) are adept at 

handling sequential data, capturing contextual information in 

text. The combination of these two networks indicates the 

capability to extract high-quality feature representations from 

both images and text. Scale-Invariant Feature Transform 

(SIFT) serves as a classical visual feature extraction method, 

enabling the extraction of stable keypoints under varying 

scales. The Bag-of-Words (BoW) method facilitates the 

encoding of these keypoints, producing a fixed-length feature 

vector. The choice of SIFT-BoW as an auxiliary modality 

might aim to provide visual features distinct from those 

extracted by CNN, thereby bolstering the model's robustness 

and tapping into complementary information.  

Substituting the three modalities into the equation yields:  
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where, OH, SH
1, and SH

2 can be calculated based on the three 

coarse-grained features through the global-level cross-modal 

similarity computation module set in the model. Similarly, OM, 

SM
1, and SM

2 can be computed based on the three fine-grained 

features through the local-level cross-modal similarity 

computation module set in the model. The optimal network 

parameters for the two subnetworks can be determined 

through the following formula by minimizing KH and KM: 
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Let the optimal primary similarity matrices be represented 

by O~H and O~M, which can further be obtained through 

computation. The optimization process for the two 

subnetworks is achieved through gradient descent. Assuming 

that the multi-granularity complementarity adjustment 

coefficients are represented by ϕ1 and ϕ2, the subsequent 

formula provides the gradient computation for KH and KM: 
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Figure 4. Overall framework of the multi-modal multi-granularity semantic enhancement network 
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4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

A medical image matching model based on multi-task 

learning has been proposed. By incorporating multi-task 

hierarchical convolutional networks, the algorithm can handle 

multiple modalities of medical images simultaneously, 

ensuring that their associative information is thoroughly 

explored, leading to more precise medical image matching. In 

Table 1, the performance of different image-text matching 

models on the task of matching medical images with 

descriptive text is displayed. The metrics R@1, R@5, R@10 

represent the retrieval performance of the models, with higher 

values indicating superior performance. It can be seen that 

DeViSE exhibits moderate performance on the task of 

matching descriptive text and medical images, with an mR 

value of 63.5, indicating its overall average performance. 

VSRN, being a visual-semantic reasoning model, demonstrates 

improved performance on the text matching task, but it only 

achieves 9.6 for R@10 in the medical image, suggesting a 

potential outlier. On the whole, its average performance is 

recorded at 74.2. DPC is a dual-path convolutional image-text 

embedding model. It is observed that it exhibits commendable 

performance on both the text and medical image matching 

tasks, with an mR of 77.9, illustrating its balanced cross-modal 

performance. The model proposed in this research achieves the 

best results across all metrics. Notably, the R@10 for 

descriptive text reaches 96.6, suggesting that there's a 96.6% 

chance of finding the actual matching medical image among 

the top 10 retrieval results. Moreover, the R@1 for medical 

images is also notable at 51.8, implying that over half the top-

matching retrieval results are correct. Overall, its average 

performance stands at 81.4, outperforming the other models. 

From Figure 5, a clear contrast in performance between the 

single-task learning model and the multi-task learning model 

proposed in this research is evident on different retrieval 

metrics (R@1, R@5, R@10). It is observed that the proposed 

model, when tasked with matching medical images to 

descriptive text, outperforms the single-task learning model in 

both image-text retrieval and text-image retrieval. This 

strongly indicates the effectiveness and superiority of the 

proposed model. Outstanding performance is witnessed on the 

R@1 metric, suggesting high accuracy within the most 

relevant search results. As previously discussed, the model 

incorporates multiple loss functions, difficult-negative mining 

strategies, and a multi-modal multi-granularity semantic 

enhancement network. These design elements may be crucial 

factors in its outperformance over the single-task model. 

In the Table 2, various cross-modal retrieval models and 

their performance in image-text matching tasks are presented. 

Two retrieval tasks, "Image-To-Text" and "Text-To-Image", 

are listed, with three evaluation metrics each: R@1, R@5, 

R@10. These metrics represent the hit rates in the top 1, 5, 10 

search results, respectively. The highest score of 78.1 on the 

R@1 metric is achieved by the proposed model. Additionally, 

leading scores of 93.6 and 96.1 are recorded on R@5 and 

R@10 respectively. Similarly, for the "Text-To-Image" task, 

the highest scores on R@1, R@5, and R@10 are 57.9, 83.8, 

and 91.2 respectively. Thus, it can be concluded that the 

proposed model clearly excels when compared with other 

cross-modal retrieval models. This further attests to the 

advantages of the multi-modal multi-granularity semantic 

enhancement network in handling cross-modal retrieval tasks 

for medical images. 

Table 3 displays the performance comparison of ablation 

models in cross-modal retrieval. The importance of each 

component of the model is evaluated by removing them one 

by one. It is observed that the model integrates various 

techniques for cross-modal retrieval, each playing a pivotal 

role in enhancing the overall performance. Performance 

deterioration is noted upon the removal of any individual 

component. Essential roles of CNN, Bi-GRU, and the 

similarity computation module in capturing the deep semantic 

relationships between images and text are identified. Although 

some metrics occasionally show a slight improvement in 

certain ablation experiments, it does not undermine the 

importance of the corresponding components. Instead, it 

suggests their significance in handling specific types of data or 

tasks. Collectively, the proposed model offers an efficient and 

robust cross-modal retrieval solution. The ablation 

experiments further confirm the significance of each 

component, establishing the rationale and efficacy behind the 

model's design. 

 

 
 

Figure 5. Comparison of performance between the single-

task learning model and the proposed model 

 

 
(1) Txet-To-Image 

 
(2) Image-To-Txet 

 

Figure 6. Recall@1 for different retrieval sample sizes
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Table 1. Performance comparison of different image-text matching models 

 

Algorithm 
Descriptive Text Medical Image 

mR 
R@1 R@5 R@10 R@1 R@5 R@10 

DeViSE 41.2 72.6 83.4 31.2 67.9 81.5 63.5 

VSRN 55.6 83.4 9.6 44.5 82.3 91.3 74.2 

DPC 64.3 88.9 94.3 46.3 78.6 91.4 77.9 

Proposed Model 72.5 92.4 96.6 51.8 85.2 92.8 81.4 

 

Table 2. Performance comparison of different cross-modal retrieval models 

 

Model 
Image-To-Txet Txet-To-Image 

sumR 
R@1 R@5 R@10 R@1 R@5 R@10 

Bimodal AE 53.1 81.2 88.7 39.6 71.2 78.9 412.2 

CCA 66.9 91.3 94.3 47.3 78.2 84.3 445.3 

Deep CCA 73.5 92.8 95.5 52.1 78.4 87.3 478.2 

GMA 72.4 91.5 95.6 53.8 82.3 87.5 485.2 

IMTL 72.8 91.2 96.1 54.2 78.4 85.4 479.3 

CMD-VAE 72.3 91.7 95.7 54.8 82.1 88.3 488.2 

ACRM 72.4 92.8 95.3 54.3 81.6 86.9 485.3 

Proposed Model 78.1 93.6 96.1 57.9 83.8 91.2 512.4 

 

Table 3. Performance comparison of ablation models in cross-modal retrieval 

 

Model 
Image-To-Txet Txet-To-Image 

R@1 R@5 R@10 R@1 R@5 R@10 

Before introducing the multi-spring balanced loss function 75.2 92.4 96.8 57.9 83.9 88.9 

Before introducing CNN 73.5 92.3 96.4 56.3 82.6 88.5 

Before introducing Bi-GRU  73.1 92.9 95.3 54.9 82.4 88.6 

Before introducing SIFT-BoVW 74.9 93.1 95.4 58.1 82.6 88.7 

Before introducing the similarity computation module  76.9 93.5 96.3 57.6 85.2 91.2 

Proposed Model 76.2 93.6 95.8 57.2 84.6 89.3 

 

Table 4. Recall@1 for different retrieval sample sizes 

 

Image-To-Text 

 100 200 500 1000 2000 

Epoch-1 56.9 55.9 67 57 51.2 

Epoch-5 68.9 76.4 72.3 73.1 71.6 

Epoch-10 76.5 76.3 73.4 78.4 76.5 

Epoch-15 76.2 75.8 75.8 78.6 76.3 

Epoch-20 75 75.9 75.9 77.9 76.8 

Txet-To-Image 

 100 200 500 1000 2000 

Epoch-1 45.6 47.8 52.9 51.2 42.7 

Epoch-5 58.2 62.5 57.4 57.6 55.3 

Epoch-10 61.9 62.3 62.8 62.8 62.4 

Epoch-15 62 63.1 62.7 63.7 61.7 

Epoch-20 62.8 63.4 63.4 64.2 63 

 

Table 4 showcases the Recall@1 performance of the Image-

To-Text and Text-To-Image tasks at different training epochs 

and retrieval sample sizes. As the training epochs increase, an 

improvement in the model's Recall@1 performance across 

different retrieval sample sizes is noted, confirming the 

model's adaptability and effectiveness over continuous 

training. High performance at specific retrieval sample sizes 

underscores the model's ability to maintain excellence across 

varying dataset sizes. Even though there's a slight drop in 

performance after certain training epochs, the model 

consistently showcases superior performance in most 

scenarios. This data further emphasizes the model's 

effectiveness and robustness across different retrieval tasks, 

particularly with varying sample sizes and training epochs. 

Figure 6 depicts the change in Recall@1 performance for 

Text-To-Image and Image-To-Text tasks across training 

epochs. Both tasks display remarkable Recall@1 performance, 

particularly in the initial training epochs. While some decline 

in performance for certain sample sizes is noticed as training 

progresses, the model consistently delivers stable results 

across most scenarios. This reiterates the model's robustness 

and efficiency across datasets of different sizes. 

 

 

5. CONCLUSIONS 

 

A study detailing a multi-task learning-based medical image 

matching algorithm has been presented. This algorithm, 

capitalizing on multi-modal information, achieves effective 

matching of medical images. Moreover, an in-depth 

exploration into a semantic-enhanced method for cross-modal 

medical image retrieval has been carried out. This method 

employs an innovative multi-modal multi-granularity 

semantic enhancement network, aiming to unearth the 

complementary semantic information shared among different 

modalities of medical images. Experimental results indicate 

that, when pitted against other cross-modal retrieval models, 

the proposed model showcased superior performance in both 
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Image-To-Text and Text-To-Image tasks. Particularly, its 

performance exceeded other comparative models in metrics 

such as Recall@1, Recall@5, and Recall@10. Through a 

comparison with the ablation models, the significance of 

various components like the multi-spring balance loss function, 

CNN, Bi-GRU, SIFT-BoVW, and similarity calculation 

modules has been observed. Each component's contribution to 

the overall performance has been elucidated. In the Recall@1 

experiment involving varied retrieval sample quantities, the 

robustness and efficacy of the proposed model under varying 

data volumes have been demonstrated. Notably, during the 

later training phases, the model managed to maintain 

commendable performance. 

This research has successfully introduced a medical image 

matching algorithm based on multi-task learning, displaying 

excellence across multiple evaluation metrics. The further 

exploration into the semantic-enhanced cross-modal medical 

image retrieval has also shown its potency and utility. 

Experimental outcomes have conclusively affirmed the 

pioneering position of the proposed method within the realm 

of cross-modal medical image retrieval, offering valuable 

insights and guidelines for future investigations in related 

domains. 
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