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In the exploration of cross-media retrieval encompassing images and text, an advanced 

method incorporating two-level similarity and collaborative representation (TLSCR) is 

presented. Initially, two sub-networks were designed to handle both global and local 

features, facilitating enhanced semantic associations between images and textual content. 

Whole images, along with regional image sectors, served as representations for images, 

while textual content was depicted both through complete sentences and select keywords. 

An innovative two-level alignment approach was introduced to segregate and then 

amalgamate the global and local depictions of paired images and texts. Subsequently, 

employing collaborative representation (CR) technology, each experimental image was 

collaboratively reconstructed by utilising the entirety of the training images, and every 

experimental text by incorporating all the training texts. The collaborative coefficients 

derived were subsequently employed as congruent dimensional representations for both 

images and texts. Upon completion of these operations, cross-media retrieval between the 

two modalities was conducted. Experimental outcomes on datasets like Wikipedia and 

Pascal Sentence confirm the superior precision of the proposed method, surpassing 

conventional cross-media retrieval methodologies. 
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1. INTRODUCTION

In the wake of rapid advancements in information 

technology, the widespread use of multimodal data, 

encompassing images, text, video, and audio, on the internet 

has been observed [1-8]. Instances where images on web pages 

are accompanied by descriptive text underline this trend. 

Cross-media is characterised not only by the juxtaposition of 

diverse media objects, such as text, images, audio, and video, 

but also by the intricate relationships and structural formations 

among them. A predominant challenge in cross-media 

retrieval stems from the heterogeneous nature of different 

media types. Often, identical content information spans 

various multimedia formats. Comprehensive understanding of 

the content information embedded within these cross-modal 

complexes has been achieved through fusion analyses and 

other methodologies. 

Over the past decades, growing interest in cross-media 

retrieval has been noted, and extensive research in this domain 

has been conducted. Such retrieval mechanisms have proven 

beneficial to a multitude of users. Nonetheless, the frequent 

spanning of multimodal data across diverse feature spaces 

introduces feature heterogeneity, posing significant challenges 

for cross-media retrieval endeavours. The focus of this study 

is centred on the cross-media retrieval between images and 

text, with tasks encompassing the search for text or images 

relevant to a pre-known query image or text. 

In addressing the aforementioned feature heterogeneity, 

various methodologies for the universal representation of 

distinct modal data have been proposed by researchers. It has 

been noted that a significant portion of existing literature 

emphasises subspace learning methods. In these methods, a 

pair of mapping matrices is learned, allowing data from 

different modalities to be projected into isomorphic subspaces. 

This subsequently facilitates direct similarity measurements 

between multimodal data. Classic unsupervised subspace 

learning methods, such as Canonical Correlation Analysis 

(CCA) [9] and Partial Least Squares (PLS) [10], have been 

developed to learn projection matrices by optimising the 

correlation between multimodal data. On the other hand, 

supervised techniques, like the Semantic Correlation 

Matching (SCM) [9], revert the isomorphic subspace derived 

from conventional correlation analysis back to the semantic 

subspace. The Three View Canonical Correlation Analysis 

(CCA-3V) [11], by introducing a semantic viewpoint into the 

canonical correlation analysis, aims to enhance the 

differentiation of multimodal data of varied categories within 

the learning subspace. Furthermore, the Generalized 

Multiview Analysis (GMA) [12] provides a comprehensive 

framework for multimodal feature extraction technologies. As 

the field progresses, subspace learning methodologies have 

been categorically divided into four primary types below. 

First, projection-based subspace learning. Within this 

approach, feature mapping is employed to discern potential 

subspaces across varied modal data. Delineation can be drawn 

between linear projection methods, such as CCA [9] and PLS 

[10], and nonlinear projection methodologies, represented by 

kernel canonical correlation analysis (KCCA) [13] and Deep 

Canonical Correlation Analysis (DCCA) [14]. 

Second, matrix decomposition-based subspace learning. 

This method capitalises on matrix decomposition to discern 

the foundational vectors of potential subspaces within 
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different modal data. Distinctive branches emerge within this 

category, comprising non-negative matrix decomposition 

approaches, exemplified by Joint Shared Non-negative Matrix 

Factorization (JSNMF) [15], and methods centred on feature 

decomposition, such as Multi Output Regularized Feature 

Projection (MORFP) [16]. 

Third, task-based subspace learning. Through this 

approach, multiple tasks are concurrently learned, enhancing 

the overarching generalisation performance across each task. 

Such an approach can be further subdivided into multi-task 

learning methods, like alternating structure optimisation 

(ASO) [17] and convex multi-task feature learning (CMTFL) 

[18]. Additional branches include multi-label learning 

strategies, such as Shared Subspace Learning for Multi-Label 

Classification (SSLMC) [19], and multi-class learning 

approaches represented by Shared Structures in Multi-Class 

Classification (SSMCC) [20]. 

Finally, metric-based subspace learning. This method is 

explicitly devised to cultivate robust metrics between multiple 

modal datasets, fostering efficient similarity comparisons. It 

can be stratified into Euclidean distance metric methods, such 

as Multi Modal Distance Metric Learning (MMDML) [21], 

and Markov distance metric techniques, including Shared 

Subspace for Multiple Metric Learning (SSMML) [22]. 

Historically, traditional subspace learning strategies for 

cross-media retrieval treated all image or text samples 

collectively, striving to learn the projection matrix, whilst 

often overlooking the unique characteristics inherent to each 

sample. The diverse distribution and representation of features 

across modalities necessitated a bridging of the semantic gap 

between such modalities. Typically, the fundamental approach 

involved the creation of a common subspace, into which all 

data were projected for further learning. Yet, certain 

modalities occasionally presented scenarios where multiple 

semantically approximate instances from differing modalities 

found alignments. Mere alignment of text and images through 

a shared subspace was recognised as insufficient. Additionally, 

supervised cross-media retrieval methodologies demanded 

considerable volumes of labelled data. Given the challenge in 

procuring such data, limitations on these methods' 

applicability became evident. 

Subsequently, an unsupervised CR method for cross-media 

retrieval, based on two-tier networks, was introduced. This 

approach adeptly fused both global and local similarities, 

ensuring enhanced retrieval precision. By employing all 

training images to collaboratively reconstruct each test image, 

and analogously using all training texts to collaboratively 

reconstruct each test text, the collaboration coefficients 

between the two were utilised as a homogenised representation 

of image and text. Thus, a framework was established wherein 

each test sample was co-represented alongside all training 

samples, preserving the distinctiveness of each test sample. 

Comparative analyses between this novel method and 

conventional cross-media retrieval strategies have been 

conducted, and the preliminary findings underscore the 

efficacy of the introduced methodology. 

 

 

2. CROSS-MEDIA METHODOLOGY BASED ON 

TWO-LEVEL MODEL 

 

A two-level cross-media model has been proposed for the 

execution of retrieval tasks. Within this methodology, two 

distinct loss functions, namely global and local, were 

formulated to capture both the global and local features 

inherent to images and texts. Utilising the feature 

representations derived from these images and texts, two 

levels of similarity were strategically developed and 

aggregated, ensuring a degree of information complementarity. 

Such an approach manifested in augmented outcomes in cross-

media retrieval tasks. 

The integration of both global and local similarities by the 

two-level model method offers a comprehensive semantic 

description of images and texts. Such integration potentially 

facilitates a deeper exploration into the latent semantic 

alignment between images and texts. On one end, data from 

diverse modalities, when transitioned from their independent 

representation spaces to a shared subspace, permits the 

calculation of similarities across varying modal instances. This 

translates to a reduction in the semantic feature distance across 

distinct modal data. On the opposite end, drawing inspiration 

from ranking-based methodologies [23-25], a tripartite-based 

loss function was employed. This function was designed to 

augment the distance between varying modalities 

encompassing different semantic features while minimising 

the distance among modalities with analogous semantic 

features. The ultimate goal remains an enhanced alignment 

between image and textual data. 

Intricately designed, this model not only capitalises on self-

attention networks to derive global, overarching 

representations of images but also harnesses attention 

mechanisms for localised text representations. An innovative 

two-level similarity fusion method was introduced to facilitate 

mutual enhancement, thus propelling cross-media association 

learning towards achieving information complementarity. 

 

2.1 Global representation processing 

 

2.1.1 Global representation of images 

Each image im was first resized to dimensions of 256×256, 

post which they were subjected to a convolutional neural 

network (CNN) to harness their high-dimensional information. 

The network, analogous in configuration to ResNet-152 [26], 

was pre-trained on the expansive dataset, ImageNet. The final 

image feature was subjected to mean-pooling, resulting in the 

extraction of the global image feature x. This global feature 

was subsequently processed through a self-attention network 

[27], depicted in Figure 1. 

 

 
 

Figure 1. Structure of self-attention network 

 

Initially, based on the pre-obtained global feature x of the 

image, calculations of fx=Wfx and y(x)=Wyx were performed. 

This yielded two distinctive feature spaces, each generated by 

multiplying image features with different weight matrices Wf 

and Wy. The softmax function was employed to calculate the 

correlation aj,i, which represents the degree of correlation 
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between the image content in region j of the model and region 

i. The mathematical representation is provided as: 
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where, bij=f(xi)Ty(xj). Subsequently, the output cj of the self-

attention network was computed: 
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where, k(xi)=Wkxi, and Wk represents a weight parameter 

matrix. C=(c1, c2, …, cj, …, cn) plays a pivotal role, ensuring 

the harmonious amalgamation of information. 

In the final phase, the primal features of the image were 

fused with the attributes of the attention layer. This 

convergence yielded the output gi=λci+xi, serving as a 

comprehensive representation of image λ. Notably, the 

parameter value has been set at 0.1. 

 

2.1.2 Global representation of text  

Textual input tk was interpreted as a character sequence and 

processed via a character convolutional network, termed Char-

CNN [28]. The final activation layer generated a 

representation sequence, which was then relayed to an RNN 

for character-level text classification. This process facilitated 

the extraction of high-tier abstract semantic features, 

eliminating the requirement for pre-trained word vectors or 

intricate grammatical structures. The resulting sequence from 

Char-CNN for each input text tk was denoted as P, serving as 

the input for Long Short-Term Memory (LSTM) [29] 

processing. Let 𝐻𝑖 = {ℎ1
𝑖 , … , ℎ𝑚

𝑖 } be the output of the hidden 

unit, then the global representation for the text was 

subsequently derived, as illustrated in Eq. (3): 

 

1

1 m
i

t k

km =

= g h  (3) 

 

Char-CNN interprets each statement as a character 

sequence, maintaining a standardised length of 300 characters. 

Statements exceeding this length underwent truncation, 

whereas shorter statements were padded with zeroes. The 

Char-CNN architecture included three convolutional layers, 

with parameters set at (256, 4), (512, 4), and (2048, 4), with 

the enclosed values representing the kernel number and width 

respectively. 

 

2.2 Local representation processing 

 

2.2.1 Local representation of images 

Each image im, once processed through Faster R-CNN [30], 

yielded multiple bounding boxes, facilitating the identification 

of all candidate image regions. Subsequent to this, the initial 

five regions, ranked based on their scores, were selected for 

further calculations. These shortlisted regions were then 

subjected to the ResNet-152 network, culminating in the 

derivation of regional features via mean pooling of the final 

image feature [31]. These features, indicative of n distinct 

regions within a given image, served as the local 

representation of the image {𝑙𝑖
1, … , 𝑙𝑖

𝑛}, where i denotes the 

sequence number of the image. 

 

2.2.2 Local representation of text  

For effective assimilation of the text's local representation, 

the sole deployment of LSTM might prove ineffectual in 

encoding information in a bidirectional manner. Fine-grained 

classification demands acute attention to interactions between 

emotion words, degree words, and negation words, 

necessitating information encoding in both forward and 

reverse orientations. As such, the bidirectional LSTM (Bi-

LSTM) [32] was employed to capture the semantic 

dependencies inherent to text in two directions. 

For the i-th term in a particular statement Y={y1, y2, …, yi, …, 

ym}, a search operation within the vocabulary yields its 

representation through the word embedding matrix WE, as 

articulated in Eq. (4): 

 
, [1, ]E i E iy i m = W W  (4) 

 

In this instance, words were embedded into a 300-

dimensional vector space. The Bi-LSTM method, benefiting 

from two primary components (i.e. forward LSTM and 

backward LSTM) was used to encapsulate word data from two 

directions. Specifically, the forward LSTM, traversing from 

ω1 to ωn, perused the statement Y in the n direction, whereas 

the backward LSTM, spanning ωn to ω1, interpreted the 

statement Y in the inverse direction, as described in Eq. (5): 

 

( )LSTM , [1, ]l iy i m= h  (5) 

 

The feature em of the terminal word is discerned by 

averaging the forward and backward hidden states ℎ𝑖
⃗⃗  ⃗ and ℎ𝑖

⃖⃗⃗⃗ , 

encapsulating centralised statement information around ωi, as 

shown in Eq. (6): 
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For this methodology, the output dimension from word 

embedding extraction stands at 2048. Utilising the word 

embedding output as an input to the Bi-LSTM, the hidden unit 

outputs were captured, denoted as E={e1, …, ei, …, em}. These 

outputs, representing m distinct text sections within a given 

statement, provide the foundational features to delineate the 

context of said statement. 

With an assumption of n texts in play, the output from the 

Bi-LSTM’s hidden unit, symbolised as 𝐸′ =
{𝑒1

𝑛, … 𝑒𝑖
𝑛, … , 𝑒𝑚

𝑛 } , encompasses m varied text fragments 

spanning n statements. Following Bi-LSTM and attention 

mechanism processing, the local representation 𝑙𝑡 =
1

𝑚
∑ ∑ 𝑎𝑘

𝑡𝑛
𝑗=1 𝑒𝑘

𝑗𝑚
𝑘=1  of the n statements is procured, marking the 

ultimate local text representation. 

To culminate the representation processes, two fully 

connected networks were appended to both global and local 

representation processing frameworks, transmuting the 

dimensionalities of the image and text feature vectors to 1024. 

These networks, in their essence, functioned as cross-media 

semantic alignment components, mapping heterogeneous 

features into a shared subspace. 

 

2.3 Cross-media two-level alignment 

 

The global and local representations were derived 
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employing the triplet loss function [33]. At the core of this 

function lies the anchor example, supplemented by a positive 

and a negative example within a shared model. Through this 

shared model, it was observed that the anchor examples and 

positive examples were optimally clustered, concurrently 

distancing themselves from negative examples. The triplet loss 

function is denoted by Losstriplet=max(d(a, p)-d(a, n)+margin, 

0), where a represents the anchor example, p stands for the 

positive example, and n signifies the negative example. 

Building upon the foundations of the triplet loss, an 

objective function was subsequently formulated: 

( ) ( )
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(7) 

where, L1 and L2 symbolise the similarity between the globally 

matched image-text pairs encountered during the model 

training phase. The objective was to maximise the disparity 

between the similarities of these matched pairs and their 

mismatched counterparts. The function d( ·) embodies the dot 

product of the image-text pairs, translating to their similarity. 

(g𝑖+
𝑛 , g𝑡+

𝑛 )  epitomises the matched image-text pairs, while

(g𝑖+
𝑛 , g𝑡−

𝑛 ) and (g𝑖−
𝑛 , g𝑡+

𝑛 ) denote the counts of the mismatched

image-text pairs. The variable n corresponds to the count of 

image-text pairs, and α is the marginal parameter with N being 

the total number of triplets extracted from the training dataset. 

The principal aim of local alignment was discerning the 

optimal alignment between the text's local representation lt and 

the myriad local representations {𝑙𝑖
1, … , 𝑙𝑖

𝑛}  exhibited by an

image pair. This translates to selecting the K nearest 

neighbours from the manifold of image local representations 

corresponding to each text local representation. It was 

determined that a K value of 3 optimally aligns the local 

representations of both images and text. The governing 

objective function was: 

( ) ( )local

1 1

1 1
max 0, , ,

K K
k k
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To encapsulate the entirety of the cross-media alignment, a 

comprehensive similarity metric between image im and text tk 

was conceived. This metric amalgamates both global and local 

similarities, computing them within a unified 1024-

dimensional subspace: 

( ) ( )
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For this computation, both the global and local features 

resulting from the image-text transformation were harnessed, 

yielding the overarching similarity θ, a parameter introduced 

in this study, was restricted to values ranging between 0.3 and 

0.7. 

3. CR TECHNOLOGY

CR technology employs all training images for the 

collective reconstruction of individual test images. Similarly, 

every training text is harnessed for the CR of each test text. 

The collaboration coefficient between the two is utilised as a 

congruent dimensional representation for both image and text, 

enabling the execution of cross-media retrieval between them. 

This study proceeds to elucidate both the CR technology and 

the Collaborative Representation-based Classification (CRC). 

For a dataset comprising n training samples, the entire training 

set is denoted as a dictionary X: 

 1 2 1,1 1,2 ,, , , , , ,
kk k nX X X X x x x =  =   (10)

where, k is identified as the aggregate count of semantic 

categories, while the representation of the i-th class example 

is rendered as: 

,1 ,2 ,, , , i

i

m n

i i i i nX x x x R  =    (11) 

where, m stands for the dimensionality of sample features, and 

ni is the count of i-class samples. For a given test sample y, it 

was expressed as a linear combination of all training samples: 

my Xp R=  (12) 

where, 𝑝 = [0, . . .0, 𝑝𝑖,1, 𝑝𝑖,2, . . . , 𝑝𝑖,𝑛𝑖
, 0, . . . ,0]

𝑇
 is discerned as

an n-dimensional coefficient vector, and all constituent 

elements are zero save for those associated with class i. The 

solution for CR Technology was found using the subsequent 

regularized least squares methodology [23-27]: 

2 2

2 2
ˆ argmin

p

p y X p p= −  +‖ ‖ ‖‖ (13) 

where, 
2|| || is the norm of l2, and λ is the regularization 

parameter. Deriving the partial derivative of the above 

equation and equating it to zero provided: 

( )
1

ˆ T Tp X X I X y
−

= +  (14) 

where, I is recognised as the identity matrix. With 

P=(XTX+λ⋅I)-1XT, it became evident that P and y are mutually 

exclusive. Consequently, P was pre-calculated and 

characterised as a projection matrix. For every class i, the 

coefficient vector exclusive to class i was denoted as �̂�𝑖 . 

Employing solely the elements associated with class i, the 

estimated value for the test sample y was articulated as 𝑋𝑖�̂�𝑖 .

The residual between y and the estimated values for all 

categories was computed: 

2 2
ˆ ˆ/i i i ir y X p p= − (15) 

Subsequently, y was categorised into the class yielding the 

minimal residual: 

 Identity( ) arg mini iy r= (16) 

The CRC algorithm was presented as follows, as referenced 

in studies [34-38]: 

Algorithm 1: CRC algorithm 

Input: Training sample matrix 𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝑘] ∈
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𝑅𝑚×𝑛, one test sample y.
Output: Category Identity(y) of test samples 

(1) The dataset X was normalised;

(2) p̂ Py= was computed, where 𝑃 = (𝑋𝑇𝑋 + 𝜆 ⋅ 𝐼)−1𝑋𝑇; 

(3) Regularised residuals 𝑟𝑖 = ||𝑦 − 𝑋𝑖�̂�𝑖||2/||�̂�𝑖||2  were

calculated; 

(4) The category y was output, with 

𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦( 𝑦) =𝑎𝑟𝑔 min
𝑖

{𝑟𝑖}.

4. CROSS-MEDIA RETRIEVAL VIA TLSCR

Building on the previously elaborated theory, a novel 

method for cross-media retrieval, premised on TLSCR, was 

proposed in this study. To commence, global and local features 

from both images and texts were extracted. Leveraging these 

feature representations, two strata of similarity were 

meticulously crafted and integrated. Subsequent stages 

encompassed the utilization of all training images for the CR 

of every test image and the analogous process for text samples. 

Through the collaboration coefficients derived from the image 

and text via the CR classifier, a unified dimensional 

representation was achieved, enabling cross-media retrieval 

between the image and text. It was observed that such a 

method facilitated the co-representation of each test sample 

with all training samples, preserving the distinctive nature of 

each test sample to a degree. 

An algorithmic representation of the cross-media retrieval 

predicated on TLSCR is detailed below: 

Algorithm 2: Cross-media retrieval via TLSCR 

Input: Training image set 𝐼𝑡𝑟 ∈ 𝑅𝑝×𝑛 , testing image set 
𝐼𝑡𝑒 ∈ 𝑅𝑝×𝑒, training text set 𝑇𝑡𝑟 ∈ 𝑅𝑞×𝑛, testing text set 𝑇𝑡𝑒 ∈ 
𝑅𝑞×𝑒 , regularization parameter λ, where m and e are the 
number denote the counts of training and testing samples 

respectively, and p and q are the dimensions of image and text 

features, respectively. 
Output: Image synergy coefficient α, text synergy 

coefficient β. 

(1) The dataset was normalized as Itr, Ite, Ttr and Tte;

(2) For each 𝑖𝑖 ∈ 𝐼𝑡𝑒, 𝛼𝑖 = (𝐼𝑡𝑟
𝑇𝐼𝑡𝑟 + 𝜆 ⋅ 𝐼)

−1
𝐼𝑡𝑟

𝑇𝑖𝑖;

ENDFOR 

(3) For each 𝑡𝑗 ∈ 𝑇𝑡𝑒, 𝛽𝑗 = (𝑇𝑡𝑟
𝑇𝑇𝑡𝑟 + 𝜆 ⋅ 𝐼)

−1
𝑇𝑡𝑟

𝑇𝑡𝑗;

ENDFOR 

(4) α=[α1, α2, ..., αi, ..., αe], β=[β1, β2, ..., βi, ..., βe].

In Algorithm 2, it was noted that the dimension of the

collaboration coefficient was solely contingent upon the 

number of training samples, devoid of any association with the 

dimensions of image and text features. As a result, the synergy 

coefficient between the image and text was derived, leading to 

a unified dimensional representation for both. Subsequently, 

an isomorphism of image and text features into a shared 

subspace was realized, as mathematically represented: 

p e n e

teI  → (17) 

q e n e

teT  → (18) 

To culminate the cross-media retrieval task, a similarity 

measure was instituted. The crux of this measure was to 

ascertain the distance between each sample in α and every 

sample in β. A smaller distance implied heightened similarity 

between samples. 

5. EXPERIMENTAL ANALYSIS: CROSS-MEDIA 

RETRIEVAL BASED ON TLSCR 

5.1 Dataset selection and evaluation indices 

To rigorously assess the algorithm articulated in this study, 

comparisons were drawn with six benchmark cross-media 

retrieval techniques. These encompass methods grounded in 

statistical correlation analysis: CCA [39] and JFSSL [40]. 

Additionally, methods underpinned by deep learning 

paradigms such as CMDN [41], ACMR [42], DSCMR [43], 

and SSACR [44] were also incorporated into the comparative 

framework. Validation was undertaken on two publicly 

accessible datasets: the Wikipedia dataset and the Pascal 

Sentence dataset [45]. 

The Wikipedia dataset, recognised as a preeminent dataset 

for cross-media retrieval, comprises 2,866 image-text pairings 

distributed across 10 diverse categories including, but not 

limited to, history and biology. From this dataset, 2,173 pairs 

were selected at random for training purposes, whilst the 

remaining 693 pairs were designated for testing. 

The Pascal Sentence dataset, sourced from the 2008 Pascal 

development kit, encompasses 1,000 images, categorised, on 

average, into 20 distinct categories. Every image in this dataset 

was annotated via the Amazon Mechanical Turk platform. 

Subsequent to this annotation, five unique sentences, each 

generated by a distinct annotator, were amalgamated to 

constitute a single document. From this consolidated dataset, 

a random selection process led to the demarcation of 800 

image-document pairings for training, with the resitwo 200 

pairings allocated for testing. 

In evaluating the efficiency and accuracy of the 

aforementioned algorithm, two predominant evaluation 

indices in the realm of cross-media retrieval were utilised: the 

mean average precision (MAP) and precision recall (PR) [9, 

28]. The empirical results unequivocally underscored the 

superior efficacy of the method detailed in this study. 

5.2 Analysis of retrieval results 

Table 1 presents the MAP values for six benchmark cross-

media retrieval methods alongside the performance of the 

TLSCR methodology when applied to the Wikipedia dataset. 

Further visual representation can be gleaned from Figure 2, 

which delineates the PR curve for all seven techniques. 

From the acquired results, it is discernible that the TLSCR 

method surpasses its counterparts in varying retrieval tasks, 

encompassing image retrieval text, text retrieval image, and 

the average of both, as well as in the recall. 

In Table 2, the MAP values for the seven methodologies are 

exhibited when subjected to the Pascal Sentence dataset. 

Similarly, Figure 3 illustrates the PR graphs for these methods 

under the same dataset. 

Table 1. MAP performance on the Wikipedia dataset 

Methods I2T T2I Avg 

CCA 0.310 0.316 0.313 

JFSSL 0.392 0.381 0.387 

CMDN 0.429 0.352 0.391 

ACMR 0.513 0.439 0.476 

DSCMR 0.506 0.458 0.482 

SSACR 0.509 0.461 0.485 

TLSCR 0.532 0.481 0.507 
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(a) I2T

(b) T2I

Figure 2. Recall curve on the Wikipedia dataset 

(a) I2T

(b) T2I

Figure 3. Recall curve on the Pascal Sentence dataset 

Table 2. MAP performance on the Pascal Sentence dataset 

Methods I2T T2I Avg 

CCA 0.337 0.439 0.388 

JFSSL 0.406 0.401 0.404 

CMDN 0.512 0.418 0.465 

ACMR 0.638 0.491 0.565 

DSCMR 0.644 0.496 0.571 

SSACR 0.665 0.493 0.579 

TLSCR 0.701 0.506 0.604 

Through a careful examination of the results, it becomes 

evident that the TLSCR method exhibits a marked superiority 

over the other six traditional techniques across different 

retrieval operations and in recall indices. 

Upon scrutiny of the experimental results, significant 

advantages of the TLSCR cross-media retrieval method over 

the other six classical techniques can be ascertained. 

6. CONCLUSIONS

In the study presented, a cross-media retrieval approach 

grounded in TLSCR has been introduced. Initially, a two-level 

cross-media model was posited, leveraging both global and 

local representations. This duality was instrumental in 

encapsulating diverse facets of cross-media relevance learning. 

Subsequently, two distinct strata of cross-media alignment 

were proffered, with a meticulous integration scheme devised 

for the pairing of similarity levels. CR was employed to derive 

collaborative coefficients, thereby facilitating a dimensionally 

consistent representation for both image and text. This method 

has been shown, through rigorous empirical studies on two 

datasets, to bolster the efficacy of cross-media retrieval 

considerably. 

By maintaining the specific character of individual test 

samples, this methodology has managed to offer a nuanced yet 

robust solution to cross-media retrieval challenges. The 

congruence and effectiveness of this approach underscore its 

potential for broader applications and further explorations in 

the realm of cross-media data processing. 
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