
 

 

 

 

 
 

1. INTRODUCTION 

Entropy is the basic concept of physics and information 
sciences. It is a measure to compare different state of an 
isolated system. Entropy is the thermodynamic variable that 
serves to define and relate the thermal properties of the matter 
and equilibrium state, basically known as second law of 
thermodynamics. According to the second law of 
thermodynamics, all real processes are irreversible. Entropy 
generation is a measure of the amount of irreversibility, 
which associated with the real processes. As entropy 
generation takes place, the quality of energy 

decreases  Cengel et al. 1   . Bejan [2] introduced that the 

continuous entropy generation in the fluid flow system is 
occurred due to the exchange of the heat and momentum 
within the fluid and at the impermeable boundaries. Bejan 
[3], [4] discussed that entropy generation for forced 
convective in viscous fluid flow through the channel is due to 
heat transfer and viscous friction in the fluid. Entropy 
generation mostly occurs in the thermal and heat engineering 
system, therefore in the engineering field it has wide range of 
applications, such as industrial heat exchanger, nuclear 
reactor, petroleum equipment’s and many other applications 
in the mechanical and chemical engineering. Hence lot of 
research carried out in last two and three decades in this field. 
The effect of hall current and magnetic field in a oscillatory 
channel flow through a rotating system was depicted recently 
by Ahmed and Das [5]. Entropy generation in a laminar fluid 
flow through a circular pipe is investigated by Ahmet et al. 
[6]. Yurusoy et al. [7] studied the effects of entropy 

generation and temperature dependent viscosity on a non-
Newtonian fluid flow in annular pipes. Entropy generation for 
forced convection in a porous saturated circular tube with 
uniform wall temperature was discussed by Hooman et al. [8]. 
Pakdemirli et al. [9] analyzed the entropy generation in pipe 
due to non-Newtonian fluid flow in the case of constant 
viscosity. They concluded that an increment in the non-
Newtonian parameters, reduces the fluid friction in the region 
close to the pipe wall. Natural convection and entropy 
generation of nano-fluids in a square cavity was concluded by 
Bouchoucha and Bessaih [10]. Unsteady heat and mass 
transfer effects on an impulsively started infinite vertical plate 
in the presence of porous medium was studied by Loganathan 
et al. [11]. Ganesan et al. [12] considered the Radiation and 
mass transfer effects on flow of an incompressible viscous 
fluid past a moving vertical cylinder. Their work was 
extended by Suneeta et al. [13] for MHD fluid flow. On the 
same fluid flow conditions, the entropy generation was 
analyzed by Mahian et al. [14]. Tshehla et al. [15] 
premeditated the entropy generation in a variable viscosity 
fluid flow between two concentric pipes with a convective 
cooling at the surface. Aldos et al. [16] discussed the mixed 
convection from a horizontal cylinder in a porous medium. 
Effect of slip conditions on forced convection and entropy 
generation in a circular channel occupied by a highly porous 
medium Darcy extended Brinkmann Forchheimer model was 
conferred by Chauhan et al. [17]. Kumar Navin et al. [18] 
extended this work. They concluded the MHD forced 
convection and entropy generation in a circular channel 
occupied by hyper porous medium.   
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ABSTRACT  
 
The aim of the present study is to analyze the entropy generation on forced convective flow of viscous 
incompressible fluid flow through a circular channel filled with a hyper porous medium saturated with a 
rarefied gas in the presence of transverse magnetic field, thermal radiation and uniform heat flux at the walls 
of the channel. For the Darcian model, the velocity and heat equations are analytically solved and the 
effects of various physical parameters on thses are discussed. In addition, the Entropy generation rate, 
Nusselt number and Bejan number are analyzed for different parameters. It was perceived that entropy 
generation number attains high values due to the thermal radiation. This is also concluded that rate of heat 
transfer upsurges  due to the radiative heat tansfer and Brinkmann number. 
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Motivated by the above cited research work, we have made 
an attempt to analyze the entropy generation on forced 
convective flow of viscous incompressible electrically 
conducting fluid through a circular channel filled with a hyper 
porous medium saturated with a rarefied gas in the presence 
of transverse magnetic field, thermal radiation and uniform 
heat flux at the walls of the channel.  

 
 

2.  FORMULATION OF THE PROBLEM  
 

Consider a steady two dimensional flow of a viscous 

incompressible electrically conducting fluid along the x  

direction taken as the axis of circular channel. A uniform 
magnetic field is applied in the transverse direction of the 
channel.  

 

 
 

Figure 1. Geometry configuration 
 

The internal territory of the circular channel with radius 

R is employed with extremely absorbent medium soaked with 
rarefied gas. The wall of the circular channel is supposed as 
impermeable or resistant wall. It is also assumed that the 

radiation heat flux in the x  direction is negligible as 

compared to the direction perpendicular to the fluid flow. By 
using the Darcy-extended Brinkmann Forchheimer model of 
porous medium for steady MHD forced convective flow 
through the circular channel in the presence of thermal 
radiation the governing equations of the flow are given as 
below: 

 
2

2
2

02

1
0,


 

 
       

 

i
eff

C ud u du
u B u

r dr Kdr K
             (1)  

 

 

2

2

22

0

1
,

 
 



   
             


 



p eff

r

dT dT du
C u r u

d x r r dr K dr

B u r q
r r

                (2)  

 
The corresponding boundary/symmetry conditions are 
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Following the Rosseland approximation Brewster [19] 

which leads to the radiative heat flux rq  is given by  
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If temperature difference within the flow is sufficiently 

small such that 
4

T may be expressed as a linear function of 

the temperature, then the Taylor series for 
4

T  about wT  after 

neglecting the higher order terms, is given as  
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In view of equations (4) and (5), equation (2) is reduced as  
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3. METHOD OF SOLUTION  

We now introduce the following dimensionless quantities 
as  
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Using (7), the equation (1) is reduced in dimensionless 

form   
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The corresponding boundary conditions for velocity field 

became as 
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Further defining the mean velocity meanU  and bulk mean 

temperature meanT  Navin et al .. 18    
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The dimensionless variables are originated as  

 

2
, , ,

( )

Rqu T Tw wu T Nu
U T T T Tmean w w meanmean 


  

 
                     (11)  

 

T is the function of radial coordinate  r only, while the 

bulk mean temperature meanT  is the function of axial 
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coordinate ( )x  only. Now from the first law of 

thermodynamics, for uniform heat flux on the wall, we have  
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Now using equation (11) and (12), equation (6) is reduced 

as 
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The corresponding boundary/symmetric 

conditions for temperature field are: 
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The Nusselt number can be found by substituting u and 

T in the compatibility condition  
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This is an identity from the first law of thermodynamics 

[Nield et al. [20]]. 
 

3.1 Solution of momentum equation  

 
In case of large Darcy number, we write the following 

asymptotic expression for the velocity distribution with the 
assumption 1   
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Now substituting the equation (16) into (8) and equating 

the coefficient of like powers of  , we find the following set 

of coupled differential equations: 
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and the corresponding boundary conditions are  
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For the diminutive magnetic field, 0u and 1u can be 

expanded as  
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Substituting the equation (20) in equation (17) and (18) 

and equating the coefficient of like power of 2M and 

neglecting the higher order of 2M , we have  
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The corresponding boundary conditions are given by 
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Equations (21) to (24) are coupled linear differential 

equations with variable coefficient. These are solvable by 
straight forward calculation and the solution is given by  
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where 23A  to 27A are constants.  

 

3.2 Solution of heat equation  
 

Now by using equation (26) in the mean velocity equation 
(10), we get  
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where 23A  to 29A  are constants and not given here due to 

sake of bravity. Similarly, for the large Darcy number, we 
write the following asymptotic expression for temperature 
distribution as  
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Using (27), (28) and (10) in equation (13), leaving the 
higher order than two, we obtained the following set of 
differential equations 
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The corresponding boundary conditions are: 
 

at 0 10 : 0, 0;  
dT dT

r
dr dr

 

at 0 1
0 11: , .     

dT dT
r T T

dr dr
                                (31)  

 
Equation (29) and (30) are ordinary linear differential 

equations with variable coefficient these are solvable by usual 
algebric method.         

Finally, solving the equation (15) for determining the 
Nusselt number, we find  
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where 30A to 106A be constants.  

 
 

4. ENTROPY GENERATION  

 
Entropy generation analysis concerned with the MHD 

forced convective flow through a circular channel filled with 
porous medium in the presence of thermal radiation is 
considered. The volumetric rate of entropy generation is 
obtained based on the previous discussed studies of the fluid 
flow problems for velocity and temperature field given by 
Woods [21].  
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where ( )G HE , ( )G FE and ( )G ME  represent the entropy 

generation rate due to heat transfer, fluid friction and 
magnetic field respectively, and their values for the present 
problem in cylindrical coordinates are given by 
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where 0T is the reference temperature.  

Now using the non-dimensional quantities defined in 
equation (7) and (11), we get entropy generation in 
dimensionless form as:  
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generation. Equation (37) can be written as  
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where entropy generation due to heat transfer  
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entropy generation due to viscous dissipation  
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and entropy generation due to magnetic field  
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The Bejan number ( )Be is given by  
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which compares the magnitude of entropy generation due to 
heat transfer to the magnitude of the total entropy generation. 
 
  

5. RESULTS AND DISCUSSION  
 

In the present study, an analytical solution is obtained for 
the velocity and temperature profiles for the fully developed 
steady MHD forced convective flow through a circular 
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channel filled with a hyper porous medium soaked with a 
rarefied gas. The entropy generation due to heat transfer, 
fluid friction and magnetic field is evaluated numerically for 
different values of governing parameters.  

Figure 2 shows the effect of magnetic field and velocity 
slip parameter on the velocity field. It is depicted that due to 
the intensity of the magnetic field, the fluid velocity is 
declining gradually. While slip parameter upsurges velocity 
field. This is quite visible that the fluid has its high velocity in 
the centre of the circular tube.  

It is observed from Figure 3 that an increase in 
Forchheimer number F reduces the fluid velocity. But this 
demotion is comparatively large near the centre line. The 
dimensionless temperature profiles are plotted against r in 
Figure from 4 to 7. From Figure 4 it is observed that an 
increment in the temperature slip parameter  supports the 

magnitude of the temperature while reverse effect is seen due 
to the enhancement in velocity slip parameter  .  

Figure 5 describes that when the Brinkmann number 

Br and intensity of magnetic field  increase, the fluid 
temperature rises gradually and this effect is more in the 
centre line of the channel. From Figure 6 it is predicted that 
with the increasing of Forchheimer number F, the temperature 
of the fluid is declining. The effect of radiation parameter on 
temperature fluid can be seen clearly from Figure 7. The fluid 
temperature is getting increased due to rise in thermal 

radiation parameter . This promotion is comparatively 
higher on the centre line of the circular channel.  

Now Figure 8 to 12 illustrate the effect of various physical 
parameter on entropy generation rate. From Figure 8 we 
observed that the entropy generation rate is declining due to 
increase in the Forchheimer number. While Figure 9 to 11 

predict that an increase value of temperature slip parameter , 

Brinkmann number Br and Hartmann number  upsurging 
the entropy generation rate. Figure 12 shows that effect of 
radiation parameter on entropy generation rate. This is getting 
increased due to increase of the thermal radiation in the 
presence of uniform magnetic field.  

Figure 13 to 16 reflect the effect of various physical 

parameter on Bejan number Be . The Bejan number attains 

its maximum value (i.e., 1) for all value of r . Figure 13 
illustrate that Bejan number increases due to an increment in 
the Brinkmann number. Figure 14 and 15 depict that an 
increment in the Forchheimer number and Hartmann number 
raise the value of Bejan number. Figure 16 shows that an 

increment in the thermal radiation parameter  support the 
Bejan number.  

Table 1 describes that the rate of heat transfers in terms of 
the Nusselt number rises with an increase of temperature slip 

parameter , Brinkmann number Br , Forchheimer number F, 

viscosity ratio 1, Hartmann number , and radiation 

parameter . While it reduces with the increase value of 
velocity slip parameter . 

 
 

Figure 2. Velocity versus r 
 

 
 

Figure 3. Velocity versus r 
 

 
 

Figure 4. Temperature versus r 
 

 
 

Figure 5. Temperature versus r 
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Figure 6. Temperature versus r 
 

 
 

Figure 7. Temperature versus r 
 

 
 

Figure 8. Ns versus r 
 

 
 

Figure 9. Ns versus r 
 

 

 
 

Figure 10. Ns versus r 
 

 
 

Figure 11. Ns versus r 
 

 
 

Figure 12. Ns versus r 
 

 
 

Figure 13. Be versus r 
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Figure 14. Be versus r 
 

 
 

Figure 15. Be versus r 
 

 
 

Figure 16. Be versus r 
 

Table 1. Nusselt number (Nu) at wall when η = 0.1 

α β Br F μ1 M N Nu 

0.05 0.05 0.1 2 1.25 0.4 3 0.4023 

0.1 0.05 0.1 2 1.25 0.4 3 0.1532 

0.05 0.1 0.1 2 1.25 0.4 3 0.4844 

0.05 0.05 0.2 2 1.25 0.4 3 1.1044 

0.05 0.05 0.1 5 1.25 0.4 3 0.4047 

0.05 0.05 0.1 2 2 0.4 3 0.8267 

0.05 0.05 0.1 2 1.25 0.5 3 0.4428 

0.05 0.05 0.1 2 1.25 0.4 4 0.5295 

0.05 0.05 0.1 2 1.25 0.4 5 0.5556 

 

 

 

 

 

6. CONCLUSIONS 

 
An investigation has been carried out to analyze the 

entropy generation on forced convective flow of viscous 
incompressible fluid flow through a circular channel filled 
with a hyper porous medium in the presence of transverse 
magnetic field and thermal radiation. The study concludes 
that  

(1) Entropy generation rate is rising due to increase in 
temperature slip parameter, viscosity ratio, Hartmann number 
and radiation parameter.  

(2) Entropy generation rate is declining due to the 
presence of velocity slip coefficient, Brinkmann number and 
Forchheimer number.  

(3) The value of the Bejan number is increasing due to 
the effect of Brinkmann number, Forchheimer number, 
Hartmann number and radiation parameter.  
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NOMENCLATURE 

 

Br  brinkmann number  

Be  bejan number  

pC  specific heat, J. kg-1. K-1 

Da  

 F  

darcy number  
forchheimer number  

  thermal conductivity, W.m-1. K-1 

K  
permeability  

M  hartman number  

N  radiation parameter 

Ns  entropy generation coefficient  

Nu  nusselt number  

P  negative  of applied pressure gradient in 

x  direction  

Pe  peclet number  

rq  rediative  heat  flux  

R  radius of circular channel  

r  radial coordinate  of cylinder  

T  dimensionless temperature  

meanT  bulk mean temperature  

wT  temperature at wall  

u  fluid velocity  

meanU  mean velocity  

 

Greek symbols 

 

  dimensionless velocity slip coefficient  

  velocity slip coefficient  

  dimensioless temperature slip coefficient  

  temperature slip coefficient  

  dynamic viscosity, kg. m-1.s-1 

eff  effective viscosity  

1  viscosity ratio  

  coefficient of electrical consuctivity   
  Fluid density  
  porous media shape parameter  

  mean absorption coefficient  

Subscripts 

 

w wall  
p  pressure  

eff  effective  
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