
 

 
 
 

 
 

 
1. INTRODUCTION 

Instability of laminar external flow and their transition to 
turbulence are important phenomena in many engineering 
flow systems. Researchers have studied these occurrences for 
decades, focusing on how external agents, such as free-stream 
fluctuations and wall roughness, induce boundary-layer 
disturbances, and on whether the latter become unstable and 
lead to the laminar flow breakdown [1]. About 50% of the 
drag of a modem commercial aircraft is caused by skin 
friction. Due to the fact that turbulent boundary layers 
produce higher drag than laminar layers, the delay of 
transition is of particular interest. Several strategies to 
stabilize laminar flow have been investigated extensively, 
such as suction, mean flow distortion and wave cancellation 
by superposition [2, 3]. 

A direct numerical simulation of the effects of uniform 
blowing or suction from a spanwise slot on a turbulent 
boundary layer has been investigated by Park and Choi [4]. 
The authors showed that application of small-magnitude 
uniform blowing and suction significantly changes the skin 
friction and turbulence intensities above the slot as well as 
downstream of the slot. For both cases of blowing and 
suction, the streamwise turbulence intensity recovers quickly 
from blowing or suction, while other components of the 
turbulence intensities and Reynolds shear stress recover in a 
longer downstream distance . 

Ricco and Dilib [5] deals with the effects of distributed 
steady wall suction and blowing on a Blasius boundary layer 
perturbed by low-frequency, streamwise-elongated vertical 
disturbances induced by free-stream vertical perturbations. 

Kim et al. [6] examined the effect of blowing velocity on 
the characteristics of the turbulent boundary layer. They 
conducted direct numerical simulations at three values of the 
blowing velocity under conditions of constant mass flow rate 
through the slot. 

Mehrez et al. [7] analysed numerically by Large Eddy 
Simulation (LES) methodology the effects of local 
perturbation on the dynamic structure and heat transfer in 
turbulent separated and reattached flow over a backward-
facing step. The perturbation is imposed by a local sinusoidal 
blowing/suction of the fluid into a separated shear layer. The 
simulation results show the existence of an optimum 
perturbation frequency value where the maximum 
enhancement of heat transfer is observed. 

Ahmed and Kalita [8] investigated the free convective 
oscillatory flow of a viscous incompressible and electrically 
conducting fluid past a vertical porous plate in sleep flow 
regime with variable suction and periodic plate temperature 
in presence of a uniform transverse magnetic field. Analytical 
solutions to the coupled non-linear equations governing the 
flow and heat transfer are derived by using perturbation 
method with Eckert number as perturbation parameter. The 
amplitudes and the phases of the fluctuating parts of the skin 
friction and heat transfer at the plate are shown graphically.  

Kim and Sung [9] performed direct numerical simulations 
of a spatially evolving turbulent boundary layer to study the 
effect of periodic blowing at a fixed frequency on a turbulent 
boundary layer. By comparing the flow behavior of the 
system under steady flow conditions with that in the presence 
of periodic blowing, they showed that periodic blowing 
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causes the enhancement of energy redistribution of turbulence 
intensities near the wall. 

Generally, the linear stability of hydrodynamic problems is 
governed by the Orr-Sommerfeld equation. For parallel shear 
flows with homogeneous boundary conditions, this equation 
constitutes an eigenvalue problem. For temporally evolving 
flows, the eigenvalue is the complex frequency and the 
problem becomes linear in the eigenvalue. Although for small 
amplitude disturbances, temporal evolution is a good 
approximation to the laboratory flow, the correct physics of 
the problem can be obtained only through the calculation of 
spatially evolving modes. In the Orr-Sommerfeld equation, 
these modes are given in terms of the wave number and for 
these situations, where the complex wave number is the 
eigenvalue, the Orr-Sommerfeld equation becomes a 
nonlinear eigenvalue problem. 

Since the pioneering work of Orszag [10] in 1971, spectral 
methods have emerged as a powerful tool to solve 
hydrodynamic stability problems. Orszag applied a 
Chebyshev tau technique to transform the Orr-Sommerfeld 
equation for plane Poiseuille flow to a matrix generalized 
eigenproblem MuKu  , solved at Reynolds numbers of 

order 104 using the QR algorithm. The superior performance 
of the Chebyshev tau method compared to existing finite-
difference and spectral schemes led to its application to a 
diverse range of stability problems [11].  

Dongarra et al. [12] and Melenk et al. [13] consider a 
general mathematical framework spectral methods for 
hydrodynamic stability problems. They analyze the Orr–
Sommerfeld equation supplied with homogeneous boundary.  

The pseudospectra and the numerical range of this Orr–
Sommerfeld operator is also investigated by Reddy, Schmid 
and Henningson [14].  

Hifdi et al. [15] present a temporal linear stability analysis 
of symmetric developing flows slightly perturbed from 
Poiseuille flow. The Chebyshev spectral collocation method 
is used to solve the Orr–Sommerfeld equation. For the mean 
flow, the solution considered is analytic. The results of the 
stability study depend essentially on the shape and amplitude 
of the velocity profiles imposed at the channel entry. 

In the present study, the hydrodynamic linear stability of 
external flow over a flat plate with wall suction or blowing is 
investigated. The flow is assumed similar two-dimensional 
laminar boundary-layer. The mean velocity profiles are 
obtained numerically for the case of suction or blowing. The 
eigenvalue problem associated with the Orr-Sommerfeld 
stability equation is solved to high accuracy by employing 
Chebyshev collocation spectral method. The numerical 
solutions facilitate the construction of complete neutral 
stability curves and the determination of stability 
characteristics for a wide range of permeable wall intensities 
extending from strong blowing to strong suction. 

2. PHYSICAL MODEL 

A schematic diagram of the physical problem is shown in 
Figure 1. It consists of permeable wall, in direct contact with 
laminar external flow. The physical model is two-
dimensional. The coordinates system OXY is located on the 
plate and defined as: OX axis is in the flow direction, OY axis 
is normal to the plate and directed towards the flow. 

 
 

Figure 1. Schematic diagram of the physical problem  wall 

with suction () or blowing ();  laminar boundary layer 

3. GOVERNING EQUATIONS 

Laminar two-dimensional external flow is governed by the 
Navier-Stokes equations 
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The boundary conditions are defined as 

At the wall (Y=0) 
 

wuu 
                        

                                                    (4) 

 

 Xw                                                                    (5) 

 

At outside border of boundary layer (Y) 
 

 
  uu
                                                               

                (6) 

4. STABILITY EQUATIONS 

The stability of parallel shear flows under two-dimensional 
infinitesimal disturbances of the form 

( )( , , ) ( ) i x cx y y e       is governed by the Orr-Sommerfeld 

equation (the derivation of this equation is given in the 
Appendix). 

 
2 4 22 " Re[( )( " ) " ] 0i U c U                

   
(7) 

 
with the conditions  

 

0 0,at y y               (8) 

 
where superscripts indicate derivatives with respect to y, Re is 

the Reynolds number, (y)
 
is the complex amplitude of the 

wave (x,y,), U is the mean flow dimensionless  velocity 
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profile and  and c the wave number and the complex wave 
velocity, respectively.  

The quantities  and c are defined as  
 

r ii   
                                                                          

(9)
  

 

ir iccc          (10) 

 
The real part of c represents the wave phase velocity 

while the imaginary part ci determines the attenuation or 
amplification of disturbances. The flow is stable, neutrally 
stable, or unstable depending on whether ci is negative, zero, 
or positive.  

5. MEAN FLOW EQUATIONS 

The solution of stability equation (7) depends on the mean 
velocity profile U. For laminar boundary layer over a flat 
plate with suction or blowing, this quantity is not known 
explicitly, but it is obtained numerically from the nonlinear 
ordinary differential Blasius equation  
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subject to the boundary conditions 
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where is the similarity coordinate and f the non dimensional 
stream function given by Skan-Falkner transformation: 
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In terms  of similarity coordinate and stream function,   

dimensionaless  axial and normal velocity components are:   
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At the wall, the normal velocity component is: 
 

ww f
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        (19) 

From this equation, we note that flow blowing, produced 
by imposing inward parietal velocity, is characterized by 
negative values of wall stream function. While flow suction, 
produced by imposing outward parietal velocity, is 
characterized by positive values of stream function. 

6. NUMERICAL METHOD 

The mean velocity profile for a similar laminar boundary-
layer over a flat plate with wall suction and blowing 
characterized by constant wall stream function is obtained 
numerically by solving equation (11) using Runge-Kutta 
method (RK-4).  

The Chebyshev spectral collocation method is applied to 
solve the stability Equation (7). A complete and broad 
description of Chebyshev spectral methods is given in       
[16-19].  This method is based on the Chebyshev polynomials 
of order k defined on the interval [-1, 1] by  

 

NkkTk ,...,1,0;)cos(cos)( 1            (20) 

 
The Gauss-Lobatto collocation points [17-18] is used to 

define the Chebyshev nodes in the domain [-1, 1], namely 
 

 ,cos Njj   11   ,  N...,,,j 210
         

         (21) 

 
where N is the number of intervals and   represents the 

coordinates of the collocation points in the Chebyshev 
domain. 

The physical quantity (y) is approximated by the 
interpolating polynomial in terms of the collocation points by 
employing the truncated Chebyshev series of the form  
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This expression can be expressed as  
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where the expansion coefficients Ck may be evaluated by 
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The nth derivative of N()  is then approximated by the 
following expression. 
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where n is the order of differentiation. 
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Derivatives of the variables at the collocation points may 
be represented by 
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The first derivative at the Chebyshev-Gauss-Lobatto points 

satisfy 
 

jkjk dC )()1(          (28) 

 
where djk are the elements of the Chebyshev spectral 
differentiation matrix D defined as [16-17]. 
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Now, the discrete values of the first derivative of the 

function  (j) can be obtained as follows 
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This equation can be written in matrix-vector form as 

follows 
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The second-order derivative expansion is 
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This is written in matrix form as 
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where    
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The second derivative matrix 
)2(D  can be obtained 

analytically using an explicit expression or by the following 

relation DDD )2(
 ([19]). 

In the present study, relating boundary layer flow problem, 
the calculations require the mapping of the physical domain 
onto the Chebyshev domain. The wall-normal domain varies 

in the range [0,y∞], where y∞ is the outside border of 
boundary layer. To transform Chebyshev interval -1 ≤ η ≤ 1  
into the computational domain 0 ≤ y ≤ y∞ , Motsa and 
Makukula [22] derived a grid transformation that mapped the 
Chebyshev collocation points to a new set of interpolation 
points. The grid transformation was defined as 
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and the derivative of (y)  is then evaluated as  
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With a definition of a new differentiation matrix D


 with D 
being the Chebyshev spectral differentiation matrix. 
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The first and second derivative matrix expressed at the 

collocation points of the physical domain can be represented 
in matrix-vector form as follows. 

 
(1)

(2) (2)

(1) (1) (1)

0

(2) (2) (2)

0

D

D

( ( ),...., ( ))

( ( ),...., ( ))

T

N

T

N

y y

y y

 

 

  

  

 






 

        (40) 

 
It is now convenient to write the Orr-Sommerfeld equation 

(7) in a different form 
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where I is the identity matrix of order N×N. 

We note that this equation can be applied in both domains. 
By taking: 

(1) In Chebyshev domain -1    1:
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Equation (41) is a polynomial in α with matrix coefficients 
and has the following explicit form, 
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where the matrix coefficients are  
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Different numerical methods can be used to solve equation 

(42). The simplest one consists in transforming it to a linear 
problem of larger dimension by forming the so-called 
companion matrices [20]. A companion matrix for equation 
(42) can be written as 
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This equation constitutes a generalized eigenvalue problem 

for α, and can be solved efficiently by the QZ-algorithm [10]. 

7. RESULTS AND DISCUSSION 

In Figures 2 and 3, the neutral stability curve and the mean 
flow velocity profile obtained in this study are compared with 
experimental results reported in the literature for 
impermeable wall (fw=0), [21]. A good agreement is 
observed. The neutral stability curve corresponds to ci=0. It 
separates the unstable region (ci>0) and the stable region 
(ci<0), that remain inside and outside this curve. 
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Figure 2. Neutral stability curve for impermeable wall:           

 numerical results, ■ experience [21] 
 

 
 

Figure 3. Velocity profile for impermeable wall:                   

 numerical results, ■ experience [21] 

Table 1 shows a comparison between obtained eigenvalues 
using various methods for the case Re=580, α=0.179, y∞=20 
and N+1=44. The eigenvalues are given for the single 
unstable mode (ci>0). This comparison shows that the present 
numerical method is accurate.  
 

Table 1. Eigenvalues of the Orr-Sommerfeld equation for 
laminar boundary layer (fw=0), Re=580, α=0.179 

 

Results  Eigenvalues 

Present study  

Grosch and Orszag [23] 

Zebib [24] 

Hatziavramidis and Ku [25] 

Xie et al. [26] 

0.364552+0.0077791i 

0.364557+0.007773i 

0.364143+0.007959i 

0.364372+0.007884i 

0.36455  +0.0077793i 

 

7.1 Mean velocity profiles 

Figures 4 and 5 present the mean velocity profiles obtained 
numerically by solving Equation (11) with the boundary 
conditions given in Equations (12)-(14) by standard Runge-
Kutta method. Mathematically, suction or blowing are 
produced by imposing positive or negative values of wall 
stream function, respectively. We note that, the dimensionless 
velocity decreases with increasing the intensity of suction and 
increases with increasing the intensity of blowing. The 
intensity of suction or blowing is defined as the absolute 
value of the wall stream function. 

 

 
 

Figure 4. Mean velocity profile for wall suction (fw>0) 
 

 
 

Figure 5. Mean velocity profile for wall blowing (fw<0) 
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Figure 6. Velocity first-order derivative for wall suction 
 

 

Figure 7. Velocity second-order derivative for wall suction 

 

 

Figure 8. Velocity first order derivative for wall 
blowing 

 

 

Figure 9. Velocity second-order derivative for wall blowing 

The distributions of the first-order derivative U’ and the 
second-order derivative U'' of the velocity for the case of 
suction or blowing are shown in Figure 6 to 9, respectively. 
These quantities play an important role in the stability 
phenomena, and to achieve accurate results of the stability 
calculations, these profiles have to be produced with great 
accuracy.  

 

7.2 Stability and transition characteristics of flow 
 

Neutral stability curves are presented in the (Re, α) plan for 
some values of the wall stream function, as can be seen in 
Figures 10 and 11. 

In the neutral stability curves for suction, Figure 10, one 
sees a marked shifting to the right as the intensity of the 
suction increases. That is, the region of flow stability extends 
to higher Reynolds numbers as the suction becomes stronger. 

In Figure 11, it is seen that increase in the intensity of 
blowing cause a marked left ward change of the curves, that 
is, toward lower Reynolds numbers. Thus, blowing is seen to 
be highly destabilizing. 
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Figure 10. Neutral stability curves, for wall suction (fw>0) 
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Figure 11. Neutral stability curves, for wall blowing (fw<0) 
 
The summary of the stability calculations for two 

dimensional laminar external flow over a flat plate with wall suction 

and blowing submitted to linear two-dimensional disturbances is 
presented in Figure 12 and 13.  Here the variation of the 
critical Reynolds number with suction and blowing is 
illustrated. As it is evident from this figures, the critical 
Reynolds number increases with increasing the intensity of 
suction or decreasing the intensity of blowing.    
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Figure 12. Critical Reynolds numbers for suction 
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Figure 13. Critical Reynolds numbers for blowing 

8. CONCLUSIONS 

This study is focused on the temporal linear stability 
characteristics of laminar forced convection external flows 
along a horizontal permeable flat plate. For the mean flow, 
the similar boundary layer equations are used and solved 
numerically by a point-by-point Runge-Kutta-Verner method. 
The eigenvalue problem for the disturbance flow was solved  
numerically by the Chebyshev collocation spectral method. 
Neutral stability curves and critical Reynolds numbers are 
presented for different values of the wall stream function fw 
ranging from 0.2 to 3 for wall suction and from -0.2 to -1 for 
wall blowing. The numerical solutions indicate the important 
role of the suction or blowing effect on the stability 
characteristics. The critical Reynolds number increases with 
increasing the intensity of suction or decreasing the intensity 
of blowing.      
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NOMENCLATURE  

c complex  wave velocity 
Ci   matrix coefficients, defined in Eq. (43) 
D the Chebyshev spectral differentiation 

matrix.  
djk elements of the Chebyshev spectral 

differentiation matrix Eq. (29) 
f   non-dimensional  stream function   
i   complex number 
I identity matrix 
L length scale [m] 
N number of intervals in the Chebyshev 

domain 
P pressure [Pa m-2] 
Re Reynolds number 
t   time [s] 
T Chebyshev polynomials 
u axial velocity  [m s-1] 
U dimensionless axial velocity profile 

 normal velocity [m s-1] 

X axial coordinate [m] 
x dimensionless axial coordinate 
Y normal coordinate [m] 
y dimensionless normal coordinate 

 

Greek symbols 

 

 

 complex  wave number 

   kinematic viscosity [m2 s-1] 

 wave disturbance 

 complex amplitude of the wave 

   =α (cr+ici), complex frequency 

 similarity coordinate 

 coordinates of the collocation points in 
the Chebyshev  domain 

   mass density [kg m-3] 

    dimensionless time 

 stream function of state flow 

 

Subscripts and superscripts 
 

 differentiation with respect to y 

 fluctuating term 

 mean value 

k   order of  Chebyshev polynomials 
r real part 
i imaginary part 
w wall condition 
∞ free stream or outside border of 

boundary layer 

APPENDIX 

In the two-dimensional formulation, equations (1)-(3) , the 
instantaneous velocity components and pressure are 

 

u u u,   
,                                                                              (1a) 

p p p,        

                                    

where u , , p  are the mean-flow terms and ,u~ ~ , p~  the 

fluctuating terms.   

Since u~ ,~  and p~  are small, Eqs. (1) to (3) can be written 

as 
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These equations can be simplified further by noting that all 

velocity fluctuations and their derivatives are of the same 
order of magnitude and by assuming that the mean flow 

velocity u is a function of y only (parallel flow 

approximation [16]). So that: Eq.(1) gives  
 

0                                                                                   (5a) 
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Equations (2a)-(4a) can be written as 
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For the linear stability, the two-dimensional normal mode 
expansion is applied using the stream function (  ) 

formulation. Accordingly 
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So, the fluctuating componenents of velocity are expressed 

as: 
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And by substuting Eq.(9a) and eliminating the pressure in 

equations (8a)-(10a), we deduce the stability equation known 
as the Orr summerfeld equation: 
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