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Iron losses are a major source of inefficiency in electrical devices, such as transformers 

and rotating machines. Accurately estimating iron losses is essential for optimizing the 

performance, energy efficiency, and cost-effectiveness of these devices. The swelling 

phenomenon is a significant factor that affects the accuracy of iron loss estimation. This 

phenomenon appears in the saturation region of the hysteresis loop under high-frequency 

regimes and can significantly affect the magnetic properties of the device. This paper 

presents a novel methodology for addressing the swelling phenomenon and improving the 

accuracy of iron loss estimation. The methodology is based on the Jiles-Atherton model, 

which is a well-established model for describing the hysteresis phenomenon in 

ferromagnetic materials. The methodology is improved by incorporating a novel 

formulation of the excess field based on magnetic viscosity. The Bertotti approach is used 

to account for the dynamic effects of the swelling phenomenon. The fmincon algorithm is 

used to identify the parameters of the Jiles-Atherton model in both quasi-static and 

dynamic regimes. This algorithm is a MATLAB®-based constrained optimization method 

that is used to find the set of parameters that minimizes the error between the simulated 

and measured hysteresis loops. The obtained results show that the proposed methodology 

is able to accurately estimate iron losses under both quasi-static and dynamic regimes. 
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1. INTRODUCTION

Designing electromagnetic devices optimally requires 

selecting materials with improved magnetic and electrical 

properties. The precise evaluation of iron losses in magnetic 

materials is a significant challenge in magneto-dynamics. The 

advancement of power electronics and control systems, such 

as electrical machines, has evolved to operate at higher 

frequencies. This development has enabled a wider range of 

applications and the ability to reduce the size of actuators 

while maintaining the same power output. However, higher 

frequencies also result in increased iron losses in electric 

machines, making it crucial to accurately predict and model 

these losses for efficient design and operation. These losses 

can represent through a phenomenon where the hysteresis loop 

of a magnetic material expands or increases in size when the 

frequency of the magnetic field applied to the material is 

increased. This swelling hysteresis effect has implications for 

iron losses in electric machines, as it influences components 

of iron losses, such as eddy current losses and excess losses 

[1]. Various models have been proposed in the literature [2, 3] 

to address this issue. The incorporation of the dynamic Jiles-

Atherton model into a numerical simulation of iron losses 

evaluation is an effective tool for modeling and predicting the 

losses of electrical steel laminations, as confirmed by several 

works [4, 5]. Usually, the dynamic models based on the Jiles-

Atherton one, have been built on Bertotti’s theory [6-9].  

The central concept of this approach is based on the 

statistical approach of losses commonly referred to as the loss 

separation approach developed by Bertotti et al. [10]. Energy 

loss is divided into three components namely hysteresis 

(static) loss or magnetic energy loss is usually separated into a 

frequency-independent hysteresis contribution Whys, and a 

frequency-dependent dynamic contribution Wdyn such as 

classical eddy current loss Wcla, and excess loss Wexc. The total 

energy loss is represented as the sum of these components, and 

this framework is widely used to calculate the iron losses in 

non-oriented (No) and grain (Go) materials [7, 11]. An 

alternative approach based on magnetic viscosity provides the 

ability to represent the characteristic of the hysteresis 

phenomenon and to control the shape of the dynamic 

hysteresis loop, through this approach, modeling the process 

of incorporating dynamic effects into the static hysteresis 

model to accurately represent the behavior of soft magnetic 

materials [12]. This is achieved by introducing a viscous-type 

equation that describes the time delay of induction B behind 

the applied field H. The dynamic loop of the magnetization 

process can be expanded, allowing for a more accurate 

representation of the material's response to changing magnetic 

fields. 

Based on this approach, several studies have been 

conducted using this approach to incorporate the Jiles-

Atherton model into a dynamic regime using magnetic 

viscosity [13, 14]. Although the results obtained from these 
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attempts were consistent with measurements, they 

encountered a significant challenge at high-frequency levels 

when a deformation or so-called swelling appears in the 

saturation region of the hysteresis loop. This requires prior 

knowledge of the magnetic flux density level at the site of 

swelling, which presents a drawback in the application of these 

approaches. 

To address this limitation, this paper proposes an improved 

excess field expression that includes functions of magnetic 

flux density B for the two constant parameters αexc and gexc. 

The parameter αexc offers the possibility to control the shape 

of hysteresis loops which has been modified as a function to 

find the variation of magnetic field Hdyn. These functions have 

four parameters with the five parameters of JA. A 

MATLAB®-based constrained optimization algorithm called 

fmincon is used to identify the parameters of the JA model in 

both quasi-static and the four parameters in dynamic regimes 

by calculation error quadratic between calculated and 

measurement. The fmincon algorithm is capable of handling 

non-linear functions, constraints, and decision variable bounds. 

The proposed methodology is validated by calculating 

dynamic hysteresis loops and comparing the results to 

measurements. The proposed approach was validated by 

comparing its results with non-oriented Fe-Si (M400-50A) 

measurements in the frequency range of 10 to 1000 Hz [15]. 

 

 

2. JILES-ATHERTON MODEL 

 

2.1 Original JA hysteresis model 

 

In the original Jiles-Atherton hysteresis model (JA) [16], the 

total magnetization (M) is divided into two parts: reversible 

magnetization (Mrev) and irreversible magnetization (Mirr). 

The reversible magnetization accounts for the translation and 

reversible rotation of domain walls during the magnetization 

process. It represents the elastic response of the material to the 

applied magnetic field. On the other hand, irreversible 

magnetization corresponds to the displacement of domain 

walls overcoming pinning forces. The relationships between 

the two components and anhysteretic magnetization (Man) are 

established based on the physical principles that govern the 

magnetization process. 

The primary equations within this model are as follows: 

 
𝑑𝑀𝑖𝑟𝑟

𝑑𝐻𝑒
=

𝑀𝑎𝑛−𝑀𝑖𝑟𝑟

𝑘𝛿𝛼(𝑀𝑎𝑛−𝑀𝑖𝑟𝑟)
  (1) 

 

𝑀𝑒𝑟𝑣 = 𝑐(𝑀𝑎𝑛 −𝑀𝑖𝑟𝑟)  (2) 
 

𝐻𝑒 = 𝐻 + 𝛼𝑀𝑖𝑟𝑟  (3) 
 

𝑀𝑎𝑛 = 𝑀𝑠 (coth (
𝐻𝑒

𝑎
) −

𝑎

𝐻𝑒
)  (4) 

 

Finally, the total differential susceptibility, dM/dH, was 

determined in the customary form. 
 

𝑑𝑀

𝑑𝐻
= (1 − 𝑐)

(𝑀𝑎𝑛−𝑀𝑖𝑟𝑟)

𝑘𝛿−𝛼(𝑀𝑎𝑛−𝑀𝑖𝑟𝑟)
+ 𝑐

𝑑𝑀𝑎𝑛

𝑑𝐻𝑒
  (5) 

 

where, He, Man, and Ms are, respectively, the effective field, 

the anhysteretic magnetization, and the saturation, 

magnetization. a,  , c, and k and are the model parameters 

where a represent quantified domain wall density.  is the 

parameter of inter-domain coupling. c is the coefficient 

magnetization reversibility and k represent quantified energy 

to break the pinning site in ferromagnetic materials, these 

parameters have to be determined from measured hysteresis 

characteristics, δ is a directional parameter takes the sign of 

dH/dt. 

 

2.2 Inverse JA hysteresis model 

 

The Jiles-Atherton hysteresis model initially uses the 

applied magnetic field (H) as the independent variable. In the 

inverse Jiles-Atherton model, the magnetization (M) is 

determined based on the magnetic flux density (B). This is 

achieved by integrating a differential equation with respect to 

the rate of change of magnetization with respect to magnetic 

flux density (dM/dB). The inverse JA hysteresis model is given 

as [17]:  

 
𝑑𝑀

𝑑𝐵
=

𝜉

𝜇0(𝑘𝛿+(1−𝛼)𝜉)
  (6) 

 

𝜉 = 𝛿𝑘𝑐
𝑑𝑀𝑎𝑛

𝑑𝐻𝑒
+ (𝑀𝑎𝑛 −𝑀)  (7) 

 
𝑑𝑀𝑎𝑛

𝑑𝐻𝑒
=

𝑀𝑠

𝑎
(1 − coth (

𝐻𝑒

𝑎
)
2

− (
𝑎

𝐻𝑒
)
2

)  (8) 

 

 

3. DYNAMIC JA HYSTERESIS MODEL 

 

Using a JA model for modeling magnetic hysteresis loops 

in a dynamic regime requires careful choice of a dynamic 

contribution approach. Previous research has introduced the 

concept of adding two opposing fields, introducing eddy 

currents, and expressing excess fields in the effective field 

using the concept of the separation of energy loss theory [7]. 

This approach provides a clear and systematic method for 

extending the JA model from a quasi-static to a dynamic 

regime, and has yielded acceptable results. The concept has 

been further enhanced by introducing a novel expression for 

excess losses based on magnetic viscosity and the JA model. 

This approach allows for the optimal shaping of the hysteresis 

loops by varying the exponent of the excess field expression 

[14].  

In the study of Zirka et al. [12], researchers proposed an 

alternative approach based on magnetic viscosity. This 

approach has proven to accurately predict losses and control 

anomalous loop shapes by adjusting the exponent of the excess 

field expression along with some parts of the loop. This 

approach is a mathematical expression derived from Landau 

Gilbert’s equation in order to put the similarity between 

rotational magnetization and the time delay of induction B 

behind the applied field H [18]. From this has been derived the 

excesses field based on the magnetic viscosity equation. 

For this, several attempts based on the magnetic viscosity 

approach have been proposed in the literatures [13, 14]. These 

studies yielded acceptable results, but they relied on prior 

knowledge of the magnetic flux induction level where 

swelling occurs. 

Based on the separation of energy loss theory, the total field 

H(t) is decomposed also into three components, hysteresis 

field Hhys(t), classical eddy-current field Hedd(t), and excess 

field Hexc(t). The total field can be represented as follows: 

 

𝐻(𝑡) = 𝐻ℎ𝑦𝑠(𝑡) + 𝐻𝑒𝑑𝑑(𝑡) + 𝐻𝑒𝑥𝑐(𝑡) (9) 
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Here Hhys(t) is the magnetic field calculated by using the 

inverse Jiles-Atherton model (Eq. (6) to Eq. (8)). As well as 

Eq. (10) below gives the excess field expression, where αexc(Bp) 

is given as a function that represents a variable in the equation 

that describes the behavior of losses in a magnetic material 

[19]. Its physical meaning account for random spatial 

variations in domain size and domain wall number [20]. This 

function affects the losses at different levels of flux density 

(Bp). Incorporating αexc(Bp) provides more precise predictions 

of losses, especially at higher frequencies. The Figure 1 below 

illustrates the evolution of the parameters Gm(Bp) and αdyn(Bp) 

in correlation with peak induction values.  

 

 
 

Figure 1. Peak-induction dependencies in GO Steel: 

Gm(Bp) and αdyn(Bp) [19] 

 

𝐻𝑒𝑥𝑐(𝑡) = 𝛿𝑔𝑒𝑥𝑐(𝐵) |
𝑑𝐵

𝑑𝑡
|
𝛼𝑒𝑥𝑐(𝐵𝑝)

  (10) 

 

where, gexc(B) is dynamic magnetic resistivity, that controls the 

shape of the dynamic hysteresis loop, and its simplest form is 

given as a polynomial by [19, 21]: 
 

𝑔𝑒𝑥𝑐 = 𝐶1(1 + 𝐶2𝐵
2) (11) 

 

The shape of the dynamic hysteresis loop is influenced by 

two constants, C1 and C2. These constants play an important 

role in determining the waist and area of the loop, and as a 

result, they have a significant impact on the shape of the loop 

in the saturation region. By adjusting the values of C1 and C2, 

it is possible to control the shape of the dynamic hysteresis 

loop. 

The classical eddy-current field is given as [22]: 

 

𝐻𝑒𝑑𝑑 = 𝑘𝑒𝑑𝑑
𝑑𝐵(𝑡)

𝑑𝑡
  (12) 

 

kedd is a coefficient related to the physical and geometrical 

parameters of the material and is given by [23]: 

 

𝑘𝑒𝑑𝑑 =
𝜎𝑑2

2𝛽
  (13) 

 
where, σ is the conductivity of the material, d and β are 

parameters related to the geometry of the material. In the case 

of a sheet, d corresponds to the thickness of the sheet, and β is 

a form factor. 

Another approach gives αexc as a function of the magnetic 

flux density B(t) instead of a constant or as a function of the 

pic induction (Bp) is proposed in this work. Eq. (14) shows the 

new form of αexc as a function of B(t). 

 

𝛼𝑒𝑥𝑐(𝐵(𝑡)) = 1 − 𝐶3𝑒𝑥𝑝(−𝛿𝐶4𝐵(𝑡)) (14) 
 

where, C3 and C4, are two constants that offer the possibility 

to control the swilling shape of hysteresis loops. δ is the same 

directional parameter. Eq. (14) is similar to Eq. (9) in the study 

of Reinert et al. [24]. This equation has proved the influence 

of premagnetization in ferromagnetic and ferromagnetic by 

new parameters as a function adapted to the influence of 

premagnetization, which adjusts the parameter of the 

Steinmetz equation. From a physical viewpoint, the variable 

αexc(B(t)) in Eq. (14) may be defined by the usage of the 

variation velocity normalized of the domain walls [25]. The 

main advantage of Eq. (14) does not need the preknowledge of 

magnetic flux density reversal of previous works [13, 14, 19]. 

They need to determine the level of the magnetic induction in 

the shape of the loop for modeling the swelling. 

Introducing Eq. (14) and Eq. (12) in Eq. (9), the total 

magnetic field has the following form. 

 

𝐻(𝑡) = 𝐻ℎ𝑦𝑠(𝐵) + 𝑘𝑒𝑑𝑑
𝑑𝐵(𝑡)

𝑑𝑡
+

𝛿𝑔𝑒𝑥𝑐(𝐵) |
𝑑𝐵

𝑑𝑡
|
𝛼𝑒𝑥𝑐(𝐵(𝑡))

  
(15) 

 

 

4. RESULT AND DISCUSSIONS 

 

This section is devoted to presenting the results of our 

proposal on hysteresis loops in both quasi-static and dynamic 

regimes. The main objective is to investigate and model 

hysteresis loops, which are commonly observed in the 

difference between measured and calculated. Through this 

proposal, the calculation of the iron losses in M400-50A 

materials in a dynamic regime. To achieve this, we employed 

different methods to model hysteresis loops and dynamic 

regimes. 

 

4.1 Quasi-static regime 

 

The proposed methodology for modeling the magnetic 

behavior of materials was validated using measurements from 

non-oriented (NO) magnetic sheets made of Fe-Si (M400-

50A), as specified in the study of Baghel et al. [13]. 

These sheets have a thickness of 0.5 mm and a mass density 

of 7670 g/dm3. 

 

Table 1. Quasi-static JA parameters 

 

Parameter  Value  

Ms (A/m)  1.25106 

a (A/m) 57.14 

k(A/m) 55 

c (-) 0.081 

α (-) 1.1510−4 

 

The parameter values of the quasi-static (10 Hz) JA 

hysteresis model were determined using a MATLAB®-based 

constrained optimization algorithm called fmincon. Table 1 

presents the obtained parameters. Figure 2 provides a 

comparison between the computed hysteresis loop and the 

measured one at 10 Hz. 

The close agreement observed between the computed and 

measured hysteresis loops, as depicted in Figure 2, obtained 
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under the quasi-static regime (10 Hz), not only provides strong 

support for the accuracy of the values presented in Table 1, but 

also highlights the effectiveness of the fmincon algorithm in 

accurately identifying the parameters of the Jiles-Atherton 

model.  

 

 
 

Figure 2. Computed and measured hysteresis loop at 10 Hz 

 

Figure 3 visually illustrates the progressive evolution of the 

fitness function over successive iterations. This function, 

which quantifies the discrepancies between measured and 

computed magnetic fields, demonstrates a discernible trend 

that reinforces the effectiveness of the optimization process. 

The continuous improvement observed in the fitness function 

affirms the algorithm's iterative convergence towards an 

optimal solution. 

 

 
 

Figure 3. The evolution of the fitness function versus the 

number of iterations 

 

4.2 Dynamic regime 

 

In this regime, the five parameters derived in the quasi-static 

regime remain constant and unchanged, as indicated in Table 

1. In the first approach, it is assumed that gexc(B) is constant 

and equal to kexc. With this assumption, Eq. (15) mentioned 

above can be expressed as follows: 

 

𝐻(𝑡) = 𝐻ℎ𝑦𝑠(𝐵) + 𝑘𝑒𝑑𝑑
𝑑𝐵(𝑡)

𝑑𝑡
+ 𝛿𝑘𝑒𝑥𝑐 |

𝑑𝐵

𝑑𝑡
|
𝛼𝑒𝑥𝑐(𝐵(𝑡))

  (16) 

 

Four dynamic parameters characterize this equation; kedd, 

kexc, C3, and C4. The latter two parameters, C3 and C4, are 

associated with the parameter αexc(B(t)). The identification of 

these dynamic parameters was performed at an arbitrary 

frequency of 200 Hz, and their corresponding values are 

provided in Table 2. 

 

Table 2. Dynamic parameters 

 

Parameter  Value  

kexc 0.085 

kedd 0.030 

C3 0.125 

C4 1.520 

 

Using Eq. (14) with the obtained parameters C3, and C4, the 

evolution of the parameter αexc is presented in Figure 4.  

Figure 4 demonstrates how the parameter αexc changes as the 

magnetic flux induction B(t) varies, in both the ascending and 

descending branches of the hysteresis loop. As can be 

observed, the parameter ranges from −0.22 to 0.98. 

The computed hysteresis loops are presented in Figure 5, 

compared to the measurements given in the study of Petrun 

and Steentjes [15] at different frequencies. As shown in the 

figure, Eq. (16) accurately provides accurate computed 

hysteresis loops at frequencies less than 400 Hz. 

However, as the frequency exceeds 400 Hz, the computed 

hysteresis loops do not fit the measured ones, particularly in 

the saturation region where swelling occurs, as demonstrated 

in Figure 6.  
 

 
 

Figure 4. Evolution of the parameter  exc  

 

 
 

Figure 5. Computed and measured hysteresis loops Below 

400 Hz frequencies 
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Figure 6. Discrepancy between computed and measured 

hysteresis loops beyond 400 Hz frequency 

 

To enhance the precision of the computed hysteresis loops, 

the second approach introduced more refined modeling by 

considering both gexc(B) and αexc(B) as functions of B(t). The 

equation for gexc(B) is given by Eq. (11). The dynamic 

parameters, which are listed in Table 2, remained constant 

while the gexc coefficients were determined using an arbitrary 

frequency of 200 Hz. Table 3 presents the optimized values for 

C1 and C2. 

Table 3. gexc parameters 

 
Parameter  Value  

C1 0.085 

C2 0.120 

 

As shown in Figure 7, the parameter gexc exhibits a 

minimum value equivalent to C1=0.085 when the flux density 

(B) is zero, and a maximum value of 0.107 when the absolute 

value flux density is 1.5 T. The figure depicts the variation of 

gexc with B(t) using Eq. (15) and the obtained values of C1 and 

C2. 

 

 
 

Figure 7. Evolution of the parameter gexc 

 

As seen in Figure 8, Eq. (15) provides close agreement 

between the computed hysteresis loops and the measured ones, 

regardless of whether the frequency is above or below 400 Hz. 

 
 

Figure 8. Computed and measured hysteresis loops at 

different frequencies 

 

Figure 9 aptly demonstrates the efficacy of the proposed 

methodology in precisely predicting the dynamic hysteresis 

loops across a range of operating frequencies. By conducting 

simulations at arbitrarily chosen frequencies of 300Hz, 600Hz, 

and 900Hz, Figure 9 provides a clear and undeniable 

demonstration of the methodology's effectiveness. Notably, it 

accurately predicts the intricate shapes of the hysteresis loops 

and effectively tracks the progressive changes in loop area as 

the frequency steadily increases. 

 

 
 

Figure 9. Predicted hysteresis loops at different frequencies 

 

Figure 10 depicts loss curves at various frequencies, 

determined by assessing the areas under corresponding 

dynamic loops. This figure illustrates both cases when gexc is 

constant and as a function of B(t) in the same time αexc is 

variable. As expected, when choosing the two parameters αexc 

and gexc as variables in the same time with B(t) the obtained 

results fit better the measurements. Table 4 shows different 

values of relative errors with gexc constant and variable at 

different frequencies. As we can see, the relative errors 

decrease noticeably when gexc was variable.  

The calculation of the relative error is as follows: 

 

𝑒𝑟𝑟 =
|𝐸𝑛𝑟𝑚𝑒𝑠−𝐸𝑛𝑟𝑐𝑜𝑚|

𝐸𝑛𝑟𝑚𝑒𝑠
× 100  (17) 
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where, Enrmes and Enrcom are the energy losses measured and 

computed respectively. 

 

Table 4. Relative errors compared with measurements 

 

Frequencies (Hz)  
Relative Errors (%) 

with gexc Constant 

Relative Errors 

(%) 

200 3.27 1.08 

400 1.89 0.76 

750 3.79 0.90 

1000 2.81 0.20  

 

 
 

Figure 10. Computed and measured energy losses with 

different frequencies 

 

 

5. CONCLUSIONS 

 

This study introduces a novel approach for accurately 

modeling hysteresis loop shapes and evaluating energy loss in 

magnetic materials under high-frequency effects. Through the 

modification of the excess field expression by employing a 

new formulation based on magnetic viscosity under high-

frequency effects, notable improvements in accuracy and 

precise predictions compared to measurements have been 

achieved. The methodology incorporates the consideration of 

αexc and gexc as variables, dependent on the magnetic flux 

density, which constitutes a fundamental aspect of our 

approach. The investigation of the model's behavior 

encompasses two propositions. The first proposition involves 

a constant value for gexc and a variable αexc, while the second 

proposition incorporates variability for both αexc and gexc. The 

first proposition demonstrates satisfactory hysteresis loop 

shapes at frequencies below 400 Hz, while the second 

proposition yields consistent results across different frequency 

levels. Nonetheless, it is crucial to acknowledge the inherent 

limitations and uncertainties associated with accurately 

modeling hysteresis loop shapes, especially when dealing with 

varying frequencies. The complexity and variability of 

hysteresis behavior should be duly recognized, prompting the 

need for further research to fully comprehend these aspects. 

By acknowledging these limitations, we lay the foundation for 

future investigations and advancements in the accurate 

prediction of hysteresis loop shapes across various frequency 

ranges. 
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NOMENCLATURE 

 
Man  Anhysteretic magnetization, (A.m-1) 

Ms Saturation, magnetization, (A.m-1) 

a,k,c Parameters of JA model 

H Magnetic field, (A.m-1) 

B magnetic Flux density (T) 

 

Greek symbols 

 

 Mean field parameter of JA model 

δ Direction parameter  

αexc Excess field parameter 
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