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In the context of safety and security, the ability to track and identify faces in hazy 

conditions presents a significant challenge. The deleterious effects of haze on video 

quality, such as the diminution of detail, reduction in contrast, distortion of color, and 

complications in depth estimation, impede effective facial recognition. Additionally, the 

complexity of live video tracking is exacerbated by factors such as occlusion, positional 

variations, and lighting changes. Despite these challenges, video sequences offer an 

abundance of information, surpassing static images in terms of potential data extraction. 

In this study, a dual approach strategy is employed to detect and track faces in hazy 

conditions. The Kanade-Lucas-Tomasi (KLT) algorithm, celebrated for its adept feature 

tracking capabilities, is deployed to execute face tracking. The effectiveness of this 

algorithm lies in its ability to accurately trace points across successive image frames, a 

crucial aspect of reliable face tracking. Concurrently, the Viola-Jones algorithm is utilized 

for face detection. The algorithm harnesses Haar-like features to efficiently discern faces 

in real-time, effectively overcoming the challenge of identifying faces within video 

frames. To further enhance the quality of the video, the dark channel prior (DCP) image 

dehazing technique is employed. This technique improves visibility by increasing contrast 

and color saturation, whilst concurrently identifying and eliminating air haze from the 

video frames. 
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1. INTRODUCTION

Hazy conditions, dependent on their intensity and duration, 

can significantly impede safety and security measures, 

particularly in areas where surveillance is paramount. Under 

such circumstances, the quality of images captured by security 

cameras can be severely compromised, complicating the 

identification of individuals or objects. This in turn presents a 

challenge to the automated video processing systems, such as 

those used in traffic surveillance, criminal justice, and other 

applications requiring detection, analysis, identification, and 

recognition. Video enhancement, a process aimed at elevating 

the visual quality of a video or providing a superior transform 

representation for future automated video processing, proves 

indispensable in this context. The application of image and 

video enhancement techniques can elevate the quality of 

images and videos across varied fields, including medical 

imaging, satellite and aerial photography, and real-world 

photography, particularly those afflicted by low contrast and 

noise. By boosting contrast and eliminating noise, the overall 

video quality can be significantly improved. The initial steps 

in tracking and recognition processes involve the detection and 

localization of human faces in videos, a task that is often 

impeded by various factors such as poor lighting, positional 

fluctuation, occlusions, low resolution images, and 

unfavorable atmospheric conditions such as fog. Despite these 

challenges, video enhancement continues to be a critical 

procedure, not only elevating the visual quality of a video to 

increase viewer engagement, but also serving as a pivotal tool 

in safety and security measures. The field of video 

enhancement has witnessed significant advancements in 

recent years with the development of various methods and 

algorithms. By augmenting the clarity of video footage, it 

offers improved surveillance of high-risk areas, aiding in 

potential security concerns identification. Furthermore, 

investigators are enabled to interpret incidents more accurately 

through the review of enhanced security camera footage, a tool 

that could assist in crime resolution and future prevention. In 

the presented study, the dark channel prior (DCP) image 

dehazing technique is employed to remove atmospheric haze 

from the video frames, thereby improving image clarity. 

Figure 1 presents a comparison of a hazy and a dehazed image, 

illustrating the effectiveness of the DCP technique in 

enhancing video quality. 

The dark channel prior (DCP), a dehazing technique, is 

employed as a pivotal tool in this work to enhance the video's 

clarity, color saturation, and contrast. An integral component 

of this video enhancement process is facing detection, a task 

that necessitates the identification and tracking of individuals' 

faces within the video. The Kanade-Lucas-Tomasi (KLT) 

algorithm, a feature-based tracking method, is utilized to 

monitor the evolution of specific features across consecutive 
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video frames. Concurrently, the Viola-Jones algorithm, a 

cascaded classifier, is deployed for efficient and instantaneous 

face recognition. Through the utilization of these facial 

detection technologies, security cameras are equipped to 

identify suspects either in real-time or retrospectively. 

This enhancement can facilitate immediate detection and 

deterrence of unauthorized individuals in critical locations, 

assisting law enforcement in promptly identifying and 

apprehending criminals, and thus mitigating potential harm or 

loss. Additionally, the technology enables crowd monitoring, 

allowing for the identification of potential disruptors, a feature 

particularly beneficial in densely populated settings with 

heightened security concerns. 

The primary objectives of this work are as follows: 

• Employ the DCP dehazing technique to improve 

contrast visibility. 

• Detect (using the Viola-Jones algorithm) and track 

(using the KLT algorithm) faces in video frames. 

• Evaluate the performance of face detection and 

tracking both with and without the application of 

video enhancement. 

In this research, a comprehensive analysis of video 

enhancement techniques utilizing the DCP, in conjunction 

with face detection via the KLT and Viola-Jones algorithms, 

is presented. The various steps involved in each of these 

techniques, and their collective impact on the visual quality of 

the video, are discussed. Experimental results are provided to 

demonstrate the efficacy of these techniques in enhancing 

video quality. 

The remainder of the paper is structured as follows: Section 

2 offers a review of related work in the fields of video 

enhancement, face detection, and tracking. Section 3 outlines 

the methodology adopted for video enhancement using the 

DCP, face detection through the Viola-Jones algorithm, and 

face tracking via the KLT algorithm. Section 4 presents the 

experimental results and analysis. Finally, Section 5 delineates 

potential areas for future work. 

 

 
 

Figure 1. Hazy and dehazed image 

 

 

2. LITERATURE REVIEW 
 

The feature-based face detection approach, as discussed by 

Lee et al. [1], entails analyzing four fundamental facial 

features: the face as a whole, the nose, the lips, and the eyes. 

According to this approach, an image cannot be classified as a 

face unless all of these features are identified. However, a 

significant limitation associated with this method is its 

inability to account for a multitude of facial characteristics and 

its inefficacy in detecting faces in motion. On the other hand, 

the work of Narasimha and Batur [2] introduced a real-time 

High Dynamic Range (HDR) video camera, which, while 

beneficial, comes with its own set of challenges. These HDR 

video cameras tend to be more expensive than conventional 

cameras or the equipment required for the implementation of 

the dark channel prior, primarily due to the additional 

processing power and components necessary for HDR video 

capture. Moreover, the need for rapid processing and capture 

of video streams often results in these cameras offering lower 

resolutions than their traditional HDR counterparts. This 

discrepancy can lead to an inferior image quality when 

compared to standard cameras capable of recording video at 

higher resolutions. Furthermore, the dynamic range provided 

by real-time HDR video cameras may be less extensive than 

that offered by the dark channel prior. The inability of the 

camera's technology to handle scenes with high luminosity or 

darkness can result in overexposed or underexposed areas 

within the video. Additionally, owing to the intensive 

processing requirements, real-time HDR video cameras might 

not be compatible with all hardware or operating systems, 

which could limit the camera's adaptability and utility in 

certain scenarios. Conversely, the dark channel prior emerges 

as a simple yet potent HDR video processing technique that 

addresses these limitations. For instance, it can manage a 

wider dynamic range and generate high-quality video without 

the need for specialized hardware. 

"A convolutional cascade neural network for face detection" 

by Li et al. [3], proposes a real-time face detection method that 

uses a convolutional neural network to detect faces in images 

and videos. Compared to the Viola-Jones algorithm with KLT 

tracker, the convolutional cascade neural network presented 

by Li et al. [3] is more complicated. Several layers of 

convolution and pooling are used in the network, which can be 

computationally expensive and demand additional processing 

power. For the convolutional cascade neural network to 

recognize faces with high accuracy, a lot of training data must 

be collected. Obtaining this can be difficult, and labelling 

training images may take a lot of human labour. While the 

Viola-Jones algorithm with KLT tracker has shown to be more 

resilient in handling occlusion and pose fluctuation, the 

convolutional cascade neural network has demonstrated great 

accuracy in recognizing faces in pictures and videos, faces that 

are partially obscured or at sharp angles may be difficult for 

the network to recognize. However, compared to the 

convolutional cascade neural network, the Viola-Jones 

algorithm with KLT tracker is a more straightforward method 

that is better able to manage occlusion and posture variation. 

The study by Li et al. [3] introduces a real-time face 

detection approach that employs a convolutional cascade 

neural network to identify faces in images and videos. This 

approach is significantly more complex compared to the 

Viola-Jones algorithm in conjunction with the KLT tracker. 

The convolutional cascade neural network incorporates 

several layers of convolution and pooling, which can be 

computationally expensive and require substantial processing 

power. Furthermore, to achieve high accuracy in face 

recognition, an extensive collection of training data is 

necessitated. The collection and labeling of such data could 

entail considerable human effort. Although the network has 

demonstrated impressive accuracy in recognizing faces in 

images and videos, it may struggle to identify faces that are 

partially obscured or presented at sharp angles. In contrast, the 

Viola-Jones algorithm with the KLT tracker, though simpler, 

exhibits greater resilience in handling occlusions and pose 

variations. In a different vein, the method titled "Real-Time 

Temporally Coherent Local HDR Tone Mapping" by Croci et 
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al. [4] necessitates more intricate processing requirements 

compared to the dark channel prior. This process includes 

steps such as tone mapping, contrast enhancement, and local 

image statistics estimation, which collectively contribute to 

increased computational demands for real-time 

implementation. While this approach provides benefits such as 

color enhancement, it may lead to inaccurate color 

reproduction and artifacts like color shifts, potentially 

compromising the overall image quality. Moreover, its 

capability to handle scenes with extreme brightness or 

darkness is limited due to its focus on local tone mapping. 

Conversely, the dark channel prior, although it might not excel 

in preserving details within bright areas of the image, provides 

a simpler HDR tone mapping technique that can manage a 

broader dynamic range and achieve more accurate color 

reproduction. 

A subsequent study by Zhang et al. [5] proposes a real-time 

face detection method that uses a cascade of deep 

convolutional neural networks to detect and align faces in 

unconstrained environments. This approach is more 

sophisticated compared to the Viola-Jones algorithm with the 

KLT tracker, involving multiple layers of convolution and 

pooling which can be computationally expensive and demand 

considerable processing power. To detect and align faces with 

high accuracy, this method necessitates a large volume of 

training data. The collection and labeling of such data can be 

challenging and labor-intensive. Despite exhibiting impressive 

accuracy in recognizing and aligning faces in images and 

videos, the multitask cascaded convolutional networks might 

not be as resilient to occlusion and pose changes as the Viola-

Jones approach combined with the KLT tracker. 

"Real-time Video Super-Resolution with Spatio-temporal 

Networks and Motion Compensation" by Caballero et al. [6], 

which proposes a real-time video super-resolution method that 

uses spatio-temporal networks and motion compensation to 

enhance the resolution of low-resolution videos. The multi-

step process known as "Real-time Video Super-Resolution 

with Spatio-temporal Networks and Motion Compensation" 

includes feature extraction, motion estimation, and spatio-

temporal filtering. The dark channel prior, on the other hand, 

is a more straightforward technique that entails computing the 

dark channel prior and using a straightforward atmospheric 

scattering model. Under difficult lighting settings or for videos 

with complicated motion, it may not always perform well and 

it is expensive. In the realm of video super-resolution, 

Caballero et al. [6] proposed a method that utilizes spatio-

temporal networks and motion compensation to enhance the 

resolution of low-resolution videos in real-time. This multi-

step procedure, termed "Real-time Video Super-Resolution 

with Spatio-temporal Networks and Motion Compensation," 

encompasses feature extraction, motion estimation, and 

spatio-temporal filtering. In contrast, the dark channel prior is 

a simpler technique which involves the computation of the 

dark channel prior and the employment of a straightforward 

atmospheric scattering model. Despite its simplicity, it may 

not always deliver optimal performance under challenging 

lighting conditions or during the processing of videos with 

complex motion. Furthermore, it can be computationally 

expensive. In a similar vein, Ren et al. [7] introduced "Faster 

R-CNN," a more complex approach towards object detection, 

including face detection. This method involves constructing a 

deep convolutional neural network (CNN) for object detection 

and region suggestion, necessitating substantial processing 

resources for both training and inference. On the other hand, 

the Viola-Jones algorithm coupled with the KLT tracker 

presents a less complicated methodology, utilizing a set of 

predefined Haar-like features and a straightforward tracking 

procedure. Training a CNN for object detection and region 

proposal requires a large and diverse collection of images with 

annotated objects, which can be both time-consuming and 

costly to gather and label. Conversely, the Viola-Jones 

algorithm employs a smaller dataset of positive and negative 

samples for training. While "Faster R-CNN" can detect objects 

with high precision, it may not always be as swift or as 

computationally efficient as the Viola-Jones algorithm with 

the KLT tracker. The Viola-Jones approach with the KLT 

tracker, being faster and less computationally demanding, can 

be employed for a variety of object detection tasks, including 

face detection. Lastly, Zarkasi et al. [8] proposed a well-

known technique for finding a matching region in an image or 

video frame for face detection, known as template matching. 

This method compares a template image of a recognized face 

with the target image or video frame. Despite its potential 

utility in certain situations, template matching presents a series 

of limitations. These include sensitivity to changes in lighting, 

pose, and scale, difficulties with occlusions, and the challenge 

of handling partial views of faces. Moreover, template 

matching can be computationally expensive when processing 

large datasets or real-time video. 

The emergence and subsequent evolution of neural 

network-based methods for face detection have demonstrated 

promising outcomes. Bhandiwad et al. [9] constitute a prime 

example of such advanced methodologies. Despite the 

impressive results, these techniques do present notable 

disadvantages when juxtaposed with traditional methods like 

the Viola-Jones algorithm and the KLT tracker. Firstly, the 

complexity of neural network-based methods surpasses that of 

traditional methods. They necessitate substantial 

computational resources for both training and inference. 

Secondly, these neural networks demand extensive training 

data to effectively learn face detection, a requirement that can 

pose challenges in certain scenarios. Lastly, the interpretability 

of neural networks is often obfuscated, rendering it difficult to 

deduce how these 'black boxes' arrive at their decisions. 

Traditional methods like Viola-Jones and KLT, conversely, 

are founded on more interpretable mathematical models. 

In the realm of face recognition algorithms, Zhao et al. [10] 

propose a method that hinges on optimal feature selection. 

This approach, however, requires a copious amount of training 

data to function optimally. The collection and labelling of such 

data can be both time-consuming and costly, representing a 

potential drawback when compared to the Viola-Jones 

approach with the KLT tracker. This traditional technique is 

simpler and more widespread, requiring less training data. 

Choudhary et al. [11] employ various techniques, such as deep 

learning, to eliminate haze from images. Despite its 

effectiveness, this method invites certain limitations. These 

include the necessity for a noise-free training dataset, the need 

for frequent alterations to the training dataset which slows 

down processing, and a dependency on several other factors 

such as the loss function's reliance on optimization. The dark 

channel prior (DCP), on the other hand, was expressly 

designed to enhance images and videos affected by 

atmospheric haze or fog. It operates by estimating the haze 

content in the image using the dark channel before eradicating 

it to improve visibility and contrast. As a computationally 

efficient method, DCP can be employed for real-time video 

processing and has been proven to deliver superior results. 
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Recent developments in video enhancement technology 

have heralded the introduction of polarization-based methods, 

which utilize polarized light to capture and process images or 

videos. An early application by Hu et al. [12] demonstrated its 

efficacy in enhancing underwater videos by reducing 

backscatter and augmenting image contrast. Despite its 

advantages, polarization-based enhancement introduces 

notable limitations. These include the requirement for 

specialized equipment like polarizing filters and cameras 

capable of recording polarized light. This necessitates 

implementation challenges and costs, particularly in practical 

scenarios. Furthermore, this method may not be universally 

applicable, such as in low-light conditions or when the subject 

lacks polarization. 

 

 

3. METHODOLOGY 
 

The proposed methodology can be implemented in five 

steps as shown in Figure 2. The first step is to take the input 

video that needs to be processed the second step is to apply the 

dark channel prior-based video enhancement algorithm to the 

input video. This involves calculating the dark channel prior 

for each frame of the video, estimating the transmission map 

and scene radiance, and applying temporal filtering to the 

estimated radiance. The output of this step is an enhanced 

video with improved brightness, contrast, and color fidelity. 

The third step is to perform face detection on the enhanced 

video using the Viola-Jones algorithm. This involves applying 

a set of pre-defined Haar-like features to detect faces in the 

video frames. The output of this step is a set of bounding boxes 

that indicate the location of each detected face. The fourth step 

is to track the detected faces using the KLT algorithm. This 

involves selecting a set of feature points within the bounding 

box of each detected face, and tracking those points across 

subsequent frames of the video using the KLT algorithm. The 

output of this step is a set of tracked feature points that 

represent the motion of each detected face across the video 

frame. The final step is to generate an output video that shows 

the original input video with the detected faces highlighted and 

tracked. This can be done by drawing bounding boxes around 

the tracked feature points for each detected face in each frame 

of the video. 

 

 
 

Figure 2. Flow chart of the methodology 

 

3.1 Dark channel prior 

 

The proposed methodology for video enhancement using 

dark channel prior is an effective method for improving photos 

since it lessens the effects of haze and boosts contrast. It is a 

powerful algorithm that can handle a variety of scenarios with 

dynamic lighting and moving objects such as lighting setups, 

and camera settings is the dark channel prior. When used with 

video, it can offer a number of benefits including adaptability, 

robustness, consistency, speed, and increased visual quality. 

As a video is essentially a series of images, adding the dark 

channel before each frame guarantees that the video has a 

unified appearance and feel. 
The basic premise is that there are some regions in a hazy 

or foggy image that have extremely low intensity values in 

comparison to the rest of the image. These regions are 

typically in the shadows. The “dark channel” of the image 

refers to these regions. Using the dark channel, the dark 

channel prior algorithm determines the amount of haze present 

in an image. It is predicated that the minimum intensity value 

in the dark channel is exactly related to the degree of haze in 

an image. The programme can produce a crisper image by 

evaluating how much haze is present in the image and then 

removing it. 

The dark channel of the image is initially calculated in order 

to operate the dark channel prior method. Finally, using the 

image's brightest pixels, it calculates the amount of 

atmospheric light present in the image. It creates a 

transmission map that depicts the level of haze in the image 

using these variables. The image is then made clearer by using 

the transmission map to eliminate haze from it [13, 14]. Image 

dehazing, underwater photography, and remote sensing are 

just a few of the areas where dark channel prior has been 

proven to be successful. It is a well-liked algorithm for real-

time applications since it is comparatively easy to use and 

computationally effective. 

 

 
 

Figure 3. Block diagram of the dark channel prior 

 

A step by step flow of video dehazing using dark channel 

prior is depicted in Figure 3. The video that needs to be 

dehazed must first be entered. Any format that the algorithm 

can read can be used for this video. The dark channel should 

be calculated for each video frame. Hence, for each frame of 

the video, a dark channel image will be an outcome. Calculate 

the atmospheric light for each frame after receiving the dark 

channel photos. The pixel with the greatest intensity value 

among the top 0.1% of pixels in the dark channel is used to 

calculate atmospheric light. The brightest and least haze 

affected pixel is presumed to be this one. Calculate the 

transmission map for each frame using the expected 

atmospheric light and dark channel. The equation 1 is used to 

compute the transmission map: 

696



 

𝑡(𝑥) = 1 − 𝑤 ∗ 𝑚𝑖𝑛_𝑐{𝐼(𝑥)/𝐴_𝑐} (1) 

 

where, I(x) is the original image, t(x) is the transmission map, 

w is a weighting factor (usually set to 0.95), and A_c is the 

atmospheric light in channel c. 

The transmission map calculated in the earlier stage could 

have omissions and mistakes. Apply a guided filter on the 

transmission map, using the original image as the guidance 

image, to improve it. Lastly, to clear the haze from the original 

image, by utilising the transmission map and atmospheric light 

using Eq. (2): 

 

𝐽(𝑥) =
𝐼(𝑥) − 𝐴

𝑚𝑎𝑥{𝑡(𝑥), 𝑡𝑚𝑖𝑛}
+ 𝐴 (2) 

 

where, A is the ambient light, J(x) is the dehazed image, and 

tmin is a tiny constant that is commonly set to 0.1 to prevent 

division by zero. The output of the dehazed video is the last 

stage. 

 

3.2 Viola jones-face detection 

 

A quick and easy algorithm that can instantly identify faces 

is the Viola-Jones algorithm. To swiftly recognise the presence 

of a face in an image, it combines Haar-like features and an 

Adaboost classifier. Even in the presence of occlusion, partial 

obstructions, and variations in facial position, the Viola-Jones 

algorithm can identify faces. It has been demonstrated that the 

Viola-Jones algorithm detects faces [15] with a high degree of 

accuracy. It can accurately and reliably recognise faces, which 

is crucial for many applications. The Viola-Jones technique is 

appropriate for real-time applications on hardware with 

constrained processing capacity due to its comparatively low 

computing requirements. A human can easily recognise any 

face in a photograph or image, but a computer or robot will 

always require input and pressure. Faces cannot move 

sideways, thus for this purpose, Viola-Jones requires a strong 

front view against the camera [16].  

Haar features are straightforward rectangular features that 

are the sum of pixels from different places inside the rectangle. 

This rectangle has the ability to scale the image and may be 

placed anywhere in the frame. 2-rectangle feature is the name 

of this modified feature set. Each feature type can reveal the 

presence or absence of specific details in the frame, like edges 

or texture changes. 

To determine the face features, these haar features are used. 
For instance, in Figure 4, the black coloured portion indicates 

the presence of a nose, which is situated in the middle of the 

face. This part is utilised to detect this characteristic. When the 

white part is designated as -1 and the black part as +1. By 

deducting the total of pixels under the white rectangle from the 

total of pixels under the black rectangle, the outcome is 

determined. For specific features, a threshold is initially set. 

Calculate the average total of each black and white. Next, a 

threshold check is done on the difference. The value is 

detected as a relevant feature if it exceeds or equals the 

threshold. 

To add all the pixels in a specific box to its left and upper 

ones, utilise the integral image component. It is necessary to 

determine the area's four corner values. This prevents the 

region's pixels from being added together. The sole purpose of 

this integral image conversion procedure is to accelerate the 

calculation of pixels. The formula for calculating the total 

number of pixels in component D of the above Figure 4 is 

(1+4)-(2+3), or [A+(A+B+C+D)] - [(A+B+A+C)], which 

results in D is depicted in Figure 5. 

 

 
(a) Haar components in eyes region 

 

 
(b) Haar components in nose region 

 

 
(c) Haar components in mouth region 

 

Figure 4. Haar feature components 

 

 
 

Figure 5. Integral image calculation 

 

Following with the face features determination, the process 

used for identifying important and unimportant traits is 

Adaboost. The main principle behind AdaBoost for face 

identification is that it iteratively concentrates on difficult-to-

classify samples and accentuates them during the training 

process. The method improves its accuracy over iterations by 

integrating numerous weak classifiers into a strong classifier. 

Each facial image is provided to the system with the same start 

weights as the others, with yn=1 for facial and yn=0 for non-

facial photos. The classifier's weights in the images have now 

been adjusted. All of the images are used to train a classifier 

using a single feature, and the error is calculated. If a face 

feature is found, the mistake is 0, otherwise it is 1. The weights 

are updated and the lesser mistakes are picked. In the strong 

feature, a feature with little inaccuracy is therefore given more 

weight. Last but not least, a strong classifier exists when some 

of the weighted features are greater than 50% of the total 

weights. Non-faces are eliminated in order to shorten the 

computation time.  

Cascading phase is added to the procedure shown in Figure 

6 is to expedite it and produce accurate results. This process is 

broken down into multiple steps, each of which contains a 

powerful classifier. Each feature is divided into several levels. 

By moving a window over a frame, it can identify faces in the 

picture. After performing the Adaboost training, the fast way 

to check if the window contains a facial feature is to cascade 

the classifiers. The first classifier is the highest weight found 

than compared to the earlier ones. If the first feature is 

approved then it moves on for the second classifier until all of 
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the features are approved, then a face is detected. 

 

 
 

Figure 6. Cascading process 

 

3.3 Kannade Lucas Thomase-face tracking 

 

For face tracking and alignment, the Kanade-Lucas-Tomasi 

(KLT) tracker is frequently used in conjunction with the Viola-

Jones algorithm. Face tracking across frames is made possible 

by this combination of KLT and Viola-Jones, finds 

sophisticated applications like facial tracking and recognition. 

KLT strategy depends on the optical movement of points from 

frame to frame (optical flow) to enable access to component 

abstraction since KLT is so much faster than other approaches 

and old ways are so much more expensive. By calculating the 

optical flow of a specified area over time, this technique is 

mostly used to continually monitor faces in videos that are 

being streamed live or that have already been captured. It is 

possible to follow a variety of diverse locations across time 

using this technique. By employing the KLT, the faces are 

tracked in a straight line from frame to frame. 

 

 
 

Figure 7. Flow chart for face detection 

 

The KLT method is presented in Figure 7. It counts the 

constituents, or points, in one frame, locates those identical 

points in another frame, and then calculates the distance 

between the points in the two frames. Throughout this ongoing 

process, the KLT algorithm keeps track of the points until the 

execution is finished. This process is relatively straightforward 

in comparison to the prior techniques. Thus, locating the 

targeted areas and evaluating movement constitute the 

essential duty. This method is first used to identify Harris 

corners in the first frame. The KLT approach then employs a 

tracker to observe the light flow around any corners or points. 

The mobility of the pixels is assessed throughout this process. 

The tracker can instantly identify the unique points or pixels 

that each moving object in a movie comprises. The KLT 

tracker, which can also measure the motion of each pixel, can 

track each Harries point. The Harries corners detection tracker 

is used to properly evaluate the corners of each frame and 

assist in precisely detecting the points every 10 to 15 frames is 

depicted in Figure 8. 

 

 
 

Figure 8. Movement of frames 

 

 

4. RESULTS ANALYSIS  

 

The use of the Dark channel before utilising the Viola Jones 

and Kannade Lucas Thomase algorithms helps in improving 

the quality of the video. The Figure 9 displays a face that was 

discovered using the Viola Jones method, and further features 

tracking was carried out using the KLT algorithm. 

The feature points are located based on the kannade lucas 

thomase algorithm, and the below Figure 10 demonstrates 

multiple face detection using the viola jones algorithm as well 

as feature point detection. These feature points assist in 

tracking the face in the live video when the faces tilt or when 

faces enter and leave the video. Figure 11 helps in 

understanding that the video is first enhanced using dark 

channel prior (DCP), and then face detection and feature point 

extraction are carried out using both the Viola Jones and the 

KLT algorithms.  

 

 
 

Figure 9. Frame considered from a video showing single 

face detection 

 

 
 

Figure 10. Frame considered from a video showing multiple 

face detection 
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Figure 11. Frame considered from a video showing face 

detection in an unfavourable weather condition 

 

Peak Signal-to-Noise Ratio (PSNR) and Structural 

Similarity Index (SSIM) are two objective measures that can 

be used to assess the effeciency of the dark channel prior (DCP) 

algorithm. PSNR and SSIM are metrics used to quantitatively 

assess the quality of images, but they focus on different aspects. 

PSNR primarily measures the pixel-wise difference between 

the original and distorted images, while SSIM takes into 

account structural similarity and human perception. Higher 

PSNR numbers denote greater image quality. A value of 1 

denotes perfect structural similarity between the original and 

denoised images. SSIM measures this structural similarity and 

SSIM lies between 0 and 1. A successful denoising method 

typically yields high PSNR and SSIM values. However, 

depending on the image content and the unique application 

needs, the precise values of these indicators that signify 

optimal performance can change. 

In general, good performance for image denoising methods 

is regarded as an SSIM value closer to 1, and higher values 

denote greater image quality. The type and amount of noise 

present in the image, as well as the methods employed for 

image compression and processing, can all affect the actual 

range of PSNR values. It is determined using the psnr function 

as folllows: 

 
𝑝𝑠𝑛𝑟(𝑛𝑜𝑖𝑠𝑦𝑖𝑚𝑎𝑔𝑒, 𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑𝑖𝑚𝑎𝑔𝑒,𝑀𝐴𝑋_𝐼) (3) 

 

where, MAX_I is the image's highest possible pixel value, 

noisy image is the image captured from the noisy video, and 

denoised image is the enhanced image that is captured from 

the enhanced video. The PSNR value is returned by the psnr 

function in decibels (dB). 

The ssim function calculates the structural similarity index 

between two pictures. The ssim function syntax is as follows: 

 
𝑠𝑠𝑖𝑚(𝑛𝑜𝑖𝑠𝑦𝑖𝑚𝑎𝑔𝑒, 𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑𝑖𝑚𝑎𝑔𝑒) (4) 

 

The SSIM value, which ranges from 0 to 1, is what the ssim 

function returns when comparing two photos. Table 1 shows 

the PSNR and SSIM values of different set of input noisy and 

denoised images that are captured from a video. 
The Table 2 represents the information about the number of 

faces detected in an image shown in Figure 12. It is enhanced 

using the DCP and further the face detection is done using the 

viola jones combined with the KLT and it shows that the faces 

detected are more when we combine the viola jones algorithm 

with the KLT rather using the viola jones algorithm alone. It 

also helps with security as it will be simpler to spot criminals 

in a clear video than compare to the video in unfavourable 

weather conditions. 

Overall, the Viola-Jones algorithm with KLT tracker is a 

straightforward, reliable, and effective technique for tracking 

faces that has been widely adopted in numerous applications. 

The approach given here for face detection and tracking 

minimises the calculation time producing results with great 

accuracy. KLT algorithm is utilised to track faces in video 

sequences, whereas Viola Jones is employed to identify facial 

features. It has been tested utilising a webcam for live video as 

well as video sequences. 

 

Table 1. PSNR and SSIM values of set of noisy and denoised 

images 

 

Sample Images PSNR (in dB) 
SSIM (in 

Decimal) 

A frame consists single face 14.7350 0.8085 

A frame consists multiple faces 14.7735 0.8812 

A frame consists unfavorable 

weather condition 
10.5936 0.6460 

 

Table 2. Number of faces detected in an image 

 
Detection View Viola Jones Viola with KLT 

faces detected 2 3 

faces not detected 1 0 

false detection 1 0 

 

 
(a) Input image 

 

  
(b) Output image with detected faces 

 

Figure 12. Faces detection from video frame 

 

 

5. CONCLUSIONS 

 

The problem of improving the visibility and detecting the 

faces is limited to images only but, in this work the detection 

and tracking is applied for the live stream video. The method 

for face detection and tracking described here reduces 

computing time, while generating highly accurate results. KLT 

algorithm is utilised to track faces in video sequences, whereas 

Viola Jones is employed to identify facial features. It has been 

tested utilising a webcam for live video as well as video 

sequences. In the near future, an item other than faces can be 

detected using these techniques such as leaf diseace detection 

[17] and biological deseace detections [18]. Future study will 

focus on the same area but track a specific face in a video clip. 

That is equivalent to ignoring all faces other than the one that 

is necessary. 
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