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Machining is fundamentally a process of material removal. Therefore, machining 

productivity can be conceptualized as the rapid elimination of a substantial machining 

allowance, implying a reduction in machining time. This research has yielded a 

computational model predicated on beam deflection, factoring in the influence of 

workpiece flexibility on cutting forces, and its repercussions on the material removal rate 

and precision. The model facilitates the calculation of actual turning productivity. The 

methodology incorporated modeling the static response of the flexible workpiece to the 

thrust component of cutting forces. The impacts of flexibility on the beam model responses 

concerning the material removal rate, and deviations from the desired shape and size were 

scrutinized. A computational approach, experimentally corroborated, was applied. This 

approach necessitates cutting force coefficients, which were ascertained through cutting 

tests and pseudo-inverse regression analysis. The experimental setup for the cutting test 

incorporated a locally constructed dynamometer for measuring cutting forces, displays on 

both an LCD and a computer monitor for recording cutting force readings, a cutting tool, 

and a workpiece. Judging by the coefficients of determination, R2 values of 0.97, 0.89, and 

0.93 of the regression calibrating the force coefficients for the tangential, feed, and radial 

directions-which are used to gauge the accuracy of the determined force coefficient and 

are typically one or close to one-the derived force coefficients demonstrate high reliability. 

The developed model is projected to yield significant industrial-economic benefits by 

curtailing the costs of finishing operations on the CNC lathe machine, owing to the 

provision of a chronological path to follow while working on a flexible workpiece. 
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1. INTRODUCTION

Machining is a material removal process. In light of this, it 

is important to think of machining productivity as the quick 

removal of a large amount of machining allowance, which 

suggests a shorter machining time. The machining process has 

since advanced from conventional methods to the present-day 

where a computer is used to numerically control the machining 

activities which is adjudged as the core of manufacturing 

industries [1, 2]. The influence of machining parameters of 

turning process on the material removal rate under dry cutting 

conditions was considered [3, 4]. Workpiece of ±30° filament 

wound glass fibre reinforced polymers (GFRP) was of great 

interest in the work with cutting tool coated with tungsten 

carbide inserts. Regression analysis and factorial experimental 

design were employed to develop a second-order empirical 

model at a confidence interval of 95% for the material removal 

rate of the machining process. The empirical model was used 

to generate contour plots of the material removal rate for 

different machining conditions in the form of iso-value of 

roughness for diverse values of material removal rate. The 

optimization of the Material Removal Rate with turning 

process of EN24 steel were presented [5]. Independent 

adjustments of the cutting process parameters were the basis 

for the optimization. The rate of metal removal was optimized 

on the larger-the-better basis. In the works [6, 7], the effects of 

the cutting process parameters on material removal rate in 

turning of C34000 were presented as a solitary response 

optimization problem solved by using Taguchi technique. 

Twenty-seven experimental runs were performed focusing on 

L’27 orthogonal array with the aim of optimizing the objective 

functions within the experimental domain formed. The work 

led to the determination of the optimum choices of process 

parameters for the optimization of MRR and experimental 

confirmation of the optimal choices was implemented. In order 

to identify pertinent energy efficiency and productivity KPIs 

of machining processes, Hacksteiner et al. [8] used an 

approach based on a real-time analysis of sensor data and 

machine control data. This work obtained the energetic 

efficiency and the primary processing time by comparing the 

energetic model of the load-free condition with the machining 

power consumption. To validate the developed approach, a 

CNC turning and milling centers were used to automatically 

calculate some KPIs, SCADA software reads, processes, and 

records sensor data along with pertinent machine control data. 

Eberspächer et al. [9] considered approaches which monitored 
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power consumptions and to reduce the power consumption. 

This work considered a machine control data read via OPC UA 

and additional sensor data which were considered as an input 

for the consumption simulation models to make available the 

detailed power consumption and distribution data for the 

machine operators. Hu et al. [10], developed a special on-line 

system for energy efficiency monitoring of machine tools. 

This approach relied on the spindle power measurement based 

on power balance calculations.  New approach that focused on 

optimizing the machining process for face milling of Stainless 

steel 316 under various cooling and lubrication strategies was 

developed by Abbas et al. [11]. The suggested strategy takes 

into account three process designs (balanced, cost, and quality-

oriented designs). Using a vector regression model, 

experimental runs were designed which later became an 

objective function for the particle swarm optimization 

algorithm. This study advised using MQL and faster cutting 

speeds in all designs. While it was considered that higher feed 

rates were favoured in a quality-oriented design over a cost-

oriented one. This analysis uses this method to create many 

designs, each biased toward one of the replies, in addition to 

offering an adaptive design. Bagaber and Yusoff [12] in their 

research used response surface method (RSM) and desirability 

function for stainless steel 316 turning optimization. The tools 

used were carbide coated and were deployed in various dry 

machining conditions to aid in minimizing power 

consumption, machined surface roughness and tool wear. Also, 

using a regression model, with an R2 less than 0.88, the three 

responses were modeled. This work only considered a case 

having equal weight while the compound desirability function 

was then formulated. In addition, this work selected a solution 

with a desirability function of 0.887 for the final optimum 

solution. Thus, the work reported a reduction in the tool wear, 

energy consumption and the machined surface roughness by 

4.71, 14.94 and 13.89%, respectively. Abbas et al. [13] 

investigated the precision hard turning of AISI 4340 alloy steel 

using wiper nose and common round nose inserts. It tries to 

identify the best process variables for reducing surface 

roughness and increasing productivity at the same time and 

gives readers a closer look at earlier studies. Surface roughness 

at different cutting speeds, depths of cut, and feed rates is 

treated as the target function in the mathematical models 

created by the authors. The optimal turning parameters were 

determined using three reliable multi-objective methods: the 

multi-objective genetic algorithm (MOGA), the multi-

objective Pareto search algorithm (MOPSA), and the multi-

objective emperor penguin colony algorithm (MOEPCA). 

Two turning scenarios were employed to assess the 

effectiveness of the optimization methods. In these, a gun 

barrel's combustion chamber was machined at a high rate of 

production, initially with an average roughness (Ra) of 0.4 m 

and thereafter with 0.8 m. This work shows that MOPSA is the 

best appropriate option for the wiper insert scenario and that 

MOEPCA results are the best for the traditional insert in order 

to concurrently achieve good surface quality and productivity 

in precision hard turning of AISI 4340 alloy steel. Also, the 

results of the Pareto front plot demonstrate that the wiper insert 

may achieve good productivity and Ra values of 0.4 and 0.8. 

However, the conventional insert proved unable to achieve the 

required 0.4 m Ra; instead, Ra=0.454 m was observed globally, 

demonstrating the wiper's superiority to the conventional 

insert. Yan and Li [14] also carried out optimization for a 

milling process. This work considered three different 

responses which are; surface roughness, material removal rate 

and cost. Relying on grey relation analysis (GRA), trade-off in 

turning parameters (speed, feed, and depth of cut) was 

managed. This work proposed that weights assignment should 

be based on the sensitivity of each of the response to the 

turning parameters. Thus, this work selected weights of 0.33, 

0.23, and 0.43 for the surface roughness, material removal rate 

and cost. They reported that the proposed approach was 

effective in terms of cost and suggested that the conventional 

one was preferred when considering surface roughness. 

Although, they noted that both approaches showed similar 

material rate removals. Chandrasekhar and Prasad [15] carried 

out optimization for micro-drilling operation. Employing 

Entropy-VIKOR method in their approach, weights were 

selected based on the disorder degree which was coined from 

Shannon entropy method. The challenges were reduced to a 

single objective using the weights of the VIKOR approach, 

and the best solution was thought to have the highest VIKOR 

rank. Only the weights from the entropy approaches were 

considered in their procedure. A machining assessment model 

that focused on five parameters-energy, safety, cost, 

environmental impact, health, and waste management-was 

developed by Hegab et al. [16] in their study. To account for 

different requirements and intentions, the model assigned 

weights. Three case studies from their literature were used in 

this work to test the proposed paradigm. This method helped 

to make optimal predictions that are compatible with the 

optimums reported in the original experimental work since 

equal weights were given to all of the analyzed cases. In order 

to forecast the productivity of the sinter machine using the 

composition of the agglomerate's constituent elements as 

model inputs, Mallic et al. [17] employed machine learning 

and data analytics techniques. An integrated steel plant 

provided them with industrial productivity statistics for the 

sinter machines. According to this study, the proposed ANN 

model was significantly compatible with the productivity of 

the sinter machine as tested. The sensitivity analysis further 

revealed that the proportions of MgO and CaO present in flux 

and sinter, respectively, have a substantial impact, but the 

presence of iron (Fe) and SiO2 in iron ore fines and sinter has 

a positive effect on sinter machine productivity. Wei et al. [18] 

in their work reported a different approach for high power and 

high-speed density laser-assisted turning (LAT) of an Al-SiC 

MMC (Al2124+17 vol% 0.3 μm SiC). They opined that this 

approach greatly improve productivity by allowing parts to be 

removed from the surface of the locally heated parts to be 

removed timely while avoiding transfer of excess heat from 

the surface to the main body. They further reported a smaller 

laser beam diameter of 0.7 mm as compared to the nose radius 

of the turning insert of 0.8 mm which was noted to aid the 

removal of the excess heat generated from the laser radiation 

from the chips. Results show a laser power density of 3.38 × 

106 W/cm2 was used which they noted to be twice higher than 

those reported in previous LAT research. In addition, a cutting 

speed of 565 m/min produced over 2.7–140 times increase in 

productivity compared with previously reported values, and 

the surface quality was substantially improved in addition to 

reduced tool wear. Understanding the performance of three 

distinct industrial-grade CBN cutting inserts during hard 

turning of AISI 4320 case-carburized steel was the main goal 

of the work by Niaki et al. [19]. Although all the CBN inserts 

were found to have the same shape, they all had various edge 

preparation and coating techniques. While the surface integrity 

of the machined item was described based on the surface 

roughness, layer depths, micro-hardness, and residual stresses, 
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this work quantified the tool performances by measuring the 

cutting forces and tool wear at frequent intervals. Finally, their 

findings showed that the cutting-edge stability of tested inserts 

influences tool life, cutting force stability, and the 

development of compressive residual stresses on the surface 

of the turned workpiece. Moreover, Camposeco-Negrete and 

de Dios Calderón-Nájera [20] used multi-objective 

optimization to increase the productivity, energy efficiency, 

and surface quality of turning AISI 6061 T6 aluminum. Power 

consumption and surface roughness were optimized 

simultaneously by Sangwan and Kant [21]. Surface roughness, 

however, is a fixed characteristic rather than a variable in the 

machining process (predefined range by designers). Surface 

roughness that is less than the intended value is typically 

acceptable but not necessary [22]. In the work Khan et al. [23], 

turning experiments were explored to analyze the productivity 

and machining efficiency in the machining sustainability of 

Ti-6Al-4V alloy. In the experiment, cutting time was 

considered fixed while the cutting speed kept high in the 

hybrid CryoMQL (HCM) method. Comparative results were 

recorded in all the experiments performed in different cooling 

techniques. Further results on the comparison between the 

methods showed that the HCM method performed better than 

dry and MQL method. This work opined that the proposed 

method would provide longer tool life, lower energy 

consumption and higher productivity. Also, proposed 

technology can enhance high productivity and save cost in 

metal processing industry to get. Pang et al. [24] investigated 

end milling process on hybrid composite of hallo site 

nanotubes and carried out the optimization process of the 

parameters by using Taguchi method. The input factors 

considered in this work includes; feed, speed and depth of cut. 

The input factors were mentioned to help study the cutting 

force and surface finish. Ribeiro et al. [25] in their work on 

optimization of surface roughness considered axial and radial 

depths as part of their input parameters list. Using ANOVA 

and orthogonal arrays to study the parameters influences 

observed that radial and axial depth plays a significant role in 

the improved finishing on milling. 

This research aims to develop a computational model that 

takes into account the impact of workpiece flexibility on 

cutting forces, as well as how these factors affect the rate of 

material removal and machining precision so as to reduce the 

cost of working on flexible workpiece while maintaining the 

integrity of the end product. The focus was on the limitation to 

material removal rate due to the consideration of the flexibility 

of slender workpieces machined by turning process. Therefore, 

the cutting force component causing workpiece deflection in 

the thrust direction is of interest in this work thus was 

modelled. The emphasis was on the cases of CNC lathe 

operations where the workpieces was modelled as rotating 

fixed-pinned beams due to fixed supports at the chucks and 

pinned supports at the tailstock centres.  The cases of CNC 

lathe operations where the workpieces were modelled as 

rotating fixed-free (cantilevered) beams due to fixed supports 

at the chucks and unsupported end on the other sides of the 

workpieces was not considered in this work. The technique 

involves simulating the flexible workpiece's static reaction to 

the thrust component of cutting forces. The impacts of 

flexibility on the beam models' responses to the rate of 

material removal and the degree of divergence from the 

planned size and shape were investigated. The method was 

computational and empirically tested. With the help of this 

model, the actual turning productivity may be calculated 

thereby reducing the costs of finishing operation of the CNC 

lathe machine because a chronological path to follow while 

working on flexible workpiece has been provided. 

 

 

2. MACHINING TIME ANALYSIS 

 

Machining productivity is quantified in terms of machining 

time, material removal rate, and machining economics. 

Basically, the complete machining time or total time for 

machining (Tm), is the addition of all the three separate 

unrelated components of time that directly relate with the 

process of machining.  

The time components are listed below;  

i. complete machine adjusting time (Tct)  

ii. controlling or inactive time (Ti) 

iii. real machining time (Tc)  

Arithmetically, the complete Time for Machining (Tm) may 

be expressed as: 

 

Tm = Tct + Ti + Tc (1) 

 

Let s be the rate of feed (mm/rev), Lc be the complete cut 

length (mm), and Ω be the speed of the spindle (rpm), then 

proposed cutting time may be articulated as: 

 

Tc =
𝐿𝑐

Ω. 𝑠
 (2) 

 

Conventionally, at the point when the workpiece or the 

cutting instrument is in pivot, speed of the spindle and speed 

of cut (𝑉𝑐) are interchangeable. This is on the grounds that it is 

expected that there is no loss of speed from the spindle speed 

or the workpiece's speed for the cutting speed. Nonetheless, 

cutting speed likewise relies upon the measurement of the 

job/cutter (D). Based on this, we can communicate the cutting 

speed as a function of diameter as below: 

 

𝑉𝑐 =
𝜋𝐷Ω

1000
 (3) 

 

Then, 

 

Tc =
𝐿𝑠

Ω. 𝑠
=

𝐿

(
1000𝑉𝑐

𝜋𝐷
) 𝑠

=
𝜋𝐷𝐿

1000𝑉𝑐𝑠
 (4) 

 

The Expression for Taylor’s Tool Life is 

 

Vc(TL)n=C (5) 

 

TL = (
𝐶

𝑉𝑐

)

1
𝑛⁄

 (6) 

 

Meanwhile complete machining adjustment time (Tct) 

likewise relies upon the extent of adjustments desires, so 

device life will impact this time component. In this way, in the 

event that TCT be the time needed for single instrument 

changing, complete machining adjustment time (Tct) for the 

whole machining activity of  𝑇𝑐𝑡  length can be communicated 

as below: 

𝑇𝑐𝑡 =
𝑇𝑐

𝑇𝐿
∗ 𝑇𝐶𝑇 (7) 
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Therefore, the complete machining time or total time for 

machining may be articulated as below: 

 

Tm = Tct + Ti + Tc (8) 

 

Tm = Tc +
𝑇𝑐

𝑇𝐿
∗ 𝑇𝐶𝑇+Ti (9) 

 

Tm =
𝜋𝐷𝐿

(1000𝑉𝑐)𝑠
+ {

𝜋𝐷𝐿

(1000𝑉𝑐)𝑠

(
𝐶

𝑉𝑐
)

1/𝑛 × 𝑇𝐶𝑇}+Ti (10) 

 

Tm=
𝜋𝐷𝐿

(1000𝑉𝑐)𝑠
+ 𝑇𝐶𝑇

𝜋𝐷𝐿

1000𝑠𝐶1/𝑛 𝑉𝑐

1−𝑛

𝑛 + 𝑇𝑖  (11) 

 

The actual machining time is of interest in this work. In 

several works, the actual machining time is considered a 

predictor of surface integrity and material removal rate rather 

than an objective. Qehaja et al. [26] considered surface 

roughness (Ra) as a response to machining parameters, such 

as depth of cut, nose radius, true rake angle, cutting speed, 

machining time, feed rate, side cutting edge angle. Exploiting 

response surface methodology focused on three-level factorial 

design, they instituted an empirical model for surface 

roughness in terms of the machining parameters like the tool 

geometry, machining time, nose radius, and feed rate in the 

course of dry turning process. Their statistical analysis showed 

that machining time is a significant factor. 

 

 

3. CUTTING FORCE MODELLING 

 

 
 

Figure 1. The cutting force system 

 

In Figure 1 is shown the cutting force 𝑅. The force 𝐹𝑐 is the 

tangential cutting force component while force 𝑁𝑐  is the feed 

cutting force component. The force  𝐹𝑠𝑝 is the shear force 

component on the shear plane while force 𝑁𝑠𝑝  is the normal 

force component on the shear plane. The force  𝐹𝑟𝑓 is the 

frictional force component on the rake face of the tool while 

force 𝑁𝑟𝑓  is the normal force component on the rake face. The 

important angles are also indicated as 𝛼 for rake angle, 𝜑 for 

shear angle and  𝛽 is the friction angle. The following 

equations, which are obvious from the geometry of Figure 1, 

hold for the forces [27, 28]. 

 

𝐹𝑠𝑝 = 𝐹𝑐 cos 𝜑 − 𝑁𝑐 sin 𝜑 (12) 

𝑁𝑠𝑝 = 𝐹𝑐 sin 𝜑 + 𝑁𝑐 cos 𝜑 (13) 

 

𝑟𝑐ℎ =
ℎ

ℎ𝑐ℎ

=
sin 𝜑

cos(𝜑 − 𝛼)
 (14) 

 

𝜑 = tan−1 (
𝑟𝑐ℎ cos 𝛼

1 − 𝑟𝑐ℎ sin 𝛼
) (15) 

 

𝐹𝑟𝑓 = 𝐹𝑐 sin 𝛼 + 𝑁𝑐 cos 𝛼 (16) 

 

𝑁𝑟𝑓 = 𝐹𝑐 cos 𝛼 − 𝑁𝑐 sin 𝛼 (17) 

 

𝛽 = 𝛼 + tan−1 (
𝑁𝑐

𝐹𝑐

) (18) 

 

𝑉𝑐ℎ = 𝑟𝑐ℎ𝑉𝑡 (19) 

 

where  𝑟𝑐ℎ  is called chip compression ratio which is the 

thickness of metal before cutting to the thickness of metal after 

cutting and it is always less than one in the form defined, ℎ is 

the undeformed chip thickness, ℎ𝑐ℎ  is the chip thickness which 

is the measurement of the material's thickness taken 

immediately before it is machined, perpendicular to the cutting 

edge and 𝑉𝑐ℎ  is the chip velocity on the rake face. The speed 

of the chip as it travels along the tool face and in relation to 

the tool is known as chip velocity. From the above equations 

and the geometry of the cutting force system, it can be seen 

that 

 

𝑁𝑠𝑝 =
ℎ𝑤

sin 𝜑
𝜎𝑠𝑝 =

𝑁𝑐

sin 𝜙
sin(𝜑 + 𝜙) (20) 

 

where 𝜎𝑠𝑝is the yield normal stress of the material and 𝑤 is the 

depth of cut. Therefore, the feed force component becomes 

 

𝑁𝑐 = [𝜎𝑠𝑝

sin 𝜙

sin 𝜑 sin(𝜑 + 𝜙)
] ℎ𝑤 (21) 

 

Noting that 𝜙 = 𝛽 − 𝛼, then 

 

𝑁𝑐 = [𝜎𝑠𝑝

sin(𝛽 − 𝛼)

sin 𝜑 sin(𝜑 + 𝛽 − 𝛼)
] ℎ𝑤 (22) 

 

Also, from the above equations and the geometry of the 

cutting force system, it can be seen that 

 

𝐹𝑠𝑝 =
ℎ𝑤

sin 𝜑
𝜏𝑠𝑝 =

𝑁𝑐

sin 𝜙
cos(𝜑 + 𝜙) (23) 

 

where𝜏𝑠𝑝is the yield shear stress of the material. Yield stress 

is the lowest stress at which a solid will permanently deform 

or flow into a different shape without significantly increasing 

the load or external force. Therefore, the feed force component 

can also be written as 

 

𝑁𝑐 = [𝜏𝑠𝑝

sin 𝜙

sin 𝜑 cos(𝜑 + 𝜙)
] ℎ𝑤 (24) 

 

This is the same as  

 

𝑁𝑐 = [𝜏𝑠𝑝

sin(𝛽 − 𝛼)

sin 𝜑 cos(𝜑 + 𝛽 − 𝛼)
] ℎ𝑤 (25) 
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Since the two expressions for 𝑁𝑐  are equivalent then 

 
𝜎𝑠𝑝

sin(𝜑 + 𝛽 − 𝛼)
=

𝜏𝑠𝑝

cos(𝜑 + 𝛽 − 𝛼)
 (26) 

 

Giving the relationship between the two yield stresses as 

 

𝜎𝑠𝑝 = 𝜏𝑠𝑝 tan(𝜑 + 𝛽 − 𝛼) (27) 

 

For same workpiece-tool pair 𝑟𝑐ℎ  can be considered fixed 

meaning that 𝜑 can also be considered fixed. The ratio 
𝑁𝑐

𝐹𝑐
 is 

normally considered fixed for same workpiece-tool pair 

meaning that 𝛽 can be considered fixed and the yield stresses 

are fixed material properties. The deduction is therefore that 

the feed force component 𝑁𝑐  is proportional to the undeformed 

chip cross-sectionℎ𝑤 where the constant of proportionality is 

either given as  

 

𝐾𝑓 = 𝜎𝑠𝑝

sin(𝛽 − 𝛼)

sin 𝜑 sin(𝜑 + 𝛽 − 𝛼)
 (28) 

 

Or 

 

𝐾𝑓 = 𝜏𝑠𝑝

sin(𝛽 − 𝛼)

sin 𝜑 cos(𝜑 + 𝛽 − 𝛼)
 (29) 

 

Similar analyses give  

 

𝐹𝑐 = [𝜎𝑠𝑝

cos(𝛽 − 𝛼)

sin 𝜑 sin(𝜑 + 𝛽 − 𝛼)
] ℎ𝑤 (30) 

 

𝐹𝑐 = [𝜏𝑠𝑝

cos(𝛽 − 𝛼)

sin 𝜑 cos(𝜑 + 𝛽 − 𝛼)
] ℎ𝑤 (31) 

 

𝐾𝑡 = 𝜎𝑠𝑝

cos(𝛽 − 𝛼)

sin 𝜑 sin(𝜑 + 𝛽 − 𝛼)
 (32) 

 

𝐾𝑡 = 𝜏𝑠𝑝

cos(𝛽 − 𝛼)

sin 𝜑 cos(𝜑 + 𝛽 − 𝛼)
 (33) 

 

where it is seen that 

 

𝐾𝑓 = 𝐾𝑡 tan(𝛽 − 𝛼) (34) 

 

The maximum shear stress theories of Krystof, Ernst and 

Merchant, and Stabler give [29, 30] 

 

𝜑 =
𝜋

4
− 𝛽 + 𝛼 (35) 

 

𝜑 =
𝜋

4
−

(𝛽 − 𝛼)

2
 (36) 

 

𝜑 =
𝜋

4
− 𝛽 +

𝛼

2
 (37) 

 

These equations are useful for the determination of the 

friction angle. Qiu [28] has reported that the thrust force which 

is radial in the case of turning can be given as  

 

𝐹𝑡ℎ = 𝐾𝑡ℎℎ𝑤 (38) 

 

where the thrust force coefficient 𝐾𝑡ℎ  is given as 

𝐾𝑡ℎ = 𝐾𝑡 tan(𝛽 − 𝛼) (39) 

 

This translates to the two equations  

 

𝐾𝑡ℎ = 𝜎𝑠𝑝

sin(𝛽 − 𝛼)

sin 𝜑 sin(𝜑 + 𝛽 − 𝛼)
 (40) 

 

𝐾𝑡ℎ = 𝜏𝑠𝑝

sin(𝛽 − 𝛼)

sin 𝜑 cos(𝜑 + 𝛽 − 𝛼)
 (41) 

 

During machining, there is a rubbing of the machined 

surface on the flank edge of the tool. The rubbing force is 

proportional to the depth of cut, therefore, the measured forces 

are more appropriately given as 

 

𝐹𝑐,𝑠𝑢𝑚 = 𝐾𝑡ℎ𝑤 + 𝐾𝑡,𝑒𝑤 (42) 

 

𝑁𝑐,𝑠𝑢𝑚 = 𝐾𝑓ℎ𝑤 + 𝐾𝑓,𝑒𝑤 (43) 

 

𝐹𝑡ℎ,𝑠𝑢𝑚 = 𝐾𝑡ℎℎ𝑤 + 𝐾𝑡ℎ,𝑒𝑤 (44) 

 

where the edge force coefficients;  𝐾𝑡,𝑒,𝐾𝑓,𝑒  and 𝐾𝑡ℎ,𝑒 are the 

edge rubbing force coefficients which are measured 

experimentally. The coefficients are normally read-off the 

graph of force against chip thickness as intercept per depth of 

cut. Also, Qiu [28] reported that the edge thrust force which is 

radial in the case of turning can be given as 

 

𝐾𝑡ℎ,𝑒 = 𝐾𝑡,𝑒 tan(𝛽 − 𝛼) (45) 

 

 

4. BEAMS DEFLECTION MODELS  

 

 
 

Figure 2. The fixed-pinned beam deflection model of a 

slender workpiece supported by the chuck and the tailstock 

centre 

 

The methods involve modelling the static response of the 

flexible workpiece to the thrust component of cutting forces. 

The separate cases considering the workpiece as a cantilever 

and fixed-pinned beams was modelled and the effects of the 

responses of the beam-models on the material removal rate, 

and the extent of deviation from the intended shape and size 

was studied. The equations for the deflections of the fixed-

pinned beam as depicted in Figure 2 (which is the appropriate 

model for a flexible workpiece supported by the chuck and the 

tailstock centre are [31, 32]. With the knowlede of the 

equations in section three (3), the needed computational model 

was derived. 

 

𝑅1 =
𝐹𝑏

2𝑙3
(3𝑙2 − 𝑏2) = 𝑉𝐴𝐵 (46) 
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𝑅2 =
𝐹𝑎2

2𝑙3
(3𝑙 − 𝑎) = −𝑉𝐵𝐶  (47) 

 

𝑀1 =
𝐹𝑏

2𝑙2
(𝑏2 − 𝑙2) (48) 

 

𝑀𝐴𝐵 =
𝐹𝑏

2𝑙3
(𝑏2𝑙 − 𝑙3 − 𝑥(3𝑙2 − 𝑏2)) (49) 

 

𝑀𝐵𝐶 =
𝐹𝑎2

2𝑙3
(3𝑙2 − 3𝑙𝑥 − 𝑎𝑙 + 𝑎𝑥) (50) 

 

𝑦𝐴𝐵 =
𝐹𝑏𝑥2

12𝐸𝐼𝑙3
(3𝑙(𝑏2 − 𝑙2) + 𝑥(3𝑙2 − 𝑏2)) (51) 

 

𝑦𝐵𝐶 = 𝑦𝐴𝐵 −
𝐹(𝑥 − 𝑎)3

6𝐸𝐼
 (52) 

 

The equations for the deflections of the cantilever beam as 

depicted in Figure 3 which is the appropriate model for a 

slender workpiece supported by the chuck alone are [31, 32]. 

 

 
 

Figure 3. The cantilever beam deflection model of a slender 

workpiece supported by the chuck alone 

 

𝑅1 = 𝑉 = 𝐹 (53) 

 

𝑀1 = −𝐹𝑎 (54) 

 

𝑀𝐴𝐵 = 𝐹(𝑥 − 𝑎) (55) 

 

𝑀𝐵𝐶 = 0 (56) 

 

𝑦𝐴𝐵 =
𝐹𝑥2

6𝐸𝐼
(𝑥 − 3𝑎) (57) 

 

𝑦𝐵𝐶 =
𝐹𝑎2

6𝐸𝐼
(𝑎 − 3𝑥) (58) 

 

These equations were then transformed to represent the 

machining problem under consideration. Using these 

equations, this research unravelled the influence of workpiece 

flexibility on cutting forces and the effects on material removal 

rate and accuracy. 

 

 

5. ESTIMATION OF CUTTING FORCE 

COEFFICIENTS 

 

The determination of the cutting force coefficients requires 

a variation of the factors 𝑣 while keeping 𝑤 and Ω constant. 

The corresponding values of  ℎ were calculated 

from  𝑣 and  Ω where  ℎ = 60𝑣cos 𝜗 Ω⁄ . In determining the 

cutting force coefficients, the effects of flexibility were 

excluded by using nonflexible workpiece and tool.  

If the adopted experimental plan requires 𝑛 runs, then the 

set of equations become 

 
𝐹𝑡ℎ,𝑠𝑢𝑚,1 = 𝐾𝑡ℎ𝑤ℎ1 + 𝐾𝑡ℎ,𝑒𝑤

𝐹𝑡ℎ,𝑠𝑢𝑚,2 = 𝐾𝑡ℎ𝑤ℎ2 + 𝐾𝑡ℎ,𝑒𝑤

⋮
𝐹𝑡ℎ,𝑠𝑢𝑚,𝑛 = 𝐾𝑡ℎ𝑤ℎ𝑛 + 𝐾𝑡ℎ,𝑒𝑤

 (59) 

 

The linear system of equations can be put in matrix form as 

 

𝐲 = 𝑤𝐗𝐜 (60) 

 

The coefficients therefore become 

 

𝐜 =
1

𝑤
{𝐗T𝐗}−1𝐗T𝐲 (61) 

 

where 𝐜 is a 2 by 1 matrix of coefficients given as any of the 

three equations for the tangential, feed and thrust components. 

 

𝐜𝐹𝑐,𝑠𝑢𝑚
= {

𝐾𝑡

𝐾𝑡,𝑒
} (62) 

 

𝐜𝑁𝑐,𝑠𝑢𝑚
= {

𝐾𝑓

𝐾𝑓,𝑒
} (63) 

 

𝐜𝐹𝑡ℎ,𝑠𝑢𝑚
= {

𝐾𝑡ℎ

𝐾𝑡ℎ,𝑒
} (64) 

 

𝐗 is an 𝑛 by 2 matrix of the factors given as 

 

𝐗 = {

ℎ1 1
ℎ2 1
⋮ ⋮

ℎ𝑛 1

} (65) 

 

𝐲 is an 𝑛 by 1 matrix of responses given as any of the three 

equations for the tangential, feed, and thrust components. 

 

𝐲𝐹𝑐,𝑠𝑢𝑚
= {

𝐹𝑐,𝑠𝑢𝑚,1

𝐹𝑐,𝑠𝑢𝑚,2

⋮
𝐹𝑐,𝑠𝑢𝑚,𝑛

} (66) 

 

𝐲𝑁𝑐,𝑠𝑢𝑚
= {

𝑁𝑐,𝑠𝑢𝑚,1

𝑁𝑐,𝑠𝑢𝑚,2

⋮
𝑁𝑐,𝑠𝑢𝑚,𝑛

} (67) 

 

𝐲𝐹𝑡ℎ,𝑠𝑢𝑚
= {

𝐹𝑡ℎ,𝑠𝑢𝑚,1

𝐹𝑡ℎ,𝑠𝑢𝑚,2

⋮
𝐹𝑡ℎ,𝑠𝑢𝑚,𝑛

} (68) 

 

The graphical plots and various error indices like the 

coefficient of determination R2, root mean square error RMSE, 

Mean biased error MBE, Mean absolute biased error MABE, 

Mean percentage error MPE as expressed below was used to 

evaluate the adequacy of the calibrated force coefficients.  

 

R2 = 1 −
∑ (𝑇𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑇𝑖 − �̅�)2𝑛
𝑖=1

 (69) 
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RMSE = (
1

𝑛
∑ (𝑦𝑖 − 𝑇𝑖)2

𝑛

𝑖=1
)

0.5

 (70) 

 

MBE =
1

𝑛
∑ (𝑦𝑖 − 𝑇𝑖)

𝑛

𝑖=1
 (71) 

 

MABE =
1

𝑛
∑ |(𝑦𝑖 − 𝑇𝑖)|

𝑛

𝑖=1
 (72) 

 

MPE =
1

𝑛
∑ (

𝑦𝑖 − 𝑇𝑖

𝑇𝑖

)
𝑛

𝑖=1
100 (73) 

 

In the equations,  𝑦 represents the predicted values 

while 𝑇 represents the experimental values. 

The methodology established above was used in 

determining the cutting force coefficients. The setup shown in 

Figure 4 was used. The setup is made up of a locally 

constructed dynamometer for measuring cutting forces, 

displays on both LCD and computer monitor, a cutting tool, 

and a workpiece. The Experimental matrix for determination 

of force coefficients was then completed as shown in Table 1. 

The entries are averages of the sampled values. 

 

 
 

Figure 4. Experimental setup for determining force 

coefficients 

 

Table 1. Experimental cutting force components values 

 
Feed 

Speed 

𝑣 [m/s] 

Feed  

ℎ [m/rev] 

Tangential 

Force 

𝐹𝑐,𝑠𝑢𝑚 [N] 

Feed 

Force 

𝑁𝑐,𝑠𝑢𝑚[N] 

Thrust 

Force 

𝐹𝑡ℎ,𝑠𝑢𝑚[N] 

0.001 0.0002 56.84 36.93 17.19 

0.002 0.0004 68.15 42.19 21.31 

0.003 0.0006 87.36 65.17 26.12 

0.004 0.0008 120.91 67.91 45.70 

0.005 0.001 146.38 72.07 53.05 

 

Using Eq. (61), the vector of coefficients for the tangential, 

feed and thrust cutting force components are  

𝐾𝑡ℎ = 4.5245 × 108Nm−2and 𝐾𝑡ℎ,𝑒 = 0.0005 × 108Nm−1. 

 

𝐜𝐹𝑐,𝑠𝑢𝑚
= {

𝐾𝑡

𝐾𝑡,𝑒
} = {2.32 × 108Nm−2

5.27 × 104Nm−1} 

 

𝐜𝑁𝑐,𝑠𝑢𝑚
= {

𝐾𝑓

𝐾𝑓,𝑒
} = {9.60 × 107Nm−2

5.61 × 104Nm−1} 

 

𝐜𝐹𝑡ℎ,𝑠𝑢𝑚
= {

𝐾𝑡ℎ

𝐾𝑡ℎ,𝑒
} = {9.61 × 107Nm−2

7.68 × 103Nm−1} 

The graphical plots of the regression results using pseudo 

inverse method are shown in Figure 5 and the goodness off fit 

indices, which were calculated using Eq. (69) to (73) and 

adjudged as acceptable, are given in Table 2. Normally the in 

determination of an acceptable goodness of fit, the R2 value 

must be one or close to one which is in this case, hence, it is 

adjudged as acceptable. 

 

 
(a) Tangential cutting force 

 
(b) Feed cutting force 

 
(c) Thrust cutting force 

 

Figure 5. The graphical plots of the regression results 

 

Table 2. The goodness off fit indices of the regression 

 
Goodness of Fit 

Index 

Tangential 

Force 

Feed 

Force 

Radial 

Force 

R2 0.97 0.89 0.93 

RMSE 5.79 4.76 3.82 

MBE -0.00 -0.00 -0.00 

MABE 5.26 3.91 3.32 

MPE -0.11 0.92 0.38 
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6. CUTTING TESTS RESULTS 

 

 
 

Figure 6. Instantaneous thrust force 𝐹𝑡ℎ,𝑠𝑢𝑚(𝑡) sampled 

every second for MODEL1 

 

 
 

Figure 7. A modelled and sampled instantaneous thrust 

force 𝐹𝑡ℎ,𝑠𝑢𝑚(𝑡) with time 𝑡 and location 𝑎 from the fixed end 

(chuck) for MODEL1 of the aluminium workpiece sample 

with length is 𝑙 =973 mm and the diameter is 𝐷 =20 mm 

 

The thrust force coefficients from above are  𝐾𝑡ℎ =
 9.61 × 107Nm−2 and  𝐾𝑡ℎ,𝑒 = 7.68 × 103 Nm−1 for the 

combination of high-speed steel cutting tool and aluminium 

workpiece material used. The parameters  𝑤 =
0.5 mm and Ω = 280 rpm were used for the cutting tests. The 

aluminium workpiece length is  𝑙 = 973 mm, the diameter 

is 𝐷 =20mm and with measured tensile modulus of 𝐸 =71.3 

GPa, density 𝜌 = 2832 kgm−3 was assumed. The feed is 𝑓 =

ℎ = 0.5 mm/rev. The feed rate is therefore  𝑣 = 𝑓
Ω

60
=

0.0023 ms−1 . The thrust force  𝐹𝑡ℎ,𝑠𝑢𝑚 sensed by the 

dynamometer was sampled every second as shown in Figure 

6. It is seen that 𝐹𝑡ℎ,𝑠𝑢𝑚(𝑡) minimizes close to the supports 

where the reactive loading of the tool by the deformed 

workpiece is minimum. The value of  𝐹𝑡ℎ,𝑠𝑢𝑚(𝑡) increased 

from 15(N) to a maximum value of 100 (N) when the time (t) 

is 200sec and then starts decreasing to 13 (N) when the time (t) 

is 400sec. This is more obvious in Figure 7 where both the 

measured and the modelled thrust forces are plotted on the 

same axes. From Figure 7, it can be seen that 𝐹𝑡ℎ,𝑠𝑢𝑚(𝑡) 

increased from 15 (N) to a maximum value of 80 (N) and then 

starts declining to 13 (N) when the time (t) is 400sec. Also, the 

location at which the instantaneous thrust force maximizes can 

be clearly read from the graph (0.6m). For another sample, the 

aluminium workpiece length is 𝑙 =360 mm and the diameter 

is  𝐷 =15 mm. The sampled thrust force and the predicted 

force are shown in Figure 8. This Figure 8 below shows a 

similar behaviour as the Figures 6 and 7 above for both 

predicted and experimental values of the cutting force.  The 

graphs show that the developed model was able to capture the 

behaviour of the workpiece noting that higher cutting forces 

lower the accuracy of the machining process and the machined 

part.  

 

 
 

Figure 8. A modelled and sampled instantaneous thrust 

force 𝐹𝑡ℎ,𝑠𝑢𝑚(𝑡) with time 𝑡 and location 𝑎 from the fixed end 

(chuck) for MODEL1 of the aluminium workpiece sample 

with length is 𝑙 =360 mm and the diameter is 𝐷 =15 mm 

 

In general, there is a trade-off between cutting force and 

MRR. Increasing the material removal rate often requires 

higher cutting forces, but it can be achieved by optimizing 

cutting parameters, tooling, and machine setup to strike a 

balance between these factors. Machinists and engineers use 

various strategies and calculations to find the optimal 

combination of parameters for a specific machining operation 

to maximize MRR while keeping cutting forces within 

acceptable limits. High cutting forces might result in the 

workpiece flexing or deforming when machining thin or 

delicate workpieces. Accuracy issues with the finished part 

may be caused by this distortion. Using support structures, 

lowering cutting forces, or choosing other machining 

techniques are all approaches to reduce workpiece 

deformation. In machining research and process optimization, 

estimating cutting force coefficients using experimental 
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techniques and regression models is a typical strategy. There 

are, however, a number of drawbacks to this approach: 

• Data Variability: Experimental data may be vulnerable 

to variation because of things like the nature of the 

materials used, the wear on the tools used, the state of the 

machines, and the environment. Because of this 

unpredictability, the regression model's coefficients may 

not be accurate enough to accurately forecast cutting 

forces under various conditions. 

• Model complexity: A regression model's accuracy is 

influenced by the number of parameters it takes into 

account as well as how complicated the model is. 

Although complex models may match experimental data 

well, they may be difficult to apply to novel settings. 

Simpler models are easier to understand, but they might 

not represent all the details of the machining operation. 

• Interactions: It's a common assumption in regression 

models that the effects of various variables on cutting 

forces are linear and independent. In actuality, 

complicated interactions between variables might provide 

inaccurate forecasts. 

• Costs and time of the experiment: Experiments to 

calculate cutting force coefficients can be both costly and 

time-consuming. Extensive experiments to cover every 

conceivable machining circumstance might not be 

feasible. 

 

 

7. CONCLUSIONS 

 

The realization of a set product quality within the 

restrictions of available resources-equipment, money, and 

time-can be characterized as the general manufacturing 

challenge. Unfortunately, it is difficult to guarantee that these 

requirements will be reached for some product quality 

parameters, such as flexibility. 

In this work, the effects of workpiece flexibility on cutting 

performance in turning operations was modelled. The model 

allows the computation of the actual turning productivity. The 

method involved modelling the static response of the flexible 

workpiece to the thrust component of cutting forces. The 

effects of flexibility on the responses of the beam-models on 

the material removal rate, and the extent of deviation from the 

intended shape and size were studied. A computational 

approach verified experimentally was used. The 

computational approach requires cutting force coefficients, 

and the coefficients were determined using cutting tests and 

pseudo inverse regression analysis. The experimental setup for 

the cutting test is made up of a locally constructed 

dynamometer for measuring cutting forces, displays on both 

LCD and computer monitor for taking the readings of the 

cutting forces, a cutting tool, and a workpiece. The determined 

force coefficients are highly reliable judging from the 

coefficients of determination, R2 values of 0.97, 0.89 and 0.93 

of the regression calibrating the force coefficients for the 

tangential, feed, and radial directions which is used to measure 

the accuracy of the determined force coefficient and it is 

normally one or close to one as seen here. Effort should be 

made in future to investigate a case of CNC lathe operations 

where the workpieces could be modelled as rotating fixed-free 

(cantilevered) beam due to fixed support at the chuck and 

unsupported end on the other side of the workpieces as way of 

improving both accuracy and productivity. The developed 

computational model can be further worked on to make it 

simple and versatile for actual industrial application. It is 

recommended that researchers should improve the machining 

ability of slender parts through high-performance machining 

strategies such as cryogenic minimum quantity lubrication 

(CMQL) machining and Additive Manufacturing by 

exploration of application of the second order least squares 

approximated full-discretization method of Song et al. [33], 

for needed stability analysis and develop comprehensive 

prediction models that consider the structure deflections of 

cutting tool/workpiece and the chatter instability 

simultaneously. 
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NOMENCLATURE 

 

Tct Complete machine adjusting time, s 

Ti Controlling or inactive time, s 

Tc Real machining time, s 

TCT Time needed for a single changing, s 

Tm Total time for machining, s 

Lc Complete cut length, mm 

s Rate of feed, mm.rev-1 

Ω Spindle speed, rpm 

𝑉𝑐   Speed of cu of cut, m.s-2 

D Diameter of job, mm 

𝑇𝐿  Taylor’s Tool Life 

Fc Tangential cutting force component, N 

Nc Feed cutting force component, N 

Fth Thrust cutting force component, N 

Fsp Shear force component on the shear plane 

Nsp Normal force component on the shear plane 

Frf Frictional force component of the rake face 

Nrf Normal force component of the rake face 

rch Chip thickness ratio 

h Undeformed chip thickness (mm) 

hch Chip thickness, mm 

Vch Chip velocity on the rake face, m.s-2 

Vt Tangential velocity, m.s-2 

w Depth of cut, mm 

𝜎𝑠𝑝  Yield normal stress of the material, N.mm-2 

𝜏𝑠𝑝  Yield shear stress of the material, N.mm-2 

Kf Feed cutting force coefficient, N.mm-2 

Kt Tangential cutting force coefficient, N.mm-2 

Kth Thrust cutting force coefficient, N.mm-2 

Kf, e Feed edge force coefficient, N.mm-1 

Kt, e Tangential edge force coefficient, N.mm-1 

Kth, e Thrust edge force coefficient, N.mm-1 

E Young’s Modulus, N.mm-2 

I Moment of inertia, mm-4 

l Length of the workpiece, mm 

y Beam deflection, mm 

F The applied load on the beam, N 

M1 Bending moment at point A, Nm 

MAB Bending moment at point AB, Nm 

MBC Bending moment at point BC, Nm 

yAB Deflection along AB, mm 

YBC Deflection along BC, mm 

R1 Reaction at support A, N 

R2 Reaction at support C, N 

𝜌  Density of the workpiece, kg.m-3 

x Distance from point A to the point of interest 

along the length of the workpiece, mm 

w(a) Actual depth of cut, mm 

a Distance of the load from fixed end A, mm 

b Distance of the load from end C, mm 

ϑ Non-zero approach angle, deg. 

w(t) Instantaneous depth of cut, mm 

MRR Material removal rate, kg.m-3 

Dmax Maximum diameter of the workpiece, mm 

�̅�  Average diameter of the workpiece, mm 

m Total amount of material removed, kg 

t Time, s 

y(t) Instantaneous deflection, mm 

yi Predicted values 

Ti Experimental values 

R2 Coefficient of determination 

RMSE Root mean square error 

MBE Mean biased error 

MABE Mean absolute biased error 

MPA Mean percentage error 

 

Greek symbols 

 

 Rake angel, deg. 

 Friction angle, deg. 

𝜑  Shear angle, deg. 
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