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Natural gas and oil are one of the mainstays of the global economy. However, many issues 

surround the pipelines that transport these resources, including aging infrastructure, 

environmental impacts, and vulnerability to sabotage operations. Such issues can result in 

leakages in these pipelines, requiring significant effort to detect and pinpoint their 

locations. The objective of this project is to develop and implement a method for detecting 

oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped 

with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things 

(MQTT IoT) protocol, the acquired images and the global positioning system (GPS) 

coordinates of the images' acquisition are sent to the base station. Using deep learning 

approaches such as holistically-nested edge detection (HED) and extreme inception 

(Xception) networks, images are analyzed at the base station to identify contours using 

dense extreme inception networks for edge detection (DexiNed). This algorithm is capable 

of finding many contours in images. Moreover, the CIELAB color space (LAB) is 

employed to locate black-colored contours, which may indicate oil spills. The suggested 

method involves eliminating smaller contours to calculate the area of larger contours. If 

the contour's area exceeds a certain threshold, it is classified as a spill; otherwise, it is 

stored in a database for further review. In the experiments, spill sizes of 1m2, 2m2, and 

3m2 were established at three separate test locations. The drone was operated at three 

different heights (5 m, 10 m, and 15 m) to capture the scenes. The results show that 

efficient detection can be achieved at a height of 10 meters using the DexiNed algorithm. 

Statistical comparison with other edge detection methods using basic metrics, such as per-

image best threshold (OIS = 0.867), fixed contour threshold (ODS = 0.859), and average 

precision (AP = 0.905), validates the effectiveness of the DexiNed algorithm in generating 

thin edge maps and identifying oil slicks. 
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1. INTRODUCTION

Pipelines carry most oil and gas today. It crosses seas and 

land. Thus, it is vulnerable to vandalism, unintentional damage, 

corrosion-related structural damage, theft, hot spots, punctures, 

and more [1]. These events damage stock, the environment, 

and lives. Risks are scattered throughout the pipeline. To 

safeguard oil riches, the major source of economic prosperity 

in nations, and environmental safety, oil spills must be quickly 

identified. However, early leakage identification is difficult 

since conventional methods are used to monitor pipelines and 

pipe properties vary. Additionally, pipelines cross through 

certain insecure areas [2]. 

Over the previous few decades, several methods for 

detecting leaks in pipelines have been presented, each with its 

unique operating principle and strategy. such as Acoustic 

emission, ground penetrating radar, dynamic modeling, fiber 

optic sensors, vapor sampling, infrared thermography, 

negative pressure wave analysis, digital data processing, and 

mass-volume balance are some current technologies used to 

identify leaks [3]. Several models have been used to classify 

these techniques into three broad categories: External, visual 

or biological, and internal or computational [4].  

Artificial sensing devices placed outside pipes are used for 

external detection. Leakage can also be detected biologically 

using trained dogs or humans. Inside detection methods 

involve software-based solutions utilizing intelligent 

computational algorithms and sensors to monitor the internal 

pipeline environment. To achieve this, cameras and other 

sensing equipment can be deployed to distant monitoring 

locations using various means such as smart pigging, 

helicopters, autonomous underwater vehicles (AUVs), drones, 

and sensor networks [5]. 

Computer vision plays a vital role in the field, offering one 

of the best solutions through the utilization of deep learning 

algorithms integrated with drones in various domains, 

including monitoring oil pipelines. These algorithms process 

captured images and extract important features that can aid in 

decision-making regarding potential issues, such as dropout 

[6]. 

This project uses a drone with a Raspberry Pi, Pi camera, 

and GPS tracking system to monitor pipelines. MQTT IoT 

transfers images and location data from the drone to the 

ground station. Deep learning for computer vision is the 

foundation. At the base station, the DexiNed technique creates 

pixel-level thin-edge maps of each image's spill sizes. The 
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LAB approach eliminates shadows since the spill is black. 

Calculating the contour area using an algorithm may reveal a 

leak. When a leak is found, the web app sends the original 

image and the spot's size and position to the authorities. 

Through the proposed method, solve the problems that other 

methodologies suffer from, for example, the problem of the 

secret response to detect and determine the size of the spot, its 

area, its location, etc. 

The remaining sections of the paper are laid out as follows. 

First, state of the art in related work is presented in Section 

two. Then, the theoretical underpinnings of the deep learning 

method employed in this work are presented in Section three. 

Finally, Section four shows the proposed system design and 

the obtained result, while conclusions of the work are 

presented in Section five. 
 

 

2. RELATED WORK 
 

Leak detection has been the major subject of many studies. 

Wang et al. [7] performed the use of a real-time processing 

process obtained through video frame monitoring of oil spills, 

such as midpoint, area, diffusion rate, edge circumference 

features, etc. They used a recurrent neural network's long-term 

memory network to find the relationship between features and 

influencing factors. Li et al. [8] proposed an early micro-leak 

detection method using a full-coverage three-dimensional 

capacitance matrix sensor with improved parameters, higher 

sensitivity, and stable oil leak measurement function. It can 

detect and quantify small ground tank oil leaks early, ensuring 

process safety and risk prediction. Wang et al. [9] suggested 

using an algorithm based on the single flow direction chosen 

from the 8 possibilities (SFD8) algorithm to predict the path 

of leaking contaminants at a low leakage rate to ensure 

pipeline safety in an emergency. By simulating the fluid 

dynamics of the pollutant's dynamic diffusion process in a 

computer. 

Aba et al. [10] suggested simulating real-time pipeline 

monitoring and locating damage with an Internet of Things 

(IoT) analytics platform service. Pressure pulsations monitor 

pipelines using pipe vibration. Archana et al. [11] proposed 

machine learning (ML) based anomaly detection models have 

been. Five ML algorithms were used, to develop pipeline leak 

detection models. The bolster guiding machine algorithm has 

been proven as an accurate model for leak detection in oil and 

gas pipelines. Yang et al. [12] suggested a visual molecular 

dynamics (VMD) convolutional neural network (CNN) model 

deep learning (DL) based oil and gas pipeline leak detection 

model with data preprocessing and pattern recognition. 

Experimental results show that the used model improves more 

than other models. 

Wang et al. [13] proposed to extract oil spill information 

using an image CNN model from synthetic aperture radar 

(SAR) images by taking advantage of its features of local 

connection, weight sharing, and learning for image 

representation. Al-Battbootti et al. [14] proposed a framework 

for computer software that could be used to locate oil spills 

and river pollution. An unmanned aerial vehicle was used by 

the artificial intelligence-based framework to locate and 

identify oil pollution by analyzing the images it had taken. Ali 

et al. [15] corrosion is one of the faults that have a major 

influence on the safety of the surface of oil and gas tanks, thus 

a localizing visual inspection technology combining drones 

and artificial intelligence (AI) has been presented. This 

technology employs an image processing algorithm, a fuzzy 

logic algorithm, and a threshold algorithm. Table 1 shows a 

summary of related work. 

 

Table 1. Summary of related work 
 

Ref. Detection Method Category Technology Tools Algorithm 

[7] 

Video frame 

monitoring of oil 

spill handling. 

Exterior 
Analyze the characteristics 

of the spilled oil. 
CNN 

Long short-term memory 

network. 

[8] Sensors Exterior 

Full coverage three-

dimensional capacitance 

array sensor. 

Sensors Statistical analysis. 

[9] 
Predict the path of 

leaking contaminant. 
Exterior 

Standard Volume of Fluid 

technique. 
Sensors 

Proposing a Multi-Flow 

Direction algorithm based on the 

SFD8 algorithm. 

[10] Pressure pulses. Interior 

Pressure pulses are based 

on the principle of 

vibration. 

Arduino UNO R3, Wi-

Fi module, and 

ThingSpeak IoT 

IoT analytics platform service. 

[11] 
Anomaly Detection 

Model. 
Interior ML 

Operational parameters 

temperature, pressure, 

and flow rate. 

Random forest, support vector 

machine, k-nearest neighbor, 

gradient boosting, and decision 

tree. 

[12] 
VMD-MD-1DCNN 

model. 
Interior DL 

Acoustic, pressure, and 

flow sensors. 

One-dimensional convolution 

neural network. 

[13] 

Sensing image 

remote to an oil 

spill. 

Visual 
SAR monitoring of marine 

oil spills. 
CNN AlexNet model 

[14] 
Analyze captured 

images of rivers. 
Visual CNN model 

Drones, camera, and 

Macbook Pro laptop. 
ML.NET 

[15] 
Research is to detect 

rust in oil tanks. 
Visual 

Using AI to localize visual 

inspection technology 

through drones. 

drones 

Threshold algorithm, image 

processing algorithm, and fuzzy 

logic algorithm. 

Our 

propose 

work 

Pipeline monitoring 

using computer 

vision. 

Visual DL algorithm. 
Drone, Raspberry Pi, Pi 

camera, and GPS. 

DexiNed, LAB algorithm, Spot 

area calculation algorithm, and 

MQTT IoT Protocol. 
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External detection methodologies are characterized by a set 

of advantages, for example, they are easy to use, the response 

time is early, and others and they also have many 

disadvantages, including the need for highly experienced 

workers to install and program them, the need for direct 

contact with the spill medium, the high cost of implementation, 

the large number of false alarms, and others [16]. As for the 

internal detection methodologies, they are portable, low cost, 

and have good performance in implementation, detecting 

small leaks and the ability to locate them, etc. At the same time, 

they have a number of defects, including computationally 

complex to a high degree, and require experts for 

implementation, and others as for the visual methods, they are 

considered traditional methods in use, and the difficulty of 

implementing them in many areas, but they are suitable in a 

very small area [17]. 

 

 

3. EDGE DETECTION-BASED DEEP LEARNING 
 

The field of edge detection has seen widespread 

implementation across a wide range of practical needs, from 

the medical to the industrial. It is possible to classify edge 

detection methods as either traditional edge detection or those 

based on deep learning [18]. Both the Holistically-Nested 

Edge Detection (HED) and Xception networks served as bases 

for DexiNed. Produces human-perceivable narrow edge maps, 

which may be utilized in any edge detection job without fine-

tuning or training [19]. 

 

3.1 DexiNed architecture  

 

DexiNed is a deep neural network designed to detect edges 

in BGR images, with inputs represented by W rows and H 

columns. DexiNed generates six side outputs with different 

scales, corresponding to edge maps that form an H x W map 

with values ranging between zero and one, typically mapped 

to (0, 255) to indicate the presence of edges in the image. Each 

of the six blocks in DexiNed contributes to the calculation of 

two main outputs: the average output and the fused output. The 

fused output is produced by a convolutional layer with a 1×1 

kernel, taking the six side outputs as inputs. On the other hand, 

the average output is computed by averaging all the side 

outputs and the fused output.  

The DexiNed network comprises six blocks, each consisting 

of repeated sub-blocks. The first block receives a BGR image 

as input, and its sub-blocks include a convolutional layer with 

a 3×3 kernel, ReLU activation functions, and batch 

normalization. 

There are some differences in the composition of the six 

blocks, especially the first and second blocks. These blocks are 

completely different from the rest of the other four blocks in 

terms of the presence or absence of ReLU layers before the up-

sampling blocks. There are lateral connections, and the 1×1 

kernel convolutional layers produce all the lateral connections. 

The six blocks operate at different scales. The first and second 

blocks of the input image operate at half-full resolution. In 

contrast, the third block operates at 1/4 accuracy, the fourth at 

1/8 accuracy, and the fifth at 1/16 accuracy. The reduction in 

precision is achieved through max pooling operations with 

2×2 strides and 2×2 kernels. 

The architecture of each block varies in terms of the number 

of convolutional layers and filters. The first block consists of 

two convolutional layers with 32 and 64 filters each, the 

second block has two convolutional layers with 128 filters 

each, the third block has four convolutional layers with 256 

filters each, the fourth and fifth blocks have six convolutional 

layers with 512 filters each, and the sixth block has 

convolutional layers with 256 filters each. 

In each block and at different stages, the processed image 

or its average, in some cases, is added to the output of a side 

connection. This process is inspired by the Xception network, 

which uses different layers of pointwise and depthwise 

convolutions to separate cross-channel connections from 

spatial connections. Unlike DexiNed, Xception does not 

utilize the main idea of spatial or cross-channel separation, as 

it uses standard convolutional layers. Figure 1 illustrates the 

Dexi architecture [20, 21]. 

 

 
 

Figure 1. DexiNed architecture [20] 

 

3.1.1 Upsampling architecture 

One of the main elements in the DexiNed architecture is the 

upsampling block (UB), which upscales the edges. The 

outputs from all DexiNed blocks are inputs to an upsampling 

block consisting of stacked conditional sub-blocks. Each 

building block comprises a convolutional and a 

deconvolutional layer. Figure 2 shows the upsampling 

network architecture. In the six blocks, the output is upscaled 

665



 

to obtain the full fidelity of the input image. This is done by a 

set of 1×1 convolution kernels, a ReLU activation function, 

and 2×2 convolution kernels. Each block specifies the required 

number of phases. The side outputs of the six blocks are 

combined by a 1×1 kernel convolution layer to extract an edge 

map called a fused output. The averaged outputs are obtained 

by calculating the combined output with the six side outputs, 

where the sigmoid activation functions are used in all outputs, 

where the output is in [0, 1], that is, for visualization in a 

standard form that can be a normalization on [0, 255], and 

where the edges in the produced image are in color Black and 

white background [22].  

 

 
 

Figure 2. Upsampling network architecture [22] 

 
3.1.2 Loss functions 

It is possible to express DexiNed in terms of a regression 

function ð, that is, Ŷ = ð(X, Y ), where X is an input image, Y 

is the corresponding ground truth, and Ŷ It is a collection of 

predicted edge mappings. Ŷ =[ŷ1, ŷ2, ..., ŷN ], where ŷi has the 

same size as Y and is the number of outputs from each 

upsampling block; ŷN is the result from the final fusion layer f 

( ŷN = ŷf ). Therefore, as this is a model, the same loss as 

(weighted cross-entropy) is used; hence, this problem is 

thoroughly supervised and addressed similarly. 

 

≀n  (W,wn) = −β∑  log σ (yjj ∈𝑌+  1|X;  W,wn )  

           −(1 −  β) ∑ log σ 

j ∈𝑌−   

(yj = 0|X;  W,w
n), (1) 

 

Then, 

 

ℒ(W,w) = ∑ δnN
n=1 ∗≀n  (W,wn), (2) 

 

Each scale has its weight, denoted as, where W is the set of 

all network parameters and w is the parameter with index, δ is 

a weight for each scale level. β = | 𝑌− |/| 𝑌+  + 𝑌− | and 

(1−β)=| 𝑌+|/|𝑌++ 𝑌−| (|𝑌−|, |𝑌+| represent the edge and non-

edge in the underlying truth, respectively) [23]. 
 

3.2 Extreme inception networks 

  

3.2.1 Inception module 

As a bridge between standard convolution and the 

depthwise separable convolution operation, Inception modules 

in convolutional neural networks provide an intermediary 

phase in the learning process (a depthwise convolution 

followed by a pointwise convolution). In this context, an 

Inception module with the largest possible number of towers 

may be seen as a depthwise separable convolution. Several 

variations on the central "Inception module" form the basis of 

"Inception-style" models. The standard Inception module, as 

shown in the Inception V3 design, is depicted in Figure 3. 

These building blocks are the building blocks of an Inception 

model. 

The first visual geometry group (VGG) style networks were 

just stacks of basic convolution layers, which is a big change. 

Although Inception modules and convolutions (convolutional 

feature extractors) share a lot of common ground, in practice, 

the former seems able to learn more complex representations 

with fewer parameters. One convolution kernel, for instance, 

is responsible for mapping both cross-channel correlations and 

spatial correlations as a convolution layer seeks to learn filters 

in a three-dimensional space consisting of two spatial 

dimensions (width and height) and a channel dimension. The 

Inception module aims to facilitate this procedure and increase 

its efficacy by separating it into procedures that may examine 

cross-channel and spatial correlations separately. 

 

 
 

Figure 3. Standard Inception module (Inception V3) [24] 

 

 
 

Figure 4. Inception framework simplification [24] 

 

 
 

Figure 5. Block diagram of Xception [24] 

 

A stripped-down Inception module that employs just a 

single convolution size (such as 3×3) and lacks the average 

pooling tower Figure 3. Figure 4 shows how this Inception 

module may be reformed as a series of spatial convolutions 

operating on non-overlapping regions of the output channels. 
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This motivates us to suggest a new kind of deep convolutional 

neural network design, with depthwise separable convolutions 

for the Inception modules, named Xception, shown in Figure 

5, in the architectural scheme [24]. 

 

3.2.2 Xception architecture 

The foundation of a convolutional neural network is a series 

of convolution layers that may be independently explored in 

detail [25]. Several of the convolutional layers in its design are 

responsible for the network's feature extraction mechanism. 

All modules in the convolutional layers, excluding the first and 

final, are part of a sum of modules with linear residual 

connections. Figure 6 depicts the network topology, which 

consists of three distinct flows. The entry flow begins with 

extracting coarse features from the input data, then moves to 

batch normalization and the RELU activation function. In the 

subsequent middle flow, performed four times, more filters 

extract more detailed information. As in the VGG-16 

architecture, all convolutional layers that may be separated do 

not undergo depth expansion [26].  

 

 
 

Figure 6. Xception CNN architecture [26] 

 

3.3 Holistically-nested edge detection 

  

HED employs a VGG16-based deep neural network with 

additional layers added to combine findings across scales. A 

color image (three channels) is used as input, and a map with 

confidence scores between 0 and 1 is produced, where 1 

indicates 100% certainty that a given pixel represents an edge. 

The range of allowed RGB values for each input pixel is [0, 

255]. Figure 7 depicts an edge detection network design, with 

the error backpropagation channels highlighted for clarity. The 

VGG16 network's convolutional layer is used in this technique. 

There are 13 convolutional layers, each with a 3×3 kernel and 

ReLU activation functions. After each layer, the resolution is 

decreased from one group to the next using a max-pool 

operation with a 2×2 kernel and a 2×2 stride. The final result 

of HED combines the outputs of five VGG16 groups trained 

to represent edge maps at five distinct scales [27].  

The HED algorithm is a neural network that takes on two 

major challenges in long-term vision. Image-to-image 

prediction using a deep learning model that uses fully 

convolutional neural networks and deeply-supervised nets is 

the first step toward a unified image training and prediction 

approach (the system accepts an image as input and outputs 

the edge map image) and second, multi-scale and multi-level 

feature learning motivated by deep neural networks. The 

complex ambiguity in edge and object boundary detection is 

resolved by HED's automated learning of rich hierarchical 

representations (led by deep supervision on side replies) [28].  

During training, the input training data set is represented as 

S = {(Xn , Yn ), n = 1,… , N}  where sample  Xn = { xj
(n)
 , j =

1, … , |Xn | } represents the raw input image and Yn =

{yj
(n) , j, … , |Xn  |} yj

(n) ∈ {0,1} represents the matching ground 

truth binary edge map for the image Xn . Weights are 

represented as w = w(1) , … , w(M) , and the network 

comprises M side-output layers. Computes the loss function at 

the image level for auxiliary outputs. In the field of image-to-

image training by [29]:  

 

ℓ𝑠𝑖𝑑𝑒
(𝑚)

 (𝑊,𝑤(𝑚) )

= −β∑ log𝑃𝑟(𝑦𝑗  = 1|𝑋;𝑊,𝑤
(𝑚) )

𝑗Ɛ𝑌+

− (1 − β) ∑ log  𝑃𝑟(𝑦𝑗  = 0|𝑋;𝑊,𝑤
(𝑚))

𝑗Ɛ𝑌−

 

(3) 

 

Can determine fusion layer loss function ℒ𝑓𝑢𝑠𝑒  By: 

 

ℒfuse (W,w, h) = Dist(Y, �̂�fuse) (4) 

 

To optimize for the minimum value of the following 

objective function using (backpropagation) accidental fall 

down a gradient by: 

 

(W,w, h)∗ = argmin ℒ𝑠𝑖𝑑𝑒(𝑊,𝑤) + ℒfuse (𝑊,𝑤, ℎ) (5) 

 

Both the side output layers and the weighted-fusion layer's 

predictions on the edge map may be used in the testing step 

with image X by: 

 

�̂�fuse   , �̂�side
(1)
 , … , �̂�side

(M)
= 𝐶𝑁𝑁 (𝑋, (W,w, h)∗) (6) 

 

These created edge maps may be aggregated further to 

provide a single result by: 

 

�̂�𝐻𝐸𝐷 =  Average( �̂�fuse   , �̂�side
(1)
 , …  , �̂�side

(M)
) (7) 

 

 
 

Figure 7. Network architecture for HED [27] 

 

3.4 LAB color space 
 

A luminance (lightness) channel, and two additional 

channels, A and B, represent different chromaticity layers in 

this color space. Where a color lies on the red-green axis can 

be determined from the A* layer, and where it lies on the blue-
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yellow axis may be selected from the B* layer. The fact that 

this color space may convey color information across multiple 

platforms and devices is its most notable characteristic. 

Coordinates in L*A*B* color space, the range of possible 

values for L* is from 0 (complete darkness) to 100 (total 

lightness) brightness (L*) is displayed along the middle 

vertical axis. It follows from the coordinate axes that A* color 

can't be blue or yellow since these are opposing colors [30].  

All axes display values from positive to negative. The A 

channel, whose values range from -128 to +127, reveals the 

color balance between red and green. The B channel, whose 

values range from -128 to +127, also specifies the image's 

relative amount of yellow and blue. Colors with a high value 

in the A or B channels tend to be red or yellow. In contrast, 

colors with a low value tend to be green or blue. The zero point 

shows grayscale neutrality on both axes. 

An image with RGB is converted to a LAB image by 

converting it to grayscale images or binary images. This is 

done to detect edge information in the image. The space RGB 

is converted to space XYZ and then converted to space LAB. 

The value range is R, G, and B=(0~255), L=(0~100), and A, 

B=(-128 ~ +128). The color values of R, G, and B are 

converted to X, Y, and Z by Eq. (8) [31]. 

 

{
X = 0.49 × R + 0.31 × G + 0.2 × B;
Y = 0.177 × R + 0.812 × G + 0.011B;

Z = 0.01 × G + 0.99 × B.
 (8) 

 

The values X, Y, and Z are converted into LAB using Eq. 

(9): 

 

{
 
 

 
 

L = 116fY  − 16;

A = 500 × (
fX

0.982 − fY  
) ;

B = 200 × (fY − 
fZ

1.183
) .

 (9) 

 

 

4. PROPOSED SYSTEM 

 

Leakage detection systems for underground crude oil 

pipelines must meet a number of criteria, the most essential of 

which is the ability to detect spills of varying sizes. The age of 

the pipe, environmental degradation, vandalism, and theft are 

all potential reasons for a leak. Slow leaking might cause the 

size of the spill to grow over time. Second, the color of the 

spill itself, which is always dark owing to the oil's composition. 

The color of the spill does not fade over time. 

The location of the leak is the last criterion in the design 

process. The majority of leak detection systems, such as 

differential pressure, may identify a leak in a certain section of 

pipe (up to 30 km), but they cannot pinpoint its precise 

position within that segment. Part of the system's 

implementation is seen in Figure 8, and the actions involved 

may be summed up as follows: 
 

4.1 Experimental work 

 

This work employed an embedded system using a drone 

(DJI- Phantom 3 Advanced model. The battery life is 23 

minutes with the autopilot feature. It rises vertically at a speed 

of up to 13 km/h while flying horizontally at a speed of up to 

35 kilometers/hour. The aircraft weighs approximately 453 

grams as it is equipped with sensing technology in the 

presence of heights in front of it to avoid a collision), 

represented by a Raspberry Pi 4, equipped with a Raspberry Pi 

v2 camera module and a NEO-6M GPS module, to determine 

the volume and position of a spill anywhere along the pipelines. 

A drone is given the coordinates of the pipeline routes and 

deployed on a tour, during which it carries the embedded 

system. The architecture and execution of the suggested 

system are shown in Figure 9. 

 

 
 

Figure 8. Drone taking images of the oil leakage 

 

 
 

Figure 9. Proposed system design and implementation 

 

A drone is regularly launched down a conduit that is 

approximately three meters underneath. The method was put 

through its paces on a 30-kilometer oil pipeline in the Iraqi 

desert. per 0.2 seconds, the embedded device snaps an image 

at a set position along the route, capturing an image per meter. 

Using the MQTT IoT protocol, the image is sent to the base 
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station along with its GPS coordinates. DexiNed is an image 

analysis method that looks for sharp edges and corners. A spill 

might be one of the numerous possible forms in any given 

image. Therefore, minor contour details would be ignored. 

Then, the LAB method is used to locate the edge of an image 

with a single black color spot, a possible spill. 

 

4.2 Base station design   

 
The suggested web app has been built to operate as a hub 

that receives data packets from the drone through the MQTT 

protocol, with the drone playing the role of publisher and the 

web app taking on the role of the subscriber. The first thing 

that happens is that the program gets images with its GPS 

coordinates (longitude and latitude). The site then uses 

separate algorithms to analyze the data and make a 

determination on the spill after getting this information. 

Python 3.9 with the Flask framework and a Microsoft Access 

database power this app. In this study, have developed three 

algorithms: 

The first algorithm depicts the publish/subscribe schema 

used by the MQTT IoT Protocol, with the drone and Raspberry 

Pi 4 playing the role of publishers and the base station the role 

of subscribers. Applying the DexiNed deep learning algorithm 

to the incoming images, determining the contour for all image 

parameters, and erasing the smallest contour below the 

threshold limit are all steps in the second method. Finally, the 

third algorithm uses the LAB algorithm to find contours with 

only black features (the natural color of the spill), and then 

either sends a warning via the web application of the spill's 

location if the spot area is larger than the threshold limit, or 

stores the information in the database at the present time and 

checks it in the next round of the drone. The final product of 

the image processing is shown in Figure 10. 

 

  
Original image RGB Apply of algorithm 

DexiNed 

  
Area in pixel for all detected 

contours 

Applied the LAB 

algorithm and find the real 

area of the spill 
 

Figure 10. 3m2 spill with 10 m height 

Algorithm1: MQTT IoT Protocol 

1 The base station sends the message to the drone to start 

the operation. 

2     { 

3   While (True): { 

4         Image=capture (image_ path) 

5         [latitude, longitude]=read GPS location  

6         Payload message =image+ latitude+            

longitude 

7                 Publish (Payload) to Base Station 

8           } 

9  } 

Algorithm 2: Apply DexiNed 

1 Read image 

2 Apply DexiNed 

3 Number of contours =n; 

4 { 

5    While (n!=0) { 

6        If contour _ area _ in pixel(small) 

7                { 

8                    Eliminate contour; 

9                     n--; 

10                } 

11        Else { 

12                    Contour _ counts++; 

13                     n--; 

14                } 

15            } 

16 } 

Algorithm 3: LAB Algorithm  

1 Read image i from DexiNed. 

2 While (True): 

3 { 

4   Apply the LAB algorithm. 

5   If (black _ contour) exists  

      If (area _ black_contour> threshold) 

6        { 

 Send an alarm message to find leakage by a web 

application. 

7           Set a new round.  

8        } 

      Else  

9           { 

               Save the image in a database. 

10            } 

11  Else  

12        { 

13          Check the database for the stored image. 

14             If the spill exit in a database 

15                { 

16                 Get the GPS location of the spill. 

17                 Send the drone to a location.  

18                } 

19             Else  

20               { 

21                  Set a new round.   

22                }  

23        } 

24  } 

 

 
4.3 Area calibration procedure  

 
Extensive testing was conducted in this study, where three 

sizes of the spill were done (1m2, 2m2, and 3m2), to calculate 

the real area of the spill, as shown in Figure 11. For each area 

size, the drone is positioned immediately above the spill at one 

of three heights (5m, 10m, and 15m). Up to ten images were 

taken for each peak as in Figure 11. The images used to 
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calculate the spill area in pixels and the spill diameter are 

summarized statistically in Table 2. 

 

Table 2. Statistical analysis of a group of images captured in 

pixels 

 

Image Pixel Area Perimeter Area 

Height=5 and the Spill is 1m2 

1 101204.5 2478.83 

2 97713.5 1816.19 

3 96422.0 1568.59 

4 87357.0 1384.76 

5 91652.0 1373.94 

Height=10 and the Spill is 1m2 

1 23219.0 725.41 

2 23019.5 797.25 

3 23103.5 814.28 

4 23099.0 762.38 

5 23122.0 792.52 

Height=15 and the Spill is 1m2 

1 8078.0 457.1 

2 7610.5 363.12 

3 8760.0 499.16 

4 8342.0 431.91 

5 8041.0 393.42 

Height=5 and the Spill is 2m2 

1 158437.0 2032.64 

2 153535.0 2030.09 

3 158332.5 2015.99 

4 184341.0 2309.71 

5 162207.5 2083.99 

Height=10 and the Spill is 2m2 

1 61926.0 1170.63 

2 63696.0 1396.94 

3 64244.5 1311.79 

4 60996.5 1245.02 

5 59781.5 1230.73 

Height=15 and the Spill is 2m2 

1 27382.5 767.71 

2 27901.0 753.47 

3 27481.0 711.04 

4 27127.0 703.39 

5 25840.0 864.1 

Height=5 and the Spill is 3m2 

1 259915.0 2758.26 

2 254728.0 2932.97 

3 254765.0 3213.02 

4 251951.0 3627.29 

5 261107.5 3273.14 

Height=10 and the Spill is 3m2 

1 143821.0 2523.32 

2 138306.5 1932.6 

3 135590.5 2400.83 

4 138213.0 2475.24 

5 138131.5 2364.26 

Height=15 and the Spill is 3m2 

1 68020.5 1916.86 

2 62248.0 1232.75 

3 61547.5 1240.65 

4 62929.5 1296.65 

5 63246.5 1229.6 

 
By using the DexiNed deep learning technique, identified 

the spill, which might lead to several contours, a large spill 

contour, or even very tiny contours. There must be an 

algorithm to get rid of the contours and separate the oil slick 

by color from the rest of the slicks. The comparison of the 

pixel area to the perimeter of the three spills at the three heights 

is shown in Figures 12 and 13. A rough estimate of the area 

may be made from the pixel area, allowing for the simple 

calculation of the perimeter, whether it be tiny or vast. 

 

   

Height 5 m 

   

Height 10 m 

   

Height 15 m 

(a) 1m2 area of the leakage 

   

Height 5 m 

   

Height 10 m 

   

Height 15 m 

(b) 2m2 area of the leakage 

   

Height 5 m 

   

Height 10 m 

   
Height 15 m 

(c) 3m2 area of the leakage 
 

Figure 11. Image of spilled oil of different sizes taken by a 

drone 
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Figure 12. Average pixel area of a set of leakage images 

 

 
 

Figure 13. The average perimeter of a set of leakage images 

 

4.4 Web application 

 

During the first flight, the MQTT IoT protocol is used to 

transmit data from the drone to a server, where it is processed 

and presented online. If one of the images has a spot and the 

contour area is two meters or more, it is considered a leak, and 

the details appear, including a map showing the location and 

spill information (volume of the spill, location of the spill, date 

when the spill was seen, and area of spill), as shown in Figure 

14. The geographic distance from the hub station to the 

observation site is shown in Figure 15. 

But if the spot contour area is smaller than the minimum 

(1m2), it is not deemed a leak, and the image with its position 

is preserved in the database to monitor it. It will be shown in 

the Figure 16 with the first scenario before it is regarded as a 

leak if the spot perimeter area is larger than the threshold limit 

in further rounds of the drone compared to the stored spot size 

and position. Displaying all detected images and pre-

processed oil spill suspects allows the system to provide a 

summary of each round the drone does. 

 

 
 

Figure 14. The main interface of the program for the 

presence of an oil spill is greater than the threshold limit 

 

 
 

Figure 15. Distance between the spill and the main station 

 

 
 

Figure 16. Main program interface for an oil spill expansion 

671



5. CONCLUSIONS 
 

This work proposes the development and assessment of a 

computer vision and image processing monitoring system, 

using deep learning techniques and drones. Using the DexiNed 

algorithm, which was validated by statistical comparison to 

other edge detection methods using basic metrics (per-image 

best threshold (OIS)=0.867, fixed contour threshold 

(ODS)=0.859, and average precision (AP)=0.905), thin edge 

maps were generated, with oil slick identification included. 

The LAB algorithm has been validated for its ability to reliably 

detect black spills, calculate spill area, and establish whether 

or not it is excessive. When comparing findings from different 

altitudes, 10 meters was the best height for the airplane, which 

gives a good view of the image. Therefore, the proposed 

method could enrich this stream type of research through an 

automated process with intelligent decision-making. Works 

like [13-15] are close to this work in some features. The 

proposed work differs from them by using the powerful edge 

detection algorithm DexiNed and a drone which is a provided 

mobile camera rather than the fixed one. The fixed camera is 

not an appropriate approach for a wide area and long pips 

which could reach hundreds of kilometers like the case in Iraq 

(the case study in this work). 

However, the functioning of the system is hindered by a few 

elements, such as the weather conditions during the inspection 

rounds and the fact that the precision of the image varies with 

the time of day and the terrain over which the pipes traverse. 

can use the drone network (Internet of drones) to check the 

overall national pipes network. 
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