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Approximately 215,156 people in Ecuador grapple with physical disabilities, of whom 

nearly half fall within the 30 to 49% disability range, and a considerable number lack 

limbs. Moreover, there's been a surge in amputation cases, a trend linked to the increasing 

diabetes prevalence estimated at around 537 million cases by 2021 as per the International 

Diabetes Federation (IDF). While prosthetic solutions exist, they might incur high costs or 

offer constrained movement, even when more affordable. Thus, an alternative is proposed: 

a myoelectric upper limb prosthesis. This prosthesis would be maneuvered through 

electromyography and pulse oximetry signals, leveraging artificial intelligence methods. 

Employing a multi-layer neural network model, a structure comprising an input layer, four 

hidden layers, and an output layer, yields an impressive 93% prediction accuracy for user 

movement intentions. For AI model training, data from EMG and PPG sensors were 

recorded and scrutinized, leading to the condensation of classes from four to three. The 

model was embedded within an ESP32 C3 DevKit-M1 development board, and open-

source blueprints facilitated the prosthesis's creation, complemented by supplementary 

components for electronics integration. The model attains a 93% precision in predicting 

classes, while the prosthesis's endurance spans approximately three hours and costs $295, 

equipped to handle diverse lightweight objects. 
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1. INTRODUCTION

The most common means of communication in any 

situation is through hands, and their dexterity enables us to 

perform many activities. Therefore, losing a hand entails 

numerous disadvantages that significantly interfere with daily 

living. However, despite various studies indicating the 

feasibility of a prosthetic hand, over 45% of people with 

amputations do not possess one [1], and additionally, around 

40% feel resistant to the idea [2]. According to the 

International Diabetes Federation (IDF), approximately 537 

million people were affected by diabetes in 2021. It is 

projected that this number will increase to 783 million by 2045. 

Consequently, an increase in the amputation rate is also 

anticipated. Diabetes can result in significant complications 

like peripheral vascular disease. This, in turn, may lead to 

unhealed wounds and the necessity of amputations to prevent 

severe infections. Prosthetics play a vital role in the lives of 

people who have undergone amputations due to diabetes, 

enabling them to recover lost mobility and independence [3-

6]. 

The demand for prosthetics in the market is influenced by 

various factors, including the increase in healthcare spending 

in developing countries, the growing importance of public-

private partnerships in several regions, and the rise in the 

prevalence of joint-related diseases due to population aging. 

Technological advancements, including artificial intelligence 

and machine learning, have been crucial in the growth of the 

prosthetics market. Chronic diseases such as cancer and 

diabetes, major causes of amputations, also contribute to the 

high demand for prosthetics. The combination of population 

aging, technological advancements, the promotion of an active 

lifestyle, and interdisciplinary collaboration is generating a 

consistent increase in the adoption of prosthetics, which are 

essential for improving the quality of life for individuals with 

amputations [7]. An important factor regarding prosthetics is 

their cost, as prices range from around 30,000 to 80,000 dollars 

[8]. Computer-aided design, additive manufacturing, and 

open-source resources play an essential role, with 3D printing 

being a potential option for cost reduction, as well as allowing 

control over factors such as weight and customization [9-11].  

The construction of a piece, by adding material deposition 

layer by layer, demonstrates the ability of printing to adapt to 

disabilities in various types of patients who lack upper limbs, 

without the need for additional expensive tools or their 

production. Some authors describe that of the 33 possible grip 

postures in a human hand, a prosthetic hand can only perform 

three of them [12]. 
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Regardless of whether a patient was born without a limb or 

lost it due to amputation, their daily life will be extremely 

challenging. The robotic prosthetic devices available today are 

capable of providing users with improved functionality. 

However, the available methods for prosthetic control limit 

their use to simple actions, which is the main reason for 

amputees rejecting technological prosthetics. 

The emergence of various myography techniques has 

created a promising approach to address these control issues 

[13]. Active prostheses in the market are extremely expensive, 

while passive prostheses are often available at a lower cost. 

However, passive prostheses have even more restrictions in 

their movements. Therefore, the possibility of implementing 

an economically accessible active prosthesis is presented, 

which at the same time allows the recovery of a large part of 

the motor skills provided by the original limb, emulating its 

functionality. 

 

 

2. LITERATURE REVIEW 

 

Resulting from numerous investigations, anthropomorphic 

myoelectric hands have been developed. These hands exhibit 

the capacity to execute diverse grip patterns, adjust grip 

precision, and enable finger mobility [14]. The operational 

mechanism of these prostheses involves capturing patterns 

within a system through electromyography (EMG) signals 

employing various channels for sensors like pressure sensors, 

inertial measurement units (IMUs), Hall effect sensors, and 

others. In his thesis, Garibho outlines the implementation of a 

multimodal approach that integrates Force Myography (FMG), 

surface electromyography (sEMG), and IMU sensors, yielding 

more dependable and consistent outcomes by merging these 

modalities [15]. 

In their research, Jung et al. [16] gauge signals from muscles 

including the brachioradialis, biceps brachii, deltoid, and 

pectoralis major. They employ a dry PDMS 

(polydimethylsiloxane) electrode for EMG measurement, 

demonstrating that the peak RMS (root mean square) voltage 

values attained surpass those achieved with a wet Ag-AgCl 

commercial electrode. 

Niu et al. [17] undertake a comparison of the merits and 

demerits of distinct types of dry electrodes. Notably, 

electrodes made of metallic material for conduction highlight 

their flexibility and ability to conform to the contours of the 

skin. 

Basumatary and Hazarika [18] present a review of different 

studies where they demonstrate the data fusion technologies 

used in them, which are shown in Table 1. 

 

Table 1. Applied sensor fusion technologies 

 
Camera Sensor + Distance Sensor + EMG Sensor 

Inertial Measurement Unit (IMU) + EMG sensor 

EMG + Accelerometer 

Stereo vision + Augmented reality + EMG interface 

Computer vision + Inertial sensor 

IMU + Force sensor + Myoelectric sensor 

EEG + ENG 

 
On the other hand, the use of electroencephalography (EEG) 

techniques is preferred mainly for prosthetic control due to 

their non-invasive nature, while electrocorticography (ECOG) 

and targeted muscle reinnervation (TMR) are invasive 

techniques [19]. EEG can be a viable option for directly 

controlling prosthetics using brain signals. However, these 

signals present several challenges [20], such as limited 

reliability, low precision, poor user adaptability, slow data 

transfer speed, and complex acquisition setup [21]. Surface 

electromyography (sEMG) is a non-invasive technique for 

measuring muscle electrical activity. Surface EMG can be 

applied to estimate intention, force, limb angle, and muscle 

contraction level of the subject [22]. 

 

2.1 Data fusion 

 

An embedded system is an information processing system 

integrated into a product. It is applied in various fields such as 

transportation (automotive, aerospace, railway, and maritime), 

manufacturing (IoT and Industry 4.0), robotics, healthcare 

(measurement and control of vital signs), agriculture (control 

of variables and animal detection), and telecommunications, 

among others [23].  

Data fusion involves the amalgamation of measurements 

sourced from diverse sensors. This enables a more intricate 

and robust understanding of the controlled process or activity. 

Consequently, the susceptibility of this system to disturbances 

that may impact both the system itself and sensor 

measurements is reduced [24]. A series of investigations has 

led to the development of anthropomorphic myoelectric hands. 

These hands exhibit the capability to execute a range of grip 

patterns, adjust grip precision, and facilitate finger mobility 

[25]. The functionality of these prostheses entails the analysis 

of patterns within a system utilizing EMG signals. Various 

channels are employed for instruments such as pressure 

sensors, inertial measurement units, Hall effect sensors, 

among others. 

 

2.2 Artificial intelligence 

 

Artificial intelligence is a branch of computer science. 

When implemented in a prosthetic device, it provides the 

opportunity for more adaptive control, allowing the system to 

operate according to the desires of the person with limb loss 

[26]. The technique applied to the EMG signal focuses on 

pattern recognition. The output signals store data about 

possible movements for the residual limb [27]. The patterns 

are classified based on their characteristics to recognize 

different EMG patterns. A command is then sent through a 

controller to execute the movement [28]. 

The analyzed works explore different approaches in the 

field of prosthetics, including anthropomorphic myoelectric 

hands, dry electrodes for EMG signals, data fusion, and AI 

integration. These prosthetic hands offer versatile grips and 

precise control. Dry electrodes provide a signal of higher 

quality than wet ones. Data fusion enhances understanding and 

robustness against disturbances, while AI and pattern 

recognition allow adaptable control. However, weaknesses 

were identified: dry electrodes may degrade signal quality 

over time, and sensor accuracy is crucial for data fusion. Errors 

in AI pattern recognition can result in involuntary movements. 

Considering this, the study proposes an alternative 

myoelectric upper limb prosthesis to address challenges in 

individuals with disabilities, especially in Ecuador. This 

prosthesis is controlled using EMG and pulse oximetry signals, 

employing AI methods.
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3. METHODOLOGY 

 

The methodology followed in this research includes the 

following steps: environment setting, experiment design, 

implementation of data logging system, data organization, 

preprocessing of EOG bioelectrical signals, and bioelectric 

signal classification for hand movement detection. 

 

3.1 Environment preparation 

 

In the context of this experiment, the subject is seated in a 

chair with an upright backrest, ensuring that their heels are 

firmly placed on the floor to maintain a stable posture. Next, 

the patient is presented with a screen displaying an interface 

detailing the actions they must carry out. Specific details of the 

experimental conditions are illustrated in Figure 1. 

 

 
 

Figure 1. Volunteer position diagram 

 

Through this visual interface, the patient receives clear 

instructions about the types of actions and movements they 

need to perform. These instructions are conveyed in real-time 

through strategically placed physical sensors that accurately 

capture the movements and actions executed by the patient. 

Collecting real-time data required the active cooperation of 

the patient. Following the ethical principles of the Helsinki 

Declaration, the experiment was conducted with a focus on 

informed consent and research integrity. Throughout the 

process, the patient's well-being was ensured, making sure 

they were comfortable and in a safe environment. 

The tests focused on recording signals from the patient's 

stump, obtaining valuable information for the advancement of 

the research. At the conclusion of the tests, the patient's well-

being was prioritized, implementing the procedure in the most 

suitable and effective manner. As a result of these efforts, solid 

and meaningful conclusions were obtained, contributing to the 

advancement of the work. 

 

3.2 Sensor location 

 

The optimal area to place the sensors and detect movements 

performed on the flexor muscles was determined. During the 

measurements, it was found that the patient should be relaxed 

and in a comfortable position. As dry electrodes are used, no 

gel is required. However, it is preferable that the area is clean 

and free from any irritating substances. 

Figure 2 shows the location of EMG1 sensor on the carpal 

flexor muscle, EMG2 on the brachioradialis muscle, and on 

the superficial palmar branch for the PPG signal. The EMG 

signals do not depend on a voltage reference, only on the 

muscle direction. However, for the PPG signal, the location 

with the strongest pulse in the radial artery was selected. 

 

3.3 Experimental design 

 

The actions performed by the subject are as follows (Figure 

3): 

Open hand (Rest): The subject opens the hand when 

instructed on the screen. This action is performed after the 

other actions. 

Move to anterior side: The subject moves the hand towards 

the anterior side of the arm. 

Move to back side: The subject moves the hand towards 

the posterior side of the arm. 

Close hand: The subject clenches the hand into a fist. 

 

 

 
 

Figure 2. Sensors placement 

 

 
 

Figure 3. Presentation of visual stimuli used for data 

recording 

 

3.4 Implementation of the data registration system 

 

When using the sensors, it is necessary to consider the 

interferences that affect them. For this reason, it is important 

to highlight the filtering and amplification stages that were 

carried out. Of the two types of sensors, the EMG sensor 

(SEN0240) presents a higher amount of interference. The 

following stages were performed in the signal collection 

process. The components and types of signals in this 

embedded system are shown in Figure 4. 

Filtering stage: Three filters are applied in the following 

order: notch filter, low-pass filter, and high-pass filter. The 

filters were designed considering second and fourth-order 

transfer functions.  

These filters were carefully chosen to address specific 

issues that can affect the accuracy and interpretation of the 

recorded signals. For instance, the need to eliminate noise. The 

notch filters tackle electric grid interference, the low-pass 

filters remove unwanted high-frequency noise, and the high-
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pass filters filter out low-frequency components that are not 

relevant. The combination of these filters in the filtering stage 

helps enhance the quality of the recorded signals, ensuring that 

the captured data is as clean and relevant as possible for 

scientific analysis and interpretation. 

Amplification stage: The filtered signal is amplified by 

squaring its value. 

These stages are implemented through software using the 

ESP32-C3 Dev Module microcontroller, configured at a 

sampling frequency of 100 Hz. 

In addition, a Python script was used, which presented the 

movements to be performed and collected data to be stored in 

a CSV file for each task performed. 

 

 
 

Figure 4. Embedded system components and signal types 

 

3.5 Data organization 

 

For each task, 100 CSV files were recorded, resulting in a 

total of 400 files for one subject. Based on the obtained 

sampling frequency, each file contains 500 data points. Each 

data point consists of four values: EMG1, EMG2, IR, and RED. 

The first two values correspond to each EMG sensor, while 

the third and fourth values correspond to the readings of the 

infrared and red LEDs of the Pulse Oximetry sensor. The 

dataset [29] can be found at the following link: http://ieee-

dataport.org/11092. 

 

3.6 Bioelectric signal preprocessing 

 

Using a Jupyter notebook with Python, each file was 

collected, and the data was filtered using the moving average 

method. Furthermore, the columns were normalized using the 

min-max method. 

 

3.7 Feature extraction and selection 

 

Signal characteristics were computed for each sensor 

utilizing the Root Mean Square (RMS) technique with a 

sliding window of 100 ms. The study's emphasis was on 

extracting time-related attributes due to their reduced 

processing demands, leading to quicker computations and 

consequently, faster classification. The RMS method, a signal 

processing approach, was employed to characterize a signal's 

amplitude or overall magnitude. This involves finding the 

square root of the mean of the squared signal values within a 

designated time interval. In the study's context, which involves 

analyzing signals generated by sensors, RMS offers insights 

into the signal's intensity or energy within that particular time 

frame. 

 

3.8 Classification of bioelectrical signals for movement 

detection 

 

An artificial intelligence (AI) model using neural networks 

was established to classify the signals from the sensors for 

executing the desired movements. A multi-layer neural 

network model was employed, consisting of an input layer, 

four hidden layers, and an output layer. The model was trained 

using the Adam optimizer, which was chosen after evaluating 

its performance against other optimizers, for a duration of 200 

epochs. Ultimately, the model that exhibited the lowest 

validation error was selected. This model is trained using the 

data previously collected in the experiment.  
 

 

4. RESULTS 

 

4.1 Signals extracted by the system 

 

Different behavior patterns were obtained for each task in 

the signals. As shown in Figure 5, line 1 represents the signal 

from the first EMG sensor, line 2 represents the signal from 

the second EMG sensor. In Figure 6, line 1 represents the 

signal from the infrared LED, and line 2 represents the signal 

from the red LED. The range of the signals is observed in their 

magnitude of digital values.  

These signals, after being normalized, modify their range 

between 0 and 1. 

 

4.2 AI model building 
 

The AI model was built using the TensorFlow library. The 

model consists of an input layer, four hidden layers, and an 

output layer. For the input layer, a vector of 20 elements is 

used as input. The first hidden layer comprises 100 

perceptrons, with 30% of them being deactivated using the 

Dropout function. Subsequently, the ReLU activation function 

is applied. For the second hidden layer, the number of 

perceptrons is reduced to 80, and the same functions as the 

previous layer are applied. In the third hidden layer, the 

number of perceptrons is further reduced to 60, with the 

Dropout rate lowered to 20%. The ReLU function is also 

applied here. As for the fourth hidden layer, the perceptrons 

are decreased to 20, with the Dropout rate reduced to 10%, and 

the ReLU function is applied. The output layer is composed of 

3 perceptrons, and the Softmax function is applied to obtain 

the predicted probabilities. The model architecture is shown in 

Figure 7. 
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Figure 5. EMG Signals recording during experiment 
Figure 6. Pulse oximetry signals recording during 

experiment 

 

 
 

Figure 7. Neural network model 

 

 
 

  

Figure 8. Model accuracy Figure 9. Model loss 

 

4.3 Bioelectric signal classification 

 

With the neural network model in place, training is carried 

out using the data collected during the experiment. Accuracy 

metrics were considered as they provide a direct way to 

measure model performance, and error was taken into account 

as it allows for evaluating model convergence and avoiding 

both overfitting and underfitting. Other metrics were not 

considered in this case as these were sufficient to assess the 

model's performance, indicating its ability to learn from the 

data and generalize to new data. The performance is shown in 

Figure 8, displaying the accuracy, and Figure 9, depicting the 
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decrease in training and validation error. 

Additionally, considering the features, the confusion matrix 

is shown, which evaluates the classification of each task using 

a specific dataset focused on testing. This is presented in 

Figure 10. The misclassified outcomes are represented on the 

off diagonals of the confusion matrix. False positive at the left 

and false negative at right of the diagonal. 

 

 
 

Figure 10. Confusion matrix for the NN model 

 

For this matrix, the percentages of correct and incorrect 

predictions are obtained, as shown in Table 2. 

To decrease the wrong predictions, task 3, which had similar 

behavior to the other classes, was eliminated, obtaining the 

accuracy shown in Figure 11, the error in Figure 12 and the 

confusion matrix in Figure 13. 

For the matrix in Figure 13, the percentages of correct and 

incorrect predictions are obtained, as shown in Table 3. 

Once the model was obtained, it was implemented in the 

embedded system, in this case using an ESP32-C3 

microcontroller. The prosthesis was tested with different types 

of grips using various objects, as shown in Table 4. The 

spherical grip is shown in Figure 14. 

For the respective objects, the results are shown in Table 5. 

 

Table 2. Percentages of correct and incorrect predictions for 

four classes 
 

Task Correct [%] Incorrect [%] 

0 100 0 

1 86 14 

2 64 36 

3 88 12 

 

 
 

Figure 11. Model accuracy for 3 classes 

 
 

Figure 12. Model loss for 3 classes 

 

 
 

Figure 13. Confusion matrix for the NN model for 3 classes 

 

Table 3. Percentages of correct and incorrect predictions for 

three classes 

 
Task Correct [%] Incorrect [%] 

0 100 0 

1 96 4 

2 94 6 
 

Table 4. Types of grips used on objects 

 
Object Size Type of Grip 

Card 8 × 6 × 0.3 cm³ Lateral Grip Tip Grip 

Paper folded twice 8.5 × 7 × 0.3 cm³ Lateral Grip Tip Grip 

Empty Bottle radius 3 cm Cylindrical Grip 

Full Bottle 
radius 3 cm 

625 cc 
Cylindrical Grip 

Alcohol radius 2.5 cm Cylindrical Grip 

Flute 
length 30 cm 

radius 1 cm 
Hook Grip 

Ball radius 3 cm Spherical Grip 
 

 
 

Figure 14. Spherical grip with ball 
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Table 5. Grip test results 

 
Type of Grip Successful Result Comment 

Lateral Grip No It cannot be held because the index finger is not stable on the sides. 

Tip Grip Yes This is possible due to the pressing capability of the index finger against the thumb. 

Lateral Grip Yes Because it has a larger surface area and thickness, it allows for better grip. 

Tip Grip Yes  

Cylindrical Grip Yes  

Cylindrical Grip No It cannot be lifted, there is not a complete grasp of the bottle. 

Cylindrical Grip Yes  

Hook Grip Yes  

Spherical Grip  Yes This is possible because the grip is carried out with each of the fingers of the prosthesis. 

 

 

5. DISCUSSION 

 

In order to select the most appropriate model for the 

prosthesis, a series of tests were conducted using various tools 

and configurations. The values obtained in both Matlab and a 

model developed by our team were compared. The model 

developed in this study incorporates an artificial neural 

network, employing multiple layers within a sequential 

framework. Before arriving at the final results, diverse models 

were experimented with. While the proposed model 

encompassed training involving a total of four classes, 

yielding an accuracy of 79%, it exhibited mispredictions when 

attempting to execute the hand-closing action. 

Upon scrutinizing the acquired signals for each task, it 

becomes evident that the values for task 3, "Close," exhibit a 

similar pattern to those of tasks 1 and 2, "Front" and "Back," 

respectively. By narrowing down the classification to only 

three classes, our model demonstrated an improvement. This 

enhancement is depicted in Figure 11, which showcases the 

model's efficiency, reaching a peak of 93%. Conversely, 

Figure 12 illustrates the error loss. It is noteworthy that both 

graphs demonstrate suitable behavior, as there is no evidence 

of overtraining or overfitting, given the congruent trends in the 

training and validation values. 

Through these graphical representations, the efficacy of the 

proposed model is validated. This validation is the result of 

numerous iterations and tests involving the fusion of sensor 

measurements. These tests aimed to discern the most accurate 

signals related to movements, contributing to the prediction of 

these movements. 

The confusion matrix made it possible to identify the 

predictions made by the model. The correct predictions were 

quite high, as the true positives and true negatives were 

classified quite well, while the erroneous predictions were 

made in relatively low proportions. 

For real-time testing, different types of grips were defined 

and programmed to be executed by the prosthesis. These 

movements were used to achieve better grasping for various 

types of objects, including side grip, tip grip, cylindrical grip, 

and hook grip. In this Table 5, it can be observed that due to 

the design of the prosthesis itself, such as the dimensions of 

the fingers and the torque of the servo motors, there are 

difficulties in performing lateral grips for cards and for bottles 

filled with water. However, it allows for successfully 

achieving grips on lightweight objects. 

 

 

6. CONCLUSIONS 

 

The application and testing of different gripping patterns 

provided the user with more convenience in their daily life for 

grasping objects of different shapes and sizes, compared to 

other prostheses that only offer a single type of grip. The 

design of the prosthesis allowed for hand closing and opening, 

as well as the ability to perform other types of movements due 

to having a greater number of degrees of freedom, which 

contributes to better object grasping. 

The biggest challenge in the project is data collection, as in 

the case of the MAX30102 sensor, it was necessary to find a 

suitable location where different movements could be easily 

detected. This involved conducting the data collection 

experiment multiple times until obtaining a suitable dataset. 

A database of 400 records of signals from the 3 sensors was 

created, with each sensor storing 500 data points. However, 

only 300 records were used for training the AI model due to 

the reduction of one class. This achieved a prediction accuracy 

of 93% for the user's movement intentions, specifically 

opening, moving front, and moving back. This accuracy is 

within the range when compared to other models consulted in 

the literature review, which are around 90%, even approaching 

97%. However, these models utilize a combination of sensors 

of different types from those used in this work. 

The AI model was embedded in the ESP32 C3 Dev Kit M1 

microcontroller, which receives and processes the readings 

from the sensors. Real-time prediction was performed based 

on these data, and the corresponding action was then executed. 

The utility of the MAX30102 sensor for identifying human 

movements was confirmed, providing an alternative option to 

the common use of EMG sensors. This represents one of the 

early instances of applying this practice. 

The MAX30102 sensor can influence new applications as it 

expands the range of movements that can be detected and 

controlled with a myoelectric prosthesis. By incorporating 

additional information about blood flow and tissue 

oxygenation, it can reflect the user's level of effort or fatigue. 

As future work, it is proposed to reduce the temporal 

windows of data recording from the current 5-second value to 

1 second in order to assess how this affects the precision and 

error of the neural network model. Additionally, this will allow 

for a reduction in the execution time of the prosthesis. Another 

aspect to explore is analyzing the energy consumption by 

implementing the proposed changes to the model, observing 

how it varies when performing different movements with the 

prosthesis. 

 

 

7. RECOMMENDATIONS 

 

Perform additional validations with a person who has the 

disability, as individuals with hand amputations are the target 

group for prosthetic design.  

Expand the number and types of sensors to encompass new 
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characteristics and a greater number of classes to broaden the 

range of predictions. In this case, it's important to consider that 

this could entail a cost increase, as it involves not only adding 

more sensors but also changing the prosthesis design. 

Additionally, the compatibility of the sensors with the 

microcontroller used would need to be analyzed, which would 

require experimentation for each of these scenarios. Despite 

these factors, it could be beneficial depending on the 

application and user. Additionally, it is possible to reduce 

measurement errors by having a larger number of data sources.  

Redesign a portion of the mechanical design to support a 

greater load, as it is currently limited by being subject to arm 

rotation. Implement a coupling system to attach the prosthesis 

to the user's arm, facilitating its use.  

During data collection, slightly vary the position of the 

sensors to have more data variety, as it cannot be guaranteed 

that the sensors will always be placed in the same position.  

Improving aesthetics to make it more pleasing is crucial, as 

a more natural and discreet prosthesis contributes to social and 

work integration. Furthermore, it enhances confidence and 

motivation in daily life while reducing the user's burden 

without compromising functionality. This reduction in weight 

aids in diminishing fatigue, pain, and injuries that may arise 

from prolonged use. This is achieved by employing lighter and 

more resilient materials, including the utilization of 3D 

printing techniques to customize designs according to user 

preferences. 

 

 

REFERENCES  

 

[1] Ziegler-Graham, K., MacKenzie, E.J., Ephraim, P.L., 

Travison, T.G., Brookmeyer, R. (2008). Estimating the 

prevalence of limb loss in the United States: 2005 to 2050. 

Archives of Physical Medicine and Rehabilitation, 89(3): 

422-429. https://doi.org/10.1016/j.apmr.2007.11.005 

[2] Adams, B.D., Grosland, N.M., Murphy, D.M., 

McCullough, M. (2003). Impact of impaired wrist 

motion on hand and upper-extremity performance. The 

Journal of Hand Surgery, 28(6): 898-903. 

https://doi.org/10.1016/S0363-5023(03)00424-6 

[3] Raichle, K.A., Hanley, M.A., Molton I., Kadel, N.J., 

Campbell, K., Phelps, E., Ehde, D., Smith, D.G. (2008). 

Prosthesis use in persons with lower-and upper-limb 

amputation. Journal of Rehabilitation Research and 

Development, 45(7): 961. 

https://doi.org/10.1682/jrrd.2007.09.0151 

[4] Phillips, B., Zingalis, G., Ritter, S., Mehta, K. (2015, 

October). A review of current upper-limb prostheses for 

resource constrained settings. In 2015 IEEE Global 

Humanitarian Technology Conference (GHTC), Seattle, 

WA, USA, pp. 52-58. 

https://doi.org/10.1109/GHTC.2015.7343954 

[5] Desveaux, L., Goldstein, R.S., Mathur, S., Hassan, A., 

Devlin, M., Pauley, T., Brooks, D. (2016). Physical 

activity in adults with diabetes following prosthetic 

rehabilitation. Canadian Journal of Diabetes, 40(4): 336-

341.https://doi.org/10.1016/j.jcjd.2016.02.003 

[6] Davidson, J. (2002). A survey of the satisfaction of upper 

limb amputees with their prostheses, their lifestyles, and 

their abilities. Journal of Hand Therapy, 15(1): 62-70. 

https://doi.org/10.1053/hanthe.2002.v15.01562 

[7] Wood, L. (2022). Global prosthetic arm market report 

2022: Growing use of technology, artificial intelligence, 

and machine learning presents. Technical Report, 

Businesswire. 

[8] Mühlbauer, P., Löhnert, L., Siegle, C., Stewart, K.W., 

Pott, P.P. (2020). Demonstrator of a low-cost hand 

prosthesis. IFAC-PapersOnLine, 53(2): 15998-16003. 

https://doi.org/10.1016/j.ifacol.2020.12.398 

[9] Cabibihan, J.J., Alkhatib, F., Mudassir, M., Lambert, L. 

A., Al-Kwifi, O.S., Diab, K., Mahdi, E. (2021). 

Suitability of the openly accessible 3D printed prosthetic 

hands for war-wounded children. Frontiers in Robotics 

and AI, 7: 594196. 

https://doi.org/10.3389/frobt.2020.594196 

[10] Asanza, V., Peláez, E., Loayza, F., Lorente-Leyva, L.L., 

Peluffo-Ordóñez, D.H. (2022). Identification of lower-

limb motor tasks via brain-computer interfaces: A topical 

overview. Sensors, 22(5): 2028. 

https://doi.org/10.3390/s22052028 

[11] Avilés-Mendoza, K., Gaibor-León, N.G., Asanza, V., 

Lorente-Leyva, L.L., Peluffo-Ordóñez, D.H. (2023). A 

3D printed, bionic hand powered by EMG signals and 

controlled by an online neural network. Biomimetics, 

8(2): 255. https://doi.org/10.3390/biomimetics8020255 

[12] Feix, T., Romero, J., Ek, C.H., Schmiedmayer, H.B., 

Kragic, D. (2012). A metric for comparing the 

anthropomorphic motion capability of artificial hands. 

IEEE Transactions on Robotics, 29(1): 82-93. 

https://doi.org/10.1109/TRO.2012.2217675 

[13] Bajaj, N.M., Spiers, A.J., Dollar, A.M. (2019). State of 

the art in artificial wrists: A review of prosthetic and 

robotic wrist design. IEEE Transactions on Robotics, 

35(1): 261-277. 

https://doi.org/10.1109/TRO.2018.2865890 

[14] Birglen, L., Laliberté, T., Gosselin, C.M. (2008). 

Underactuated robotic hands, 40. Springer Berlin 

Heidelberg. 

[15] Gharibo, J.S. (2021). Data and sensor fusion using FMG, 

sEMG and IMU sensors for upper limb prosthesis control. 

Doctoral dissertation, The University of Western Ontario, 

Canada. 

[16] Jung, J.M., Cha, D.Y., Kim, D.S., Yang, H.J., Choi, K.S., 

Choi, J.M., Chang, S.P. (2014). Development of PDMS-

based flexible dry type SEMG electrodes by 

micromachining technologies. Applied Physics A, 116: 

1395-1401. https://doi.org/10.1007/s00339-014-8244-3 

[17] Niu, X., Gao, X., Liu, Y., Liu, H. (2021). Surface 

bioelectric dry electrodes: A review. Measurement, 183: 

109774. 

https://doi.org/10.1016/j.measurement.2021.109774 

[18] Basumatary, H., Hazarika, S.M. (2020). State of the art 

in bionic hands. IEEE Transactions on Human-Machine 

Systems, 50(2): 116-130. 

https://doi.org/10.1109/THMS.2020.2970740 

[19] Cordella, F., Ciancio, A.L., Sacchetti, R., Davalli, A., 

Cutti, A.G., Guglielmelli, E., Zollo, L. (2016). Literature 

review on needs of upper limb prosthesis users. Frontiers 

in Neuroscience, 10: 209. 

https://doi.org/10.3389/fnins.2016.00209 

[20] Prakash, A., Sahi, A.K., Sharma, N., Sharma, S. (2020). 

Force myography controlled multifunctional hand 

prosthesis for upper-limb amputees. Biomedical Signal 

Processing and Control, 62: 102122. 

https://doi.org/10.1016/j.bspc.2020.102122 

[21] Fifer, M.S., Acharya, S., Benz, H.L., Mollazadeh, M., 

Crone, N.E., Thakor, N.V. (2012). Toward 

648



 

electrocorticographic control of a dexterous upper limb 

prosthesis: Building brain-machine interfaces. IEEE 

Pulse, 3(1): 38-42. 

https://doi.org/10.1109/MPUL.2011.2175636 

[22] Cheesborough, J.E., Smith, L.H., Kuiken, T.A., 

Dumanian, G.A. (2015). Targeted muscle reinnervation 

and advanced prosthetic arms. Seminars in Plastic 

Surgery, 29(1): 62-72. https://doi.org/10.1055/s-0035-

1544166 

[23] Marwedel, P. (2021). Embedded system design: 

Embedded systems foundations of cyber-physical 

systems, and the Internet of Things. Springer Nature. 

[24] Appriou, A. (2014). Uncertainty theories and multisensor 

data fusion. John Wiley & Sons. 

[25] Novak, D., Riener, R. (2015). A survey of sensor fusion 

methods in wearable robotics. Robotics and Autonomous 

Systems, 73: 155-170. 

https://doi.org/10.1016/j.robot.2014.08.012 

[26] Nayak, S., Das, R.K. (2020). Application of artificial 

intelligence (AI) in prosthetic and orthotic rehabilitation. 

In Service Robotics. IntechOpen. 

[27] Stinus, H. (2000). Biomechanics and evaluation of the 

microprocessor-controlled c-leg exoprosthesis knee joint. 

Zeitschrift fur Orthopadie und ihre Grenzgebiete, 138(3): 

278-282. https://doi.org/10.1055/s-2000-10149 

[28] Li, G., Schultz, A.E., Kuiken, T.A. (2010). Quantifying 

pattern recognition - Based myoelectric control of 

multifunctional transradial prostheses. IEEE 

Transactions on Neural Systems and Rehabilitation 

Engineering, 18(2): 185-192. 

https://doi.org/10.1109/TNSRE.2009.2039619 

[29] Espinoza Tutiven, J.E., Torres Medina, K.T., Asanza 

Armijos, V.M. (2012). Diseño e implementación de una 

prótesis mioeléctrica controlada por fusión de sensores 

en un sistema embebido. Tesis de Grado, Escuela 

Superior Politecnica del Litoral.  

649




