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This research introduces ScaledDenseNet, a proficient deep learning architecture developed 

for precise identification of skin lesions. The model amalgamates DenseNet with the 

compound scaling method derived from EfficientNet, thereby achieving enhanced 

performance without detriment to the speed of inference. A grid search was conducted for 

the optimization of hyperparameters α, β, and Υ, instrumental in controlling the scaling of 

network dimensions. For model training and testing, the HAM10000 dataset was utilized, 

encompassing seven categories of diseases, namely carcinoma, basal cell carcinoma, 

benign keratosis-like lesions, dermatofibroma, melanoma, melanocytic nevi, and vascular 

lesions. ScaledDenseNet exhibited a top-3 accuracy of 94.59%. In response to the 

pronounced class imbalance within the dataset, image resizing was implemented to adjust 

input resolution based on phi for each architecture. A comparative analysis revealed that 

ScaledDenseNet surpassed DenseNet-121 and EfficientNet-B0, which achieved top-3 

accuracies of 93.618% and 92.078%, respectively. The research methodology entailed a 

grid search for hyperparameter optimization and an explicit labeling scheme for disease 

categories, underpinning the study's validity and repeatability. Through its combination of 

DenseNet's extensive connectivity and the efficiency of the compound scaling method, 

ScaledDenseNet emerges as a promising tool for automated identification of skin lesions. 

Its performance underscores its potential applicability in the early detection and diagnosis 

of diverse skin conditions, marking a significant contribution to advancements in 

dermatological image analysis. 
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1. INTRODUCTION

Skin lesions can arise from various causes, including 

allergies, fungi, parasites, bacteria, viruses, genetic factors, 

weakened immune system, and microorganisms residing on 

the skin. They can be categorized into short-term skin issues 

and chronic skin diseases, with examples ranging from vitiligo 

and impetigo to melanoma and psoriasis. Early detection and 

prediction of skin lesions are crucial in minimizing their 

severity and preventing complications like skin cancer. 

However, common individuals often lack knowledge about 

different skin lesions and their severity, making accurate 

diagnosis and treatment challenging. 

Automated methods for detecting and predicting skin 

lesions using dermatoscopic images can enhance disease 

prediction accuracy and aid dermatologists in making 

informed decisions. Techniques such as decision trees, 

artificial neural networks, support vector machines, and 

ensemble classification have been used for this purpose, 

relying on feature extraction and trained classifier models. 

However, these approaches have limitations in terms of 

interpretability, dataset requirements, feature engineering, 

sensitivity to noise, and limited generalization. To address 

these limitations, this study introduces ScaledDenseNet, a 

deep convolutional neural network model designed to 

automatically identify skin lesions from clinical skin images. 

ScaledDenseNet is inspired by EfficientNet and DenseNet 

architectures, incorporating innovative concepts such as 

compound scaling and feature reuse. EfficientNet's compound 

scaling approach allows for efficient scaling of network 

dimensions while maintaining performance, while DenseNet's 

feature reuse enables deep layer connections without the 

vanishing gradient problem. 

By combining these ideas, ScaledDenseNet aims to 

effectively classify skin lesions. The proposed architecture 

scales the dense blocks, the number of kernels, and the input 

resolution of DenseNet while obtaining optimal values for 

hyperparameters α, β, and Υ for efficient scaling. However, 

network-based approaches in skin disease classification face 

limitations such as interpretability, dataset requirements, 

feature engineering, noise sensitivity, computational 

complexity, and limited generalization. 

Overcoming these challenges necessitates ongoing research 

and development of techniques like transfer learning, active 

learning, model explainability, and uncertainty estimation. By 

addressing these limitations, ScaledDenseNet and future 

advancements in network-based approaches can enhance the 

reliability and practicality of skin lesion detection and 

prediction, ultimately reducing treatment time, financial 

burden, and patient suffering associated with late-stage 

diagnoses. 
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2. RELATED WORK 
 

CNN has been at the forefront in the field of object 

recognition and image classification since the creation of 

alexnet. The feature matrix is downsampled via max pooling 

after numerous convolutional layers are used to extract the 

features. Additionally, it makes use of overlapping pooling for 

improved feature extraction during downsampling and ReLU 

nonlinearity for effective training [1]. There have been 

numerous attempts to improve convolutional neural net 

accuracy by deepening it [2-6]. Increasing network depth was 

a priority for the VGG network. There was a total of 6 network 

architectures suggested. The accuracy findings were clearly 

improved by scaling the network depth [2].  

Multiple networks have used the concept of inception in 

image classification. GoogleLeNet uses inception to achieve 

sparse connectivity. Inception also helps in reducing training 

complexity as only a part of the network is trained and reused. 

GoogleLeNet also acknowledges that increasing network 

depth is the most straightforward way to increase network 

accuracy. Inception net uses 1x1 convolutions as a way of 

dimensionality reduction and reducing training complexity. It 

uses inception modules, which are layers of parallel 

convolutional layers [3]. 

Simply increasing the network depth leads to training 

inefficiencies as well as a major roadblock known as the 

vanishing gradient problem. Due to the nature of the gradient 

descent algorithm, increasing network depth will lead to 

smaller gradients being passed down to the previous layers. As 

the gradient approaches zero, the layer will completely stop 

training. To overcome this problem, various residual networks 

have been proposed [4, 5]. 

ResNet uses identity mapping to overcome vanishing 

gradients. This allows the network to reach very deep. Identity 

mappings or residual mappings are also called skip 

connections or shortcut connections. In ResNet, the shortcut 

connections are just the identity mappings between the input 

and output of a layer. Going deeper allowed for an increase in 

the accuracy of the classification task [4]. 

Similar to ResNet, DenseNet also uses the concept of 

reusing features. DenseNet consists of multiple dense blocks 

and transition layers in between these dense blocks. In a dense 

block, the output of each layer is connected to the input of 

every other successive layer in the block. In order to avoid 

dimensional discrepancy, downsampling is only done after a 

dense block. This allows the network to go deeper without 

vanishing gradient. Feature reuse certainly helps in achieving 

better accuracy compared to residual mapping [5]. Increasing 

the network depth, width and resolution helps in increasing 

accuracy of the classification task. However, there hasn't been 

a clear method to bind these 3 factors together. Google’s 

EfficientNet introduces the concept of compound scaling to 

increase network depth, width, and resolution simultaneously. 

Increasing one of these parameters quickly leads to the 

saturation of results where the accuracy does not increase 

anymore. Compound scaling overcomes this by 

simultaneously being more efficient [6]. There have been 

attempts at using CNNs to predict skin disease, particularly, 

skin cancer, using histologic images. Höhn et al. [7, 8] used 

patient metadata such as gender, lesion location, age, etc in 

combination with images to predict the chances of a patient 

having a particular type of disease. For unbalanced types of 

data, metadata increased the accuracy. In both cases, two types 

of methods to combine metadata were used. One method was 

to concatenate the metadata vector to the feature vector of the 

input image before the classification layer. Another was to 

scale the feature vector using a metadata vector. The latter 

turned out to be better than the former method. Höhn et al. [7] 

used ResNext50 as the feature extraction CNN. Li et al. [8] 

tested the metadata combination method on multiple state-of-

the-art CNNs. Kaur et al. [9] proposed a new CNN architecture 

that uses multiple parallel blocks of convolutional layers. The 

network has 11 primary blocks. Each block uses normalisation 

to improve accuracy and leaky ReLU to overcome vanishing 

gradient problems. The dataset was obtained from ISIC 2016 

and ISIC 2017 challenges. The network classifies melanocytic 

lesions and benign lesions. Various data augmentation 

techniques such as rotation, scaling, etc. were used to 

overcome the imbalanced training dataset problem. Raza et al. 

[10] used ensemble technique for the classification of skin 

cancer. A stack-based approach for ensembling is proposed 

over the traditional approaches. The ensembled networks are 

trained using transfer learning before ensembling. VGG16, 

Xception, InceptionResnetV2, DenseNet121, DenseNet169, 

and DenseNet210 are fine-tuned for melanoma classification. 

Nithya Anoo et al. [11] proposed a new CNN architecture 

which has alternating convolutional and max pool layers. 

ALEnezi [12] used a pretrained AlexNet for feature extraction 

and SVM for classification of 4 types of skin diseases. Kumar 

and Kumar [13] used a machine learning approach to the 

feature extraction problem. The input images are first 

segmented using the active contour method and the features 

are extracted using mathematical equations to identify 

brightness, colour, lesion size, etc. The classification was done 

using an ANN. Mahbod et al. [14] used various pre-processing 

techniques such as colour standardisation and normalisation 

for better feature extraction. Various state-of-the art neural 

networks were fine-tuned for the melanoma classification task. 

An ensemble of these networks was used to classify the skin 

cancer images. Various machine learning techniques have 

been used for classification tasks as well. Pathan et al. [15] 

used color features of the dermatoscopic images as features for 

the classification problem. A total 15 features were extracted 

from each image. Based on these 15 features, the images were 

classified using a decision tree algorithm.  

Methods explained as above are either using an ensemble of 

networks or baseline network architecture for the purpose of 

classification of dermatoscopic images. However, ensemble 

methods are multiple times more computationally intensive 

than plain baseline networks. The accuracy gains from 

ensemble methods are marginal. Most baseline networks are 

also limited by the fact that they only scale a single dimension, 

i.e., network depth. This makes the result saturate quickly 

when increasing the network depth. The proposed architecture 

makes use of efficient compound scaling and DenseNets 

property of feature reuse for efficient but an effective 

classification model. 
 

 

3. DATASETS 
 

3.1 Equations 

 

The HAM10000 dataset consists of a total of 10015 

dermatoscopic images. All images have a resolution of 

650x400 pixels. The dataset consists of 7 classes of skin-

pigmented lesions. The lesions are largely confirmed through 

histopathology, expert consensus, or follow-up examination 

[16]. 
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3.2 Data transformation 

 

The images in HAM10000 dataset are 650x400 pixels in 

dimension. The images are resized to the appropriate input 

resolution for training. The input resolution varies based on the 

value of phi for each of the proposed architectures. The 

HAM10000 dataset also has a high-class imbalance.        
 

3.3 Dataset description 

 

The HAM10000 dataset consists of a total of 10015 

dermatoscopic images. All images have a resolution of 

650x400 pixels. The dataset consists of 7 classes of skin-

pigmented lesions. The lesions are largely confirmed through 

histopathology, expert consensus, or a follow-up examination 

[16]. The distribution of classes within the dataset is presented 

in Table 1. 
 

Table 1. Disease identification: Images and names of 

common diseases 

 
Image of Lesion Type of Lesion Number of Images 

 

benign keratosis-

like lesions (bkl) 
1099 

 

melanocytic nevi 

(nv) 
6705 

 

dermatofibroma (df) 115 

 

melanoma (mel) 1113 

 

vascular lesions 

(vasc) 
142 

 

basal cell carcinoma 

(bcc) 
514 

 

carcinoma (akeic) 327 

 Total 10015 

 

3.4 Label encoding 

 

The dataset is labelled into 7 different categories: 
A. carcinoma (akeic) 

B. basal cell carcinoma (bcc) 

C. benign keratosis-like lesions (bkl) 

D. dermatofibroma (df) 

E. melanoma (mel) 

F. melanocytic nevi (nv) 

G. vascular lesions (vasc) 
 

4. SYSTEM ARCHITECTURE 

 

4.1 System design 

 

Datasets are divided as training and testing categories. 

Then, the training datasets were pre-processed by resizing the 

images to appropriate dimensions. Pre-processing training 

data is passed to proposed architecture. The proposed 

architecture trained on training data and classified each image 

to proper classes according to accuracy. After completing the 

model's training process, the proposed model was tested by 

passing images from the test data to check whether each image 

shows the correct class. The procedures for the Model 

ScaledDenseNet are presented in Figure 1. 

 

4.2 Compound scaling 

 

Compound scaling, introduced through the EfficientNet 

concept, offers several benefits for skin disease classification. 

It balances the scaling of network depth, width, and input 

resolution, resulting in improved classification performance. 

Scaling the network depth enables the capture of complex 

patterns and prevents overfitting. Increasing network width 

enhances the model's ability to learn and model variations in 

the data. Scaling the input resolution allows for capturing 

finer-grained features and textures. By simultaneously scaling 

these dimensions using a compound scaling coefficient, the 

classification process is optimized, leading to a more accurate 

and reliable skin disease classification. 

 

depth: 𝑑 = 𝛼𝜙 (1) 

 

width: 𝑤 = 𝛽𝜙 (2) 

 

resolution: 𝑟 = 𝛶𝜙 (3) 

 

The values of α, β, and γ are hyperparameters and ϕ is a user-

defined scaling factor. 

The increase in the number of operations due to scaling will 

be proportional to α×β2×γ2 [6].  

The value of hyperparameters α, β, and γ is limited such that 

α×β2×γ2 is less than or equal to 2. 

 

4.3 Dense blocks 

 

The dense block is a concept introduced in DenseNet 

architecture. Dense blocks are used to overcome the vanishing 

gradient problem. Successive convolution layers in dense 

blocks take input from each of the previous layers. It 

establishes direct connections between layers, preserving 

information and gradients, leading to efficient gradient flow 

and improved learning. The dense connections enable 

extensive feature sharing, allowing the network to capture both 

low-level and high-level features. The information is 

preserved due to this. Dense blocks also use compression 

factor ө for parameter reduction. The value of compression 

factor ө lies between 0 and 1. The compression factor reduces 

the number of output layers on successive layers. Dense blocks 

also have a bottleneck layer before the actual convolution layer 

to reduce the number of features. Table 2 presents a detailed 

view of the architecture of ScaleDenseNet when ϕ=3.  
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Figure 1. Model ScaledDenseNet architecture procedure diagram 

 

Table 2. Architecture of ScaledDenseNet (ϕ=3) 

 
Layers Output Size Layer Size Number of Kernels 

Input 160x160 - - 

Convolution 80x80 7x7 conv 67 

Pooling 40x40 3x3 max pool - 

Scaled Dense Block X 3 40x40 
1x1 conv 134 

3x3 conv 33 

Transition Layer I 20x20 - - 

Scaled Dense Block X 6 20x20 
1x1 conv 134 

3x3 conv 33 

Transition Layer II 10x10 - - 

Scaled Dense Block X 13 
 

10x10 

1x1 conv 134 

3x3 conv 33 

Transition Layer III 5x5 - 303 

Scaled Dense Block X 9 5x5 
1x1 conv 134 

3x3 conv 33 

Global Average Pool 1x1 5x5 Global Avg Pool - 

Classification  7D fully connected  

 

Table 3. Transition layers of ScaledDenseNet (ϕ=3) 

 
Layers Layer Size Number of Kernals 

Transition Layer I 
1x1 conv 87 

2x2 Avg Pool - 

Transition Layer II 
1x1 conv 149 

2x2 Avg Pool - 

Transition Layer III 
1x1 conv 303 

2x2 Avg Pool - 

 

 
Figure 2. ScaledDenseNet block diagram 

 

4.4 Transition layers  

 

This is also a concept introduced in DenseNet. Since the 

feature map size should not change across the dense block, the 

downsampling is done in the transition layer by using average 

pooling layers. Similar to dense blocks, the transition layers 

also have a bottleneck convolution layer before actual 

downsampling. Table 3 displays the comprehensive design of 

ScaleDenseNet's transition layer architecture. 

The proposed architecture combines the compound scaling 

of EfficientNet with the feature reusability of DenseNet. It is 

observed that balancing the depth, width, and resolution of the 

network is essential to increasing accuracy [6]. EfficientNet 

provides a way to tie these three factors together. DenseNet 

uses feature reuse as a way to overcome the vanishing gradient 

problem. Figure 2 displays a block diagram of the 
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ScaledDenseNet model. The diagram presents an overview of 

the model's building blocks, including the Convolutional 

layer, ScaledDense Blocks, Transition Layers, and Pooling 

layer. By visualizing the components of the model and their 

connections, Figure 2 provides a valuable resource for 

understanding the architecture and design of the model. 

This allows DenseNet to go deeper with increased accuracy 

[5]. These features of EfficientNet and DenseNet are 

complementary to each other. Hence, we have chosen to apply 

the compound scaling technique to DenseNet. We will call this 

architecture ScaledDenseNet. Similar to EfficientNet, our 

proposed architecture used d, w, r as the scaling factors to scale 

depth, width, and resolution respectively [6]. 

 

where, 𝑑 = 𝛼𝜙  , 𝑤 = 𝛽𝜙 and 𝑟 = 𝛶𝜙 

 

The values of α, β, and γ are hyperparameters and ϕ is a user 

defined compound scaling coefficient. The values of α, β, and 

γ are found by setting ϕ=1 and performing a grid search. The 

values of hyperparameters were restricted such that 

α×β2×γ2≤2. Since the increase in the number of operations will 

be proportional to α×β2×γ2 [6]. 

For the base network, we used the DenseNet-121 [5] 

architecture. Using d, only the number of layers in each dense 

block is scaled. Using w, the number of filters in every layer 

is increased, while r is used to scale the input resolution only. 

 

 

5. RESULTS AND DISCUSSION 

 

5.1 Hyperparameters 

 

A grid search was performed to determine the optimal value 

of the hyperparameters α, β, and γ. The dataset was split into 

70% training and 30% testing, and three-fold cross-validation 

was performed for every α, β, and γ where α×β2×γ2≤2. There 

is certainly a trend in the accuracy value with an increase in 

the hyperparameter value. By observing the results, the values 

α=1.15, β=1.05, and γ=1.25 are chosen. The detailed results 

are given at [17]. 

 

5.2 Classification 

 

For the classification of skin diseases, the HAM10000 [16] 

dataset was used. The dataset was split into 70% training and 

30% testing sets. Each network was trained for 80 epochs 

using stochastic gradient descent. Optimizer Adam was used 

with a learning rate 0.001 constant throughout the training. 

Five/fold cross-validation was used to calculate the accuracy 

of the networks. Due to technical limitations, the proposed 

network was scaled down to half of its depth. The input 

resolution of the network was also halved to 128x128 as well. 

The proposed network with compound scaling coefficient = 3 

outperformed both EfficientNet and DenseNet-121 for the task 

of seven class classification. The detailed results are 

represented in Table 4. Also Figure 3 presents a comparison of 

the DenseNet-121, EfficientNet-B0, and ScaledDenseNet 

architectures for the classification of the HAM10000 dataset. 

Using different values of the phi, network can be effectively 

scaled. It was observed during the experiments that the scaling 

the network did improve its ability to classify. We have tested 

for phi values from 1 to 3. Table 5 compares the accuracy of 

our ScaledDenseNet architecture using various scaling 

coefficients as shown in Figure 4. 

 

Table 4. Comparison of DenseNet-121, EfficientNet-B0 and 

our proposed ScaledDenseNet architecture in classification of 

HAM10000 dataset 
 

Architectures 
Top 3-Accuracy 

(%) 
Precision Recall F1-Score 

DenseNet-121 93.618 72.353 73.372 71.996 

EfficientNet-B0 92.078 68.302 71.221 69.299 

ScaledDenseNet 

(ϕ=3) 
94.264 74.638 73.943 73.836 
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Figure 3. Comparison of DenseNet-121, EfficientNet-B0, and ScaledDenseNet architecture in classification of HAM10000 

dataset 

 

 
 

Figure 4. Scaling coefficients and accuracy comparison of ScaledDenseNet model for HAM10000 classification 

 

Table 5. Comparison of our ScaledDenseNet architecture 

accuracy using different scaling coefficients 

 

ϕ value 

Top 3-

Accuracy 

(%) 

Precision Recall F1-Score 

1 94.264 72.155 73.901 72.252 

2 94.312 73.632 73.717 73.625 

3 94.590 74.638 73.943 73.836 

 

 

6. CONCLUSION 

 

The study introduces ScaledDenseNet, an efficient deep 

learning architecture for accurate skin lesion identification. 

ScaledDenseNet combines DenseNet with the compound 

scaling method from EfficientNet to achieve improved 

performance without compromising inference speed. The 

hyperparameters α=1.15, β=1.05, and γ=1.25 are optimized 

through a grid search to control network scaling. 

The HAM10000 dataset, consisting of seven disease 

categories, is used for training and testing. ScaledDenseNet 

achieves an impressive top-3 accuracy of 94.59% and 

outperforms DenseNet-121 and EfficientNet-B0 with top-3 

accuracies of 93.618% and 92.078% respectively. Image 

resizing is employed to address dataset imbalance by adjusting 

input resolution based on the 𝜙 value. 

The studied methodology includes hyperparameter 

optimization through a grid search and explicit labeling of 

disease categories to ensure validity and repeatability. 

ScaledDenseNet offers a promising solution for automatic 

skin lesion identification, combining DenseNet's high 

connectivity with the efficiency of compound scaling. 

The results highlight ScaledDenseNet's potential in 

dermatology for early detection and diagnosis of various skin 

conditions. Its accurate identification of skin lesions can 

contribute to advancements in dermatological image analysis, 

leading to improved healthcare outcomes. By aiding in timely 

interventions and treatment, ScaledDenseNet has the potential 

to save lives. 

Overall, ScaledDenseNet presents an efficient deep learning 

architecture that overcomes challenges in skin lesion 

identification. Its superior performance, achieved with the 

optimized hyperparameters α=1.15, β=1.05, and γ=1.25, and 

potential for enhancing dermatological practice make it a 

valuable tool in improving the accuracy and efficiency of skin 

disease diagnosis and treatment. 
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