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Given India's vast expanse and dense population, the prediction of agricultural yields is 

crucial for ensuring food security. The task, however, is complex due to the influence of a 

multitude of factors, such as agricultural practices, environmental conditions, and 

technological advancements. Existing machine learning (ML) models face difficulties due 

to the quality and variability of data, model overfitting, intricate model structures, 

insufficient feature engineering, and temporal dependencies. Therefore, a robust and 

efficient model that addresses these challenges is imperative. In this study, an investigation 

was conducted using five prevalent ML algorithms — Random Forest (RF), XGBoost, 

Decision Tree (DT), Support Vector Machine (SVM), and Linear Regression (LR) — on a 

crop prediction dataset sourced from Kaggle. Algorithms that exhibited the highest 

coefficient of determination (R²) were selected to construct a hybrid model for aggregate 

prediction. Results demonstrated that the proposed hybrid model, encompassing DT, 

XGBoost, and RF, surpassed individual classifiers in terms of R² score and outperformed 

the existing models, achieving an accuracy of 98.6%. This provides a robust and efficient 

framework for crop yield predictions. Consequently, a user-friendly tool, 'Crop Yield 

Predictor', was developed, rendering the model accessible and practical for on-ground 

applications in agriculture. This tool effectively translates complex data and algorithms into 

actionable insights, bridging the gap between advanced machine learning techniques and 

practical agricultural applications. 
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1. INTRODUCTION

Agriculture accounts for 60.45% of land use in India. Its 

agrarian economy stands as a cornerstone of its societal fabric, 

with agriculture deeply intertwined in its history and present. 

The nation's reliance on the annual monsoon and farming 

practices shapes the trajectory of its economy and the well-

being of its populace [1]. As one of the most populous 

countries globally, India's ability to ensure food security 

hinges upon the efficacy of its agricultural yields. In this 

context, the accurate prediction of crop yields assumes 

paramount importance. On the one hand where farmers want 

timely guidance to anticipate crop output and establish 

effective methods to boost agricultural produce thereby 

earning better return on investments, Governments on the 

other hand must be able to accurately predict agricultural 

production to achieve national food security and make 

knowledgeable decisions regarding imports thereby saving 

crucial forex. To meet the increased food demands of India's 

burgeoning population, modern technology practices in 

agriculture are required.  

Previously, farmers relied on their own experiences and 

accurate historical data to anticipate crop yields and make 

important production decisions based on the prediction. 

However, in recent years, new breakthroughs such as crop 

model simulation, precision agriculture, and machine learning 

have surfaced to estimate yield more precisely, as can analyze 

massive amounts of data using high-performance computing 

[2-5]. However, the task of predicting crop yields accurately is 

riddled with complexity. It entails the intricate interplay of a 

multitude of factors, encompassing agricultural methodologies, 

environmental variables, and technological advancements. 

The challenge is further compounded by the varied and often 

unpredictable nature of these variables, making traditional 

forecasting methods fall short in offering reliable predictions. 

Precision agriculture [6], a revolutionary approach in 

modern farming, underscores the significance of targeted and 

data-driven cultivation practices. This methodology harnesses 

advanced technologies, including remote sensing, geographic 

information systems (GIS), and global positioning systems 

(GPS) as shown in Figure 1, to meticulously analyze and 

respond to the variability inherent in agricultural fields. By 

deploying sensors and data analytics, precision agriculture 

enables farmers to tailor irrigation, fertilization, and pesticide 

application precisely to the specific needs of different areas 

within a field. This approach not only maximizes crop yields 

but also minimizes resource wastage and environmental 

impact. 

Figure 1. Components of precision agriculture 

Revue d'Intelligence Artificielle 
Vol. 37, No. 4, August, 2023, pp. 1057-1067 

Journal homepage: http://iieta.org/journals/ria 

1057

https://orcid.org/0000-0002-5473-1162
https://orcid.org/0000-0002-0337-2841
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370428&domain=pdf


 

Statistical models, in comparison, provide a method that 

predicts direct connections between predictor variables and 

crop production within a particular dataset without taking into 

consideration underlying mechanisms in crop ecology and 

physiology [7]. When given adequate and trustworthy data, 

statistical models can make good predictions, but they may be 

constrained by the limits of the training data. However, widely  

used performance evaluation metrics are possible to get on 

statistical models that are helpful for uncertainty studies at 

regional scales and are less dependent on field calibration data. 

For forecasting agricultural yield, statistical models like 

multiple linear regressions (MLR) and simple linear 

regressions are frequently utilized [8].  

There are a wide range of advantages to use machine 

learning (ML) models to forecast agricultural production. 

Machine learning places an emphasis on discovering patterns 

and correlations in data settings to precisely predict yields 

depending on various characteristics. ML models however 

must train on datasets that reflect previous experiences and 

results to create prediction models. Using historical data, the 

models' parameters are set during training. The performance 

of the model is evaluated during testing using a portion of the 

historical data that was not utilized for training [9]. Machine 

learning techniques have the capacity to adjust and learn from 

the nonlinear and dynamic processes of crop growth, which is 

essential for making precise forecasts for agricultural 

production. Due to learning ability from datasets, machine 

learning models are ideally suited for predicting agricultural 

yields at large scale. Further, their adaptability to different 

parameters like crop varieties, temperature, rainfall, humidity, 

nutrient content (nitrogen, phosphate, potassium, organic 

carbon, calcium, magnesium, Sulphur, manganese, and 

copper), pH levels and geographical area, make ML 

techniques them suitable to model and forecast crop yields 

[10].  

While the potential of machine learning models to forecast 

crop yields holds promise, existing approaches have 

encountered a range of obstacles. Chief among these 

challenges is the dearth of comprehensive and high-quality 

data, the inherent variability within agricultural systems, the 

peril of overfitting intricate models, and the intricacies of 

temporal dependencies. Additionally, the models' efficacy has 

been hampered by the complexity of their structures and the 

insufficiency of thoughtful feature engineering. 

Considering these hurdles, there emerges a compelling need 

for the development of more robust and efficient predictive 

models that can aid in the realm of sustainable crop production. 

Modern machine learning techniques such as hybrid or 

ensemble modeling, driven by their ability to make multiple 

models work together and handle complex and diverse 

datasets, present a transformative opportunity. Leveraging 

these tools could enable more accurate forecasts, assisting 

farmers, policymakers, and stakeholders alike in making 

informed decisions. In this paper, we harness the individual 

power of machine learning algorithms such as Decision Tree, 

XGBoost, Random Forest, Support Vector Machine, and 

Linear Regression using the agriculture dataset consisting of 

top 10 globally consumed crops from Kaggle repository. 

Choosing the top three algorithms in terms of performance, the 

study then exemplifies the fusion of these algorithms to 

propose a hybrid ML framework for efficient crop yield 

prediction and offer this as a tool for use of all stakeholders.  

Therefore, the key contributions from this paper are: 

1) A hybrid ML framework leveraging top three 

individually performing algorithms for an efficient 

and robust crop yield prediction model. 

2) To ensure the accessibility of this model for farmers 

and policymakers, a user-friendly interface called 

‘Crop Yield Predictor’ is developed, offering 

efficient crop yield predictions. This tool can assist in 

optimizing resources and promoting sustainable food 

production. 

The manuscript is organized as below: Section 1 provides 

an overview of crop yield prediction using machine learning 

and statistical models. Existing methods for agricultural yield 

prediction are reviewed in Section 2 under related works. 

Section 3 describes the materials and methods for agricultural 

yield prediction that have been offered. Section 4 contains the 

results and discussion. Section 5 concludes with references 

and draws conclusions. 

 

 

2. RELATED WORKS 

 

In the field of crop yield prediction, numerous studies have 

been proposed mainly using machine learning algorithms 

compared to statistical or ensemble models. Authors [11] 

focus on predicting wheat yields using a combination of 

machine learning algorithms and advanced sensing 

technologies. The researchers explore how these methods can 

enhance the accuracy of predicting wheat yields, which is 

crucial for agricultural planning and management. The paper 

discusses the application of machine learning techniques along 

with advanced sensing tools to gather data relevant to wheat 

growth and yield. By analyzing this data, the study 

demonstrates how the combination of these technologies can 

lead to improved predictions of wheat yields, contributing to 

more informed decision-making in agricultural practices. 

Authors [12] explore the present and potential applications of 

statistical machine learning algorithms in agricultural machine 

vision systems. The authors discuss how these algorithms are 

currently being employed in various aspects of agriculture, 

specifically focusing on machine vision systems. They also 

highlight the potential future applications and advancements 

in this field, emphasizing the role of statistical machine 

learning techniques in improving agricultural processes and 

systems. The paper provides insights into the evolving 

landscape of agricultural technology and its integration with 

machine learning for enhanced efficiency and productivity. 

Authors [13] present a comprehensive survey on the 

integration of agrarian factors and machine learning models 

for yield forecasting. The authors delve into the various 

approaches that combine agricultural variables and machine 

learning techniques to predict crop yields. They examine the 

existing methodologies, discuss the challenges faced in yield 

forecasting, and assess the potential benefits of integrating 

agrarian factors with machine learning models. The paper 

offers insights into the state-of-the-art in yield prediction 

methods, emphasizing the importance of incorporating both 

domain knowledge and advanced machine learning techniques 

to enhance the accuracy of yield forecasts in agricultural 

contexts. The authors [8] discuss the application of Random 

Forests, a machine learning technique, for predicting crop 

yields at both global and regional scales. The authors explore 

the potential of Random Forests in improving crop yield 

predictions by integrating various data sources, including 

climate, soil, and remote sensing data. They demonstrate that 
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Random Forests can effectively capture complex relationships 

between these factors and crop yields, leading to more 

accurate predictions. The paper highlights the importance of 

machine learning methods like Random Forests in enhancing 

our ability to forecast crop yields, which is crucial for global 

food security and agricultural planning. The authors [14] 

propose an ensemble method that combines multiple machine 

learning algorithms to create a more robust prediction model 

for crop production. They utilize various features and data 

related to crop growth and environmental conditions to train 

their model. By leveraging the strengths of multiple algorithms, 

the ensemble model aims to improve the accuracy of crop 

production predictions. The paper emphasizes the potential of 

ensemble techniques in enhancing the reliability of predictions 

in the agricultural context. Authors [15] focus on predicting 

crop yields through various machine learning algorithms. 

They discuss the methodology and results of employing these 

algorithms on datasets containing relevant agricultural 

information. The paper's objective is to showcase the potential 

of machine learning in forecasting crop yields, thereby 

contributing to improved agricultural planning and decision-

making. Authors [16] focuses on predicting rice crop yields in 

India using support vector machines (SVM). They used 

relevant data related to rice cultivation, environmental factors, 

and historical yield records to train and validate their model. 

The paper aims to demonstrate the feasibility and accuracy of 

using SVM for predicting rice crop yields, which has 

implications for optimizing agricultural practices and food 

security in India. Authors [17] introduce an ensemble 

algorithm for predicting crop yields. The authors propose a 

method that combines multiple predictive models or 

algorithms to create a more accurate and reliable prediction for 

crop yields. They discuss the implementation of their 

ensemble algorithm, using various data sources related to crop 

growth, climate, and other relevant factors. The paper aims to 

showcase the effectiveness of ensemble techniques in 

improving the precision of crop yield predictions, contributing 

to better agricultural decision-making and planning. Authors 

[18] explore various supervised machine learning algorithms 

to develop predictive models for crop yield. They discuss how 

they utilized labeled datasets containing information about 

crop growth, environmental conditions, and other relevant 

factors to train and evaluate their models. The paper aims to 

demonstrate the applicability of supervised learning methods 

in accurately predicting crop yields, which can contribute to 

better agricultural planning and management strategies.  

Authors [19] provide a comprehensive review of machine 

learning methods applied to crop yield prediction and nitrogen 

status estimation in precision agriculture. The authors likely 

survey various machine learning techniques used for 

predicting crop yields and estimating nitrogen levels in crops. 

They might discuss the strengths, limitations, and comparative 

effectiveness of these methods. The paper aims to summarize 

the state-of-the-art in using machine learning for precision 

agriculture tasks, emphasizing their potential in enhancing 

crop production efficiency and sustainability. As seen, there 

are very few studies leveraging hybrid ML models in literature. 

 

 

3. MATERIALS AND METHODS 

 

In agriculture, crop yield prediction uses a variety of 

methods and tools to anticipate how much yield can be 

produced in a given area. The methodology includes obtaining 

information about the individual crop being farmed as well as 

environmental factors including weather patterns and resource 

availability. To anticipate agricultural yield, this data is 

subsequently examined using statistical models and machine 

learning techniques. The stages of data collection, pre-

processing, feature extraction, model selection, training and 

prediction are commonly included in this work for crop yield 

prediction in agriculture.  

Following exploratory analysis, four input variables 

(features in ML language) were identified: item, pesticide, 

rainfall, and temperature. The average crop yield was the 

variable to be anticipated. The mean and standard deviations 

of each variable in the training subset were used to standardize 

the data (i.e., subtract mean and divide by normal deviation). 

There are five unique features in the Kaggle dataset. Table 1 

lists the feature descriptions for the dataset's various 

parameters. Figure 2 depicts the general design and workflow 

of the proposed system. 

 

 
 

Figure 2. Overall architecture and workflow of the proposed framework 
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Table 1. Feature description in dataset 

 

Feature Feature ID Description 
Dependent/ 

Independent 

Item Crop 
A total of 10 different crops were used in this dataset like paddy, wheat, maize etc. 

according to the country and the other factors that influence the crop growth 

Independent 

Pesticides 

(NPK) 
T (tonne) 

Data is collected from Food and Agricultural Organization (FAO) and active 

ingredients or pesticide usage is measured in tonnes 

Rainfall 
AAR (average 

annual rainfall) 

The average annual rainfall of different countries is measured in milli meters, and the 

data used was taken from world data bank 

Temperature 
AT (average 

temperature) 

Average temperature of particular year in particular region is measured in degree 

Celsius and world data bank helped in data collection 

Yield Y (tonne) The data is collected from FAO, and it is measured in tonnes Dependent 

 

3.1 Machine learning models 

 

The ML models used in this work were chosen after doing 

a literature review. We use Random Forest, XGboost, 

Decision Tree, Support Vector Machines, and Linear 

Regression models, which are briefly described on how they 

are leveraged. 

(1) Linear regression: Linear regression is a simple and 

widely used machine learning technique for predicting 

a numerical value “(dependent variable) based on one 

or more input features (independent variables). In the 

context of crop yield prediction, we can use linear 

regression to model the relationship between various 

factors (like weather conditions, soil properties, etc.) 

and the crop yield. 

For a single independent variable (feature), mathematically, 

the linear regression equation is: 

 

y = b0 + b1 * x + ε (1) 

 

where: 

- y is the predicted crop yield 

- b0 is the intercept term 

- b1 is the coefficient for the independent variable 

- x is the value of the independent variable (e.g., weather  

 data) 

- ε represents the error term 

For multiple independent variables (features), the equation 

becomes: 

 

y = b0 + b1 * x1 + b2 * x2 + ... + bn * xn + ε (2) 

 

where: 

- x1, x2, ..., xn are the values of the independent variables 

(e.g., weather, soil properties, etc.) 

- b1, b2, ..., bn are the corresponding coefficients for the 

independent variables 

For crop yield prediction, we collect historical data that 

includes both input features (e.g., temperature, rainfall, soil 

nutrients) and the corresponding crop yield values. The goal 

of training the linear regression model is to find the 

coefficients (b0, b1, ..., bn) that minimize the difference 

between the predicted crop yields and the actual crop yields in 

the training dataset [20]. The training process involves using 

the least squares method to determine the optimal coefficients 

that best fit the data. Once the model is trained, we use it to 

predict the crop yield for new sets of input features by 

plugging them into the equation [21, 22]. 

The advantages of Linear regression are that it is a 

straightforward model that is easy to understand and 

implement. It provides a clear interpretation of the relationship 

between the independent variables and the dependent variable 

(crop yield). The coefficients in the linear regression equation 

provide insights into the direction and magnitude of the effect 

of each independent variable on the dependent variable. This 

can help in identifying which factors are most influential in 

predicting crop yield. These models are computationally 

efficient, making them suitable for quick analysis and 

prediction tasks, especially with a relatively small number of 

features. Linear regression doesn't assume a particular 

distribution of the data, which can be advantageous when 

working with different types of agricultural data. Linear 

regression at best serves as a baseline model, helping to 

establish a foundation for more complex modeling techniques 

if needed. 

The drawbacks of Linear regression are that it assumes a 

linear relationship between independent and dependent 

variables. If the true relationship is non-linear, linear 

regression might not capture the complexity of the data 

accurately. Linear regression may struggle to capture intricate 

interactions and non-linear patterns present in crop yield data. 

Other models, like polynomial regression or machine learning 

techniques, might be better suited for such situations. Linear 

regression is sensitive to outliers, which can 

disproportionately influence the model's coefficients and 

predictions. Outliers are not uncommon in agricultural data 

due to various factors. When independent variables are 

correlated with each other, it can lead to multicollinearity 

issues in linear regression. This can affect the interpretation of 

coefficients and the model's stability. Without proper 

regularization techniques, linear regression can easily overfit 

(capture noise) or underfit (oversimplify) the data, leading to 

poor predictive performance. Linear regression assumes that 

the relationship between each independent variable and the 

dependent variable is independent of other variables. It might 

not handle complex interactions between features well. In 

cases where the relationship between variables is highly 

complex, linear regression might not provide accurate 

predictions. More advanced techniques may be required. 

(2) Decision Tree: This is a non-parametric supervised 

machine learning method that is commonly utilized in 

classification and regression applications. Figure 3 

depicts a hierarchical structure with a root node, 

branches, internal nodes, and leaf nodes. The Gini 

impurity and information gain strategies are the two 

most used as splitting criterion in decision tree models, 

which aid in evaluating the usefulness of each test 

condition and its capacity to categorize samples into a 

certain group. Gini impurity and knowledge gain are 

provided by: 

 

H(S) = -Σ(P(c) * log₂(P(c))) (3) 
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where, H(S) is the entropy of the dataset S, Σ denotes the sum 

over all possible classes c and P(c) is the proportion of 

instances in class c within the dataset S. 

 

IG(S, A) = H(S) - Σ((|S_v| / |S|) * H(S_v)) (4) 

 

where, IG(S, A) is the information gain of the dataset S by 

splitting on feature A, H(S) is the entropy of the original dataset 

S, Σ denotes the sum over all possible values v of feature A, 

|S_v| is the number of instances in the dataset S with feature A 

equal to v, |S| is the total number of instances in the dataset S 

and H(S_v) is the entropy of the subset S_v. 

 

I(S) = 1 - Σ(P(c)²)  (5) 

 

where, I(S) is the Gini impurity of the dataset S, Σ denotes the 

sum over all possible classes c, P(c) is the proportion of 

instances in class c within the dataset S. 

 

 
 

Figure 3. Representation of a decision tree implementation 

 

The advantages of DT are that it provides a visual and 

intuitive representation of the decision-making process. The 

tree structure allows us to easily understand the factors and 

thresholds that contribute to predictions. They can capture 

non-linear relationships and interactions between variables in 

the data, making them suitable for complex agricultural 

systems where linear models might fall short. It can handle 

both categorical and numerical variables without the need for 

extensive preprocessing, which can be useful when dealing 

with diverse agricultural data. DTs are relatively robust to 

irrelevant features. Features that don't contribute significantly 

to prediction will tend to be pruned off during the tree-building 

process. They can handle missing values effectively by placing 

them in a separate branch during the tree-building process. 

DTs can be combined into ensemble techniques like Random 

Forests or Gradient Boosting, which often lead to improved 

predictive performance by reducing overfitting. 

The drawbacks of DT are that they can become overly 

complex and fit noise in the training data, leading to poor 

generalization on new, unseen data. Small changes in the data 

can result in significantly different tree structures, making 

decision trees sensitive to variations and potentially leading to 

inconsistent predictions. In datasets with imbalanced classes, 

decision trees might have a bias towards predicting the 

majority class, especially if not adjusted appropriately. DTs 

use a greedy approach for building the tree, which might not 

lead to the globally optimal solution in some cases. Single 

decision trees can have high variance, especially on small 

datasets, which might require ensemble methods to mitigate 

this issue. While DTs can handle non-linearity well, they 

might not be the best choice for problems where linear 

relationships dominate. Preventing DTs from growing too 

deep or becoming too complex is important to avoid 

overfitting and maintain interpretability. 

(3) Random Forest: A RF is an ensemble learning 

technique that combines multiple decision trees to 

improve predictive performance and reduce overfitting. 

In the context of crop yield prediction, a Random Forest 

model can be used to predict crop yields based on 

various input features. The working can be explained in 

below 3 steps: 

Step 1. Collect a dataset that includes historical data of crop 

yields and corresponding input features (e.g., weather data, 

soil properties, etc.). Randomly sample the dataset multiple 

times with replacement (bootstrap samples). Each sample is 

used to train an individual decision tree. 

Step 2. For each bootstrap sample, build a decision tree 

using a subset of the input features. At each split node, 

randomly select a subset of features to consider for splitting. 

Split the data based on the selected feature that maximizes a 

certain criterion (e.g., information gain or Gini impurity) at 

that node. Repeat this process recursively until the tree is fully 

grown or a stopping criterion is met (e.g., maximum depth, 

minimum samples per leaf). 

Step 3. Once all decision trees are built, predictions are 

made by aggregating the predictions of individual trees. For 

regression tasks like crop yield prediction, this aggregation is 

usually done by calculating the average of the predictions from 

all decision trees. 

The mathematical representation of the Random Forest 

model is the ensemble average of individual decision tree 

predictions: 

 

RandomForest(x) = (1/N) * ∑(DecisionTree_i(x)) (6) 

 

where: 

- RandomForest(x) is the predicted crop yield for input 

features x using the Random Forest model. 

- N is the number of decision trees in the ensemble. 

- DecisionTree_i(x) represents the prediction of the i-th 

decision tree. 

The advantages of RF for are that it reduces overfitting by 

combining multiple decision trees, which collectively make 

more robust predictions on new, unseen data. It can capture 

complex non-linear relationships between input features and 

crop yields. The model can provide insights into feature 

importance, helping to identify which factors contribute most 

to crop yield predictions and it is less sensitive to outliers and 

data noise due to the ensemble nature of the model. 

The drawbacks of RF is that it can be computationally 

expensive and requires tuning to optimize performance. 

Although RF can indicate feature importance, the ensemble 

structure can make the model less interpretable compared to a 

single decision tree. While less prone to overfitting than 

individual decision trees, Random Forests can still overfit if 

the number of trees is too large relative to the dataset size. 

(4) Support Vector Machine: SVMs are a powerful 

machine learning algorithm used for classification and 

regression tasks. For crop yield prediction, SVMs can 

be employed to create a regression model that predicts 

crop yields based on input features. SVM regression 

works as below: 

Step 1. We collect a dataset containing historical data of 

crop yields and corresponding input features (e.g., climate data, 

soil characteristics, etc.). 
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Step 2. Define the SVM regression problem. In SVM 

regression, the goal is to find a hyperplane that best fits the 

data while minimizing the margin violations (deviations from 

the predicted values). Choose a kernel function (linear, 

polynomial, radial basis function, etc.) that maps the input 

features into a higher-dimensional space, allowing for more 

complex relationships between variables. Solve the 

optimization problem to find the coefficients of the hyperplane 

(weights) and the bias term that minimize the error while 

maximizing the margin between the predicted values and the 

actual crop yields. 

The mathematical representation of the SVM regression 

model can be given as: 

 

y = w * x + b (7) 

 

where: 

- y is the predicted crop yield. 

- w represents the weights (coefficients) of the hyperplane. 

- x is the vector of input features. 

- b is the bias term. 

Step 3. Once the SVM regression model is trained, we use 

it to predict crop yields for new sets of input features. 

The SVM regression model's objective is to find a 

hyperplane that best represents the relationship between the 

input features and crop yields. The prediction is made based 

on the distance of a new data point to the hyperplane. 

The advantage of SVM Regression is that it can capture 

non-linear relationships between input features and crop yields 

using various kernel functions. SVMs generally have good 

generalization properties and can handle overfitting 

effectively. SVMs focus on the support vectors, which are the 

data points that influence the margin of error, making the 

model less sensitive to irrelevant features. 

The drawback SVM Regression is that the training can be 

computationally intensive, especially with large datasets or 

complex kernels. SVMs have hyperparameters that require 

tuning, such as the choice of kernel, regularization parameter, 

etc. SVMs can be less interpretable compared to simpler 

models like linear regression and they might face challenges 

in terms of efficiency and scalability when dealing with 

massive datasets. 

(5) XGBoost: XGBoost (Extreme Gradient Boosting) is a 

popular and powerful machine learning algorithm that 

has shown excellent performance in various tasks, 

including regression tasks like crop yield prediction. It 

is an ensemble learning method that combines the 

predictive power of multiple weak learners (individual 

models) to create a robust and accurate predictive 

model. The working of XGBoost can be explained as 

below: 

Step 1. We collect a dataset that includes historical data of 

crop yields and the corresponding input features (such as 

climate data, soil characteristics, etc.). 

Step 2. Define the problem as a regression task, where the 

goal is to predict crop yields (a numerical value) based on 

input features. Install the XGBoost library and prepare the 

dataset in the required format. 

Step 3. XGBoost has various hyperparameters that control 

the model's behavior. These include learning rate, maximum 

depth of trees, number of boosting rounds, regularization 

terms, and more. We perform hyperparameter tuning to find 

the optimal combination of these parameters that results in the 

best predictive performance. Techniques like grid search or 

random search can be used for this purpose. 

Step 4. Train the XGBoost regression model on the dataset. 

The model works by sequentially adding decision trees to the 

ensemble, where each new tree tries to correct the errors made 

by the previous trees. 

Step 5. Once the model is trained, we use it to predict crop 

yields for new sets of input features. 

XGBoost is known for its accuracy and robustness, making 

it suitable for complex prediction tasks like crop yield 

prediction. It provides insights into feature importance, 

helping identify which factors are most influential in 

determining crop yields. It can capture complex non-linear 

relationships between input features and crop yields. Through 

hyperparameter tuning and regularization techniques, it can 

mitigate overfitting. 

On the other side, setting up and tuning a model will require 

more effort compared to simpler algorithms. While it can 

provide feature importance, the model's ensemble nature can 

make it less interpretable than linear models.” 

 

3.2 Methodology 

 

The methodology adopted for crop yield prediction involves 

collecting and loading the data into a .csv file, followed by data 

pre-processing to handle outliers and selecting relevant 

features. The performance of the model is evaluated using 

appropriate metrics, and the predicted crop yields are 

displayed as the final output. Figure 4 shows the flow chart of 

the methodology adopted which is briefly explained below. 

 

 
 

Figure 4. Flow-chart of the implementation 

 

Data Collection and Loading. This involves importing all 

the requisite libraries in Python and loading the dataset from 

kaggle.com. We combine two datasets taken from 

http://www.fao.org/home/en/ and https://data.worldbank.org/. 

Feature description in the dataset is shown in Table 1. The 

dataset contains information on top 10 crops that are grown in 

USA. There are features like rainfall, temperature and 

pesticides that are included to determine the yield of the crops. 

There are around 28K records in the dataset.  

Data Pre-processing. The collected data undergoes pre-

processing to ensure data quality and integrity. We carry our 
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exploratory data analysis (EDA) on the dataset to identify and 

select featured based on their relevance to the prediction task. 

Furthermore, an outlier removal process is applied to detect 

and eliminate any anomalous data points that could negatively 

impact the model's performance. 

Model Training and Testing. Here, the dataset is divided 

into a train set and a test set, as well as into independent and 

dependent variables, or X and Y. 80% is the training data and 

20% is the test data set split. Next, all the five ML models are 

trained using the train dataset and then the algorithm 

performance is checked on the remaining test data on all 

metrics. Based on best of three model performance on 

coefficient of determination (R2) score, we implement a hybrid 

ML framework.  

Prediction and Evaluation. Once the hybrid ML models 

have been chosen and trained, they are ready to make 

predictions on new, unseen data. The input data is passed 

through all the trained models, and it generates predictions for 

the corresponding crop yield. Evaluation metrics are used to 

assess the performance of all the models and compare their 

predictive accuracy. 

Output Display. The final step of the system design involves 

displaying the outputs, which include the predicted crop yields 

generated by the hybrid ML model. These predictions can be 

presented visually, such as in a graphical format, or as a tabular 

output showcasing the predicted yields for each input instance. 

Finally, a user-friendly interface is developed using the Gradio 

library in Python to view the predicted crop yield as per the 

inputs given by any user. 

 

3.3 Evaluation metrics 

 

The proposed models are evaluated using the following 

metrics.  

1) Coefficient of determination (R2): When forecasting 

the outcome of a given event, the coefficient of 

determination is a statistical measurement that 

assesses how variations in one variable may be 

explained by differences in another one. In other 

words, this coefficient measures the strength of the 

linear relationship between two variables. This metric 

is represented by a value between 0.0 and 1.0, with 

1.0 indicating perfect correlation. As a result, it is a 

trustworthy model for forecasting the future. 

2) Root Mean Square Error (RMSE): It is the residuals' 

standard deviation (prediction errors). Residuals are 

a measure of how far away data points are from the 

regression line; RMSE is a measure of how spread 

out these residuals are. It indicates how concentrated 

the data is towards the line of best fit.  

 

𝑅𝑀𝑆𝐸 = √(𝑓 − 𝑜)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (8) 

 

where, f= forecasts (expected values or unknown results), and 

o=observed values (known results). 

3) Mean Average Error (MAE): The MAE measures the 

average magnitude of the errors in a set of forecasts, 

without considering their direction. MAE is 

calculated as the sum of absolute errors divided by 

the sample size. 

 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝑖=1

𝑛
=  

∑ |𝑒𝑖|𝑛
𝑖=1

𝑛
  (9) 

It is thus an arithmetic average of the absolute errors |𝑒𝑖| =
 |𝑦𝑖 − 𝑥𝑖|, where 𝑦𝑖 is the prediction and 𝑥𝑖 the true value.  

Both the MAE and RMSE can range from 0 to ∞. They are 

negatively oriented scores. Lower values are better. 

4) Mean Squared Error (MSE): The MSE is calculated 

as the average of the squares of the errors, or the 

average squared difference between the estimated 

and real values. 

If a vector of n predictions is generated from a sample of n 

data points on all variables, and Y is the vector of observed 

values of the variable being predicted, with Y being the 

predicted values (e.g., from a least-squares fit), then the 

predictor's within-sample MSE is calculated as 

 

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑌𝑖 − 𝑌̂𝑖)2

𝑛

𝑖=1

 (10) 

 

Lower the value the better and 0 means the model is perfect. 

 

 

4. RESULTS AND DISCUSSION 

 

The results are segregated into three comparative studies, 

namely exploratory data analysis, intra-model and inter-model 

comparisons as discussed below.  

 

4.1 Exploratory data analysis 

 

The results of EDA are first studied. Figure 5, Figure 6 and 

Figure 7 provide some valuable insights into the dataset like 

total pesticide usage by crops, average rainfall for by year and 

yield by item and year. 

 

 
 

Figure 5. Total pesticide usage by crops 

 

 
 

Figure 6. Average rainfall by year 
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Figure 7. Yield by item and year 

 

4.2 Intra-model comparison 

 

Results of all the models implemented in a standalone mode 

are shown in Table 2. It is observed that the R2 value of 

Random forest, Decision Tree and XGboost are highest in 

comparison to SVM and Linear regression indicating a perfect 

correlation. This is due to their ability to capture complex 

relationships, handle non-linearities, and address overfitting 

better compared to SVM and LR models. The SVM and LR 

models assume linear relationships between features and target 

variable yield. In the case of complex interactions or non-

linearities, they struggle to capture the underlying patterns in 

the data, leading to lower R2 scores. Hence, DT+XGBoost+RF 

models are used for implementing the hybrid ML model. 

 

4.2.1 Hybrid ML Model 

The first model in the hybrid framework is the Decision tree 

regressor, second model is Gradient boosting regressor and 

third model is the Random forest respectively. We choose this 

order of models because of their roles and contribution to the 

overall model. Firstly, Decision trees make several important 

contributions to the hybrid ML model as they offer 

interpretability, facilitate feature selection, capture nonlinear 

relationships, enable ensemble learning, and handle missing 

data and outliers. These qualities enhance the accuracy, 

understanding, and applicability of the model for crop yield 

prediction. Secondly, Gradient Boosting Regression is a 

powerful algorithm which contributes by sequentially building 

models, handling non-linear relationships, providing feature 

importance analysis, robustness to outliers, regularization to 

control overfitting and offering some level of model 

interpretability. These contributions enhance the accuracy, 

reliability, and interpretability of the hybrid model. Random 

forest enhances the hybrid ML model by improving accuracy, 

robustness to noise and outliers, providing feature importance 

insights, handling high-dimensional data, enabling error 

estimation, and supporting parallel processing. These 

attributes contribute to more accurate and reliable predictions 

for crop yields, assisting in agricultural decision-making and 

resource management. 

For training and testing the hybrid ML model, we use 

certain parameters like n-estimators and max depth. We 

optimize the results by hyper tuning these parameters. Table 3 

indicates the parameter values which gave the best results. 

Following the Decision Tree Regressor, the extracted 

features and the dataset are passed to the Gradient Boosting 

model. XGBoost is an implementation of Gradient Boosted 

decision trees. In this algorithm, decision trees are created in 

sequential form. Weights play an important role in XGBoost. 

Weights are assigned to all the independent variables which 

are then fed into the decision tree which predicts results. The 

weight of variables predicted wrong by the tree is increased 

and these variables are then fed to the second decision tree. 

These individual predictors then ensemble and for each 

candidate in the test set, it uses the class with the majority 

voting as the final prediction as shown in Figure 8. The output 

of the Gradient Boosting model is then fed into the Random 

Forest regression model as illustrated in Figure 9. Random 

Forest employs a decision tree as its base classifier. An 

attribute split/evaluation measure is used in decision tree 

induction to determine the best split at each node of the 

decision tree. The generalisation error of a forest of tree 

classifiers is determined by the strength of the individual trees 

in the forest as well as their correlation.  

 

 
 

Figure 8. XGboost learning algorithm 

 

First, a random forest is formed by selecting one of the five 

split measures at a time. For example, random forest with 

information gain, random forest with gain ratio, etc. Following 

that, a unique hybrid decision tree model for random forest 

classifier is developed. Individual decision trees in Random 

Forest are built in this model using various split measures. 

Weighted voting depending on the strength of individual trees 

augments this paradigm. This hybrid model's assessment 

metrics and correctness are scrutinized. Combining multiple 

decision trees enhances the accuracy and stability of 

predictions. 

From results in Table 4, it is seen that the hybrid ML model 

returns the highest R2 value of 0.9847 compared to all 

individual models. Since various factors like temperature, 

rainfall, soil composition, and agricultural practices interact in 

complex ways, the hybrid model is better equipped to handle 

these intricate relationships and spatiotemporal nonlinearities 

present in the data and uses them effectively in predicting the 

yield. Also, the ensemble nature of RF by combining multiple 

DTs, feature importance measures, and XGBoost’s boosting 

mechanism contributes to higher R2 score of the hybrid model. 

 

 
 

Figure 9. Hybrid decision tree model for random forest 

regression 
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Table 2. Intra-model experimental results 

 
Metrics Random Forest Decision Tree SVM Linear Regression XGBoost 

R2 0.9837 0.9737 -0.2040 0.08628 0.9732 

RMSE 10645.42 13938.83 14083.62 94468.60 82295.73 

MAE 3999.17 4191.63 7954.61 57669.24 62779.32 

MSE 6772588013.10 194519546.09 198348525.23 8924316839.95 6772588013.10 

 

Table 3. Hybrid ML model tuning parameters 

 
Model N-Estimator Max Depth 

Decision Tree - 10 

Gradient Boost 500 10 

Random Forest 500 11 

 

Figure 10 illustrates the R2 scores comparison of all the 

algorithms, including the hybrid ML model. On comparison of 

all other metrics, the proposed hybrid ML model returns the 

lowest MAE, MSE and RMSE values by leveraging the 

complementary strengths of different algorithms, reducing 

bias and variance, capturing complex relationships, and 

creating an ensemble effect that improves predictive accuracy. 

MAE scores provide information about the difference between 

actual and predicted values. A lower MAE value indicates a 

more efficient model in predicting yield. The MSE score 

indicates the squared difference between true and predicted 

numbers. Computing the RMSE score helps measure the 

standard deviation of the residuals. The lower the MSE and 

RMSE scores, the better the model for calculating returns. 

 

Table 4. Hybrid ML model results 

 
Metrics Hybrid Model 

R2 0.9847 

RMSE 9037.8081 

MAE 3829.6532 

MSE 119182984.211 

 

 
 

Figure 10. R2 scores comparison of all algorithms 

 

4.3 Inter-model comparison 

 

The proposed hybrid model is compared with existing 

models using various techniques on the same dataset. Table 5 

shows the comparison in terms of model accuracy. 

From inter model comparison results, the proposed hybrid 

model returns the highest accuracy of 98.6% thereby proving 

that the DT+XGBoost+RF model outperforms other state-of-

the-art models compared with 4.47 pp better accuracy than the 

next best model. There are several potential improvements that 

could be made to the hybrid model to further enhance 

predictive accuracy. Feature engineering is one where quality 

and relevance of features can help improve model 

performance. By combining the right base models and 

different hyperparameter tuning can also help. Ensemble 

techniques like stacking can further optimize and improve 

accuracy. Applying regularization techniques to reduce 

overfitting in individual models by pruning decision trees or 

applying dropout in neural networks can help improve 

generalization and contribute to the hybrid model's accuracy. 

 

Table 5. Inter model comparison results 

 

Reference Model 
Accuracy 

(%) 

[23] Hybrid LSTM, RNN and SVM 97 

[24] Decision Tree 84.54 

[25] Deep Reinforcement Learning  93.7 

[26] Random Forest 94.13 

Proposed 
Hybrid DT for RF Regression 

using XGBoost 
98.6 

 

Figure 11 and Figure 12 illustrate the Actual vs. Predicted 

yields for two crops, namely rice and wheat. The close 

alignment between the true & predicted values demonstrates 

the accuracy & reliability of the proposed hybrid model. 

On account of superior model performance, an Industry use-

case developed is a tool called ‘Crop Yield Predictor’ 

deployed with an easy user friendly interace that can be used 

by farmers, policymakers and other stakeholders for informed 

decision making as shown in Figure 13.  

 

 
 

Figure 11. Actual vs. Predicted yield for rice 

 

 
 

Figure 12. Actual vs. Predicted yield for wheat 
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Figure 13. The ‘Crop yield predictor’ user interface 

developed 

 

 

5. CONCLUSIONS 

 

A hybrid ML model is proposed for crop yiled prediction 

which combines the best three out of five ML models 

evaluated on their R2 scores, namely DT, XGBoost and RF. 

From results, the hybrid model outperforms the individual 

models implemented with an R2 score of 0.9847 and all others 

metrics like RMSE, MAE and MSE. In intra-model 

comparison with existing models, the proposed hybrid model 

outperforms them with an accuracy of 98.6%.  

To ensure the accessibility of this model to policymakers 

and farmers at large, a user-friendly tool called ‘crop yield 

predictor’ is developed. Our findings contribute by offering a 

novel approach to predicting crop yield, advancing our 

understanding of hybrid modeling, providing insights into 

feature importance, and addressing practical challenges in 

agriculture and sustainability. The practical implications of the 

findings hold great potential for improving day-to-day 

agricultural operations and directly influence various aspects 

of agricultural decision-making for farmers and various 

stakeholders, enhancing productivity, sustainability, and 

economic outcomes for farmers. By translating complex data 

and algorithms into actionable insights, our findings bridge the 

gap between advanced machine learning techniques and 

practical on-ground applications in agriculture. As part of 

future research, we plan to investigate how temporal dynamics 

affect predictions. Also, we plan to incorporate crop disease, 

climate change and incorporate remote sensing data to capture 

spatial information about soil quality, vegetation health, and 

other factors that influence crop yield. 
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