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Search algorithms are integral to numerous applications in computer science. With the 

prevalence of multi-core processors in contemporary computing devices, the parallelization 

of search algorithms has surfaced as a viable strategy for achieving significant performance 

enhancements. This paper offers a detailed examination of the performance improvements 

garnered through the parallelization of search procedures, with a particular emphasis on the 

Depth-First Search (DFS) algorithm as it pertains to pathway discovery in binary trees. The 

primary aim of this study was to contrast the performance of the conventional sequential 

DFS approach with a novel parallel strategy designed to exploit the computational 

capabilities of multi-core processors. By capitalizing on the resources available in modern 

desktop and laptop computers, it was intended to markedly diminish the processing time 

necessary for examining all possible pathways in both symmetrical and asymmetrical 

binary trees. A meticulous experimental evaluation was conducted using a varied 

assortment of binary trees, spanning perfectly balanced to highly skewed structures, to 

ensure a thorough assessment of the effectiveness of both strategies. The primary metric 

employed for performance evaluation was the total processing time, a crucial consideration 

for time-critical applications. The experimental results confirmed the superiority of the 

parallelized method over the conventional sequential DFS approach. The parallel technique 

demonstrated significantly lower processing times for pathway discovery in all binary tree 

scenarios tested. These performance enhancements were particularly noticeable in larger 

and more complex trees, underscoring the potential of parallelization for managing 

computationally demanding tasks. 
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1. INTRODUCTION

Searching is an indispensable operation in computer science, 

especially when dealing with vast datasets. The efficient 

retrieval of specific items or data from such datasets can be a 

time-consuming endeavor. Fortunately, modern desktops and 

laptops are now equipped with multi-core processors, 

presenting an opportunity to expedite search tasks through the 

development of parallel algorithms. By identifying 

parallelizable segments within the search algorithm and 

distributing the workload evenly across available processors, 

significant reductions in processing time can be achieved [1-

4]. 

The focus of this paper lies in addressing the challenging 

task of finding all paths in a tree and proposing a novel parallel 

algorithm tailored to harness the computational power of 

multi-core processors. The primary objective is to minimize 

the time required for this intricate search process, all without 

the need for additional hardware resources. To accomplish this, 

meticulous exploration of parallelization techniques is 

undertaken, aiming to strike a balance between effectively 

utilizing modern computing resources and efficiently 

exploring all paths in the tree. 

One of the key challenges lies in identifying the 

parallelizable components within the search algorithm and 

ensuring proper load balancing across available processors. 

Through the optimization of resource utilization, the proposed 

parallel algorithm demonstrates its prowess in significantly 

reducing processing time compared to its sequential 

counterpart. 

In this paper, we present comprehensive experimental 

validation to support the efficacy of the parallel approach. The 

results unequivocally show that the parallel algorithm 

outperforms the sequential alternative, thereby affirming its 

ability to minimize processing time without necessitating 

additional hardware investments. 

The importance of parallelization in optimizing search 

operations cannot be understated. By tackling the problem of 

finding all paths in a tree and devising an efficient parallel 

algorithm, we showcase the potential of harnessing multi-core 

processors to achieve remarkable time reduction. As computer 

systems continue to evolve, the application of parallel 

algorithms represents a promising pathway towards enhancing 

search performance and addressing the challenges posed by 

ever-expanding datasets. 

1.1 Finding all paths in a binary tree 

From Figure 1 the possible paths from the root to terminals 

are 1→2→4, 1→2→5→6, 1→2→5→7 and 1→3. The number 

of possible paths will be equal to Number of Terminal nodes 

in a tree. We know that in a binary tree a node will have 

maximum two child node. All the paths will start from the root 

it travels through left and right child up to the terminal node to 
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find the path. Using DFS method we can find all paths of this 

tree. The time complexity of this sequential algorithm is O(n), 

where n is the total number of nodes in the binary tree. 

 

 
 

Figure 1. Binary tree 

 

 
2. RELATED WORK 

 

In recent years, search algorithms and their parallelization 

have been subjects of significant research interest in computer 

science. We review several relevant studies that have explored 

parallelization techniques for tree traversal and path finding, 

as well as investigations into load balancing and performance 

evaluation of parallel algorithms. 

Sequential Algorithms for Tree Traversal: 

Traditional sequential algorithms, such as Depth-First 

Search (DFS) and Breadth-First Search (BFS), have long been 

employed for tree traversal and path finding. Lai et al. [5] 

proposed an optimized recursive DFS algorithm with 

memory-efficient data structures for path finding in trees. 

Despite their widespread use, these sequential algorithms face 

limitations when dealing with large-scale datasets, motivating 

the need for parallel approaches. 

Parallel Search Algorithms: 

In the domain of parallel algorithms, there have been 

notable efforts to address tree traversal and related problems. 

Wodziński and Krzyżanowska [6] introduced a parallel BFS 

algorithm that utilizes a multi-threaded approach to achieve 

faster exploration of tree structures. Additionally, Uenoet al. 

[7] presented a parallel DFS variant employing task 

parallelism and synchronization techniques for graph traversal, 

demonstrating improved scalability on multi-core 

architectures. 

Parallelization Techniques: 

Researchers have explored various parallelization 

techniques that are relevant to our problem domain. Acar al. 

[8] discussed the challenges of load balancing in parallel graph 

search algorithms and introduced a work-stealing strategy for 

distributing tasks efficiently among processing units. Thwe 

and Kyi [9] proposed a hybrid parallelization method 

combining task-level parallelism and data-level parallelism to 

enhance the performance of search operations in complex data 

structures. 

Performance Evaluation in Parallel Algorithms: 

In evaluating the efficiency and scalability of parallel 

algorithms. Grama and Kumar [10] conducted a 

comprehensive study comparing parallel BFS, DFS, and 

A*search on multi-core processors. Their findings indicated 

that parallelization significantly improved the search 

throughput on various tree structures. However, load 

imbalance and communication overhead were identified as 

potential bottlenecks in certain cases. 

Also Weiss [11] proposes the Amdhals effects in comparing 

the performance of parallel algorithm with the best sequential 

algorithm. 

Applications of Parallel Algorithms in Tree Structures: 

While parallel algorithms have been explored in various 

search domains, their specific application to tree structures has 

garnered interest. Riansantiet al. [12] proposed a parallel 

algorithm for finding all paths in a tree, using a combination 

of task-level and data-level parallelism. Their approach 

showed promising results on large-scale trees, providing 

insights into the potential advantages of parallelization. 

The present work builds upon and extends the findings of 

these related studies. Our focus lies in developing a parallel 

algorithm specifically tailored for finding all paths in a tree, 

with a particular emphasis on load balancing and efficient task 

distribution. By addressing the challenges posed by tree 

structures and leveraging the computational capabilities of 

modern multi-core processors, we aim to achieve significant 

reductions in processing time while ensuring effective 

resource utilization. 

 

2.1 Parallel approach in finding all paths in a binary tree 

 

We can parallelize this algorithm by finding the path 

through left child and right child simultaneously using two 

processors. Two Functions called print_pathsl and 

print_pathsr will be executed simultaneously. The function 

print_pathsl will initiate to find the paths in left sub tree and 

the function print_pathsr will initiate to find all paths in a right 

sub tree. If these algorithms are executed simultaneously then 

our time complexity will be approximately O(n/2). This 

algorithm uses maximum two processors because we can split 

the tree as Left Sub tree and Right sub tree. But in our laptop 

or desktop more than two processors are available [9]. 

For implementing these functions we are using two single 

dimensional arrays called pathl and pathr which are used by 

the functions print_pathsl and print_pathsr respectively. 

 

2.2 Parallel algorithm for finding all paths in a binary tree 

 

Step 1: Declare a node with data, Left child address and 

Right child Address. 

Step 2: Create a tree using the function 

struct node* newnode (int data). 

Step 3: Call the functions 

Void print_pathsl (struct node*node) and Void print_pathsr 

(struct node*node) in parallel to process the left sub tree and 

right sub tree simultaniouly. 

Step 4: Both the functions calls the Void print_paths_recur 

(struct node*node, int path [], intpath_len) recursively to print 

all the paths in left sub tree and right sub tree using the function 

void print_array (intints [], intlen). 

A. Declaration of a node as in Step 1. 

struct node {int data; struct node*left; struct node*right;}; 

B. Function to Create a tree as in Step 2. 

struct node*newnode (int data) {struct node*node=(struct 

node*) malloc (sizeof (struct node)); node->data=data; 

node->left=NULL; node->right=NULL; return (node);} 

C. Function to store all the paths in left sub tree from the 
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root node to all terminal nodes in an array as in the Step 3. 

Void print_pathsl (struct node*node) {intpathl []; pathl 

[0]=node->data; print_paths_recur (node->left, pathl, 1);} 

D. Function to store all the paths in right sub tree from 

the root node to all terminal nodes in an array as in the 

Step 3. 

Void print_pathsr (struct node*node) {intpathr []; pathr 

[0]=node->data; print_paths_recur (node->right, pathr, 1);} 

E. A recursive function which findsall the path from 

given node as in Step 4. 

Void print_paths_recur (struct node*node, int path [], 

intpath_len) {if (node==NULL) return; path 

[path_len]=node->data; path_len++; if (node->left==NULL 

&& node->right==NULL) {printf(“\n”); print_array (path, 

path_len);} else {print_paths_recur (node->left, path, 

path_len); //recursively calls the left node of the tree 

print_paths_recur (node->right, path, path_len); //recursively 

calls the right node of the tree}} 

F. Function to print all the paths as in Step 4. 

Void print_array (intints [], intlen) {int i; for (i=0; i<len; i++) 

{printf (“->%d”, ints [i]);} printf (“\n”);} 

In the main program create a tree by calling the function 

newnode. After creating the tree call the functions in parallel 

environment. 

print_pathsl (root); 

print_pathsr (root); 

 

 

3. EXPERIMENTAL RESULTS 

 

3.1 Example 1: Given a symmetric binary tree 

 

A Symmetric binary tree is shown in Figure 2. 

 

 
 

Figure 2. A symmetric binary tree 

 

Table 1. Parallel execution of a balanced binary tree 

 

Steps 
Processor 1 Processor 2 

Paths 
Pathl Node Path_len Terminal? Pathr Node Path_len Terminal? 

0 1   1 1  1   3 1   

1 1 2  2 2  1 3  3 2   

2 1 2  4, 5 2  1 3  6, 7 2   

3 1 2 4 4 3  1 3 6 6 3   

4 1 2 4 4 3 Y 1 3 6 6 3 Y 1, 2, 4 & 1, 3, 6 

5 1 2 4 5 2  1 2 6 7 2   

6 1 2 5 5 3 Y 1 2 7 7 3 Y  

7 1 2 5 5   1 2 7 7   1, 2, 5 & 1, 3, 7 

 

Table 2. Parallel execution of an unbalanced binary tree 
 

Steps 
Processor 1 Processor 2 

Path 
Pathl Node Path_len Terminal? Pathr Node Path_len Terminal? 

1 40   2 1  40    3 1   

2 40 20  20 2  40 60   60 2   

3 40 20  10, 30 2  40 60   null, 80 2   

4 40 20 10 10 3  40 60 80  80 3   

5 40 20 10 null 3  40 60 80  80 3   

6 40 20 10 null 3 Y 40 60 80  null, 90 3  40, 20, 10 

7 40 20 10 30 2  40 60 80 90 null 4   

8 40 20 30 30 3  40 60 80 90 null 4 Y 40, 60, 80, 90 

9 40 20 30 null 3          

10 40 20 30 null 3 Y        40, 20, 30 

 

From Table 1 we can see that four possible paths of Figure 

2 is 1→2→4, 1→3→6, 1→2→5 and 1→3→7 processed 

simultaneously by both the processors and terminated at the 

same time. In a Symmetric tree number of nodes and number 

of paths will be equal. Hence the load balancing in the 

symmetric tree will be perfect and time taken for left binary 

tree and right binary tree is same. 

 

3.2 Example 2: Given an asymmetrical binary tree 

 

In an asymmetrical binary tree, the nodes are arranged in 

such a way that one subtree is denser and deeper than the other. 

This imbalance can lead to varying path lengths from the root 

node to the leaf nodes in each subtree [13-15]. As a result, the 

time complexity of certain operations, such as searching for a 

specific element or finding all paths from the root to the leaves, 

can differ significantly depending on which subtree the 

element is located in. 

Figure 3 shows an unbalanced binary tree in which the 

number of nodes and paths in left sub tree is need not be equal 

to the number of nodes and paths in the right sub tree. 

From Table 2 we can see three possible paths 40→20→10, 

40→20→30 and 40→50→80→90 processed simultaneously 

by both the processors and terminated at different time. We 

can also notice that Number of nodes in the left sub tree is 

equal to the right sub tree. But only difference is left sub tree 
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has two terminals and right sub tree has one terminal. Hence 

the number of path in the left hand side is two and in the right 

hand side is one. So the time taken for unbalanced tree depends 

on height of a binary tree. 

 

 
 

Figure 3. An asymmetrical binary tree 

 

 

4. TIME COMPLEXITY OF PARALLEL ALGORITHM 

 

4.1. Symmetricbinary tree 

 

In a symmetric binary tree height of the tree can be ignored 

because all the terminals of the tree will be in the same height. 

So the time taken to travel from the root node to terminal node 

will be the same for all paths. For finding the all paths of a tree 

it is necessary to visit the entire node once. The time 

complexity of sequential algorithm to find all paths in DFS is 

O(|V|+|E|) where V is the Vertices and E is the edges in a 

binary tree. For the symmetric binary tree, the number of 

vertices in our Example 1 (Figure 2) is 7 and the edges are 6. 

Hence the time complexity of sequential algorithm is O (7+6) 

i.e., 13. 

Figure 4 shows our parallel algorithm process the tree by 

starting in sequential and then by parallel. Hence the time 

taken for sequential portion is O (1+2) (1 vertices and 2 Edges) 

and time taken for one parallel portion is O (3+2) (3 vertices 

and 2 Edges). Hence the total time taken for the Example 1 is 

O (3+5) i.e., O (8). 

Now the speedup by Amdahl’s Law is [10, 11]: 

 

Speedup =  
𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒
 

 

Now efficiency of the parallel algorithm is given as: 

 

Efficiency =  
𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑋 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑢𝑠𝑒𝑑
 

 

Similarly, we can prove if the level of the binary tree 

increases the speed and efficiency also increases as shown in 

the Table 1 [10, 11]. 

Table 3 shows the speedup (1) and efficiency (2) of the 

parallel algorithm of Figure 4. Both the Speedup and 

efficiency [10, 11] are satisfying the Amdahl’s Law. Figure 5 

graphically represents the time taken for Sequential and 

Parallel algorithms. 

 

 
 

Figure 4. Sequential and parallel portions of 

balanced binary tree 

 

Table 3. Speedup and efficiency of parallel algorithm for balanced binary tree 

 
S. No Tree Levels No. of Vertices No. of Edges Sequential Time Parallel Time Speedup (1) Efficiency (2) 

1 2 7 6 13 8 1.60 0.81 

2 3 15 14 29 16 1.81 0.90 

3 4 31 30 61 32 1.90 0.95 

 
 

Figure 5. Comparing parallel and sequential time of balanced 

binary tree 

 
 

Figure 6. Speedup and efficiency of balanced binary tree 

 

966



 

Figure 6 shows that the if the level of a balanced binary tree 

increases then the speedups and efficiency also increases. 

 

A. Asymmetrical binary tree 

 

 
 

Figure 7. Sequential and parallel portions of  

Un balanced binary tree 

 

 
 

Figure 8. Sequential program execution 

 

 
 

Figure 9. Parallel program execution 

 

In Figure 7, the height of left and right trees differs from 

each other. Note that number of edges and vertices are same in 

left sub tree and right sub tree. Height of left sub tree is 3 and 

height of right sub tree is 4. Hence the height is Max (3, 4)=4. 

Time complexity with branching factor and height of the tree 

for DFS is O (bm) [9] where b is he branching factor and m is 

the height of the tree. Hence the time taken for sequential 

algorithm is O (24)=16. From the Figure 7 time taken for 

parallel portion left tree is O (22)=4 and the parallel portion of 

the right sub tree is O (23)=8. Among these two parallel 

portions maximum of 8 is taken. Time complexity of 

sequential portion is O (21)=2. Therefore total time taken for 

parallel algorithm is 8+2=10. Table 4 shows the speedup and 

efficiency of the parallel execution of Figure 7. 

 

Table 4. Speedup and efficiency of parallel algorithm  

for Un balanced binary tree 

 
Sequential Time Parallel Time Speedup (1) Efficiency (2) 

16 10 1.6 0.8 

 

From the Table 3 and Table 4 speedup and efficiency 

satisfies the Amdahl’s Law. i.e., Amdahl’s Law says that 

Criterium for Speedup (Sn) is 0<Sn<=n and Criterium for 

Efficiency (Es) 0<Es<=1. We can see that both the Tables 3 

and 4 satisfies these criterium. 

The OPENMP sequential and parallel programs were 

executed on Intel® Core (TM) i3-5005U CPU @2.00GHz (4 

CPUs) machine using Code block software and gcc compiler 

with windows 10 operating system. The output of sequential 

program is shown in the Figure 8 and the output of the parallel 

program is shown in the Figure 9. An unbalanced tree in 

Figure 2 is given as input. From the Figures 8 and 9 the time 

taken for the parallel algorithm (0.047 Seconds) is less than 

the time taken for the sequential algorithm (0.094 Seconds). 

 

 

5. CONCLUSION 

 

This parallel algorithm reduces the time considerably for all 

types of binary trees. This algorithm uses maximum two 

processors because we can split the tree as Left Sub tree and 

Right sub tree. But in our laptop or desktop more than two 

processors are available. As a future enhancement this 

algorithm may be modified to utilize more than two processors. 

The same concept can also be applied for all types of DFS 

search algorithms like finding the path from source to 

destination in a tree. 
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