
Parallelizing Depth-First Search for Pathway Finding: A Comprehensive Investigation

Vijayakumar Sangamesvarappa1* , Vidyaathulasiraman2

1 Department of Computer Science, Periyar University, Salem 636011, Tamilnadu, India
2 Department of Computer Science, Government Arts & Science College (W), Bargur 635104, Tamilnadu, India

Corresponding Author Email: vijayviswak@gmail.com

https://doi.org/10.18280/ria.370417 ABSTRACT

Received: 18 March 2023

Revised: 25 July 2023

Accepted: 1 August 2023

Available online: 31 August 2023

Search algorithms are integral to numerous applications in computer science. With the

prevalence of multi-core processors in contemporary computing devices, the parallelization

of search algorithms has surfaced as a viable strategy for achieving significant performance

enhancements. This paper offers a detailed examination of the performance improvements

garnered through the parallelization of search procedures, with a particular emphasis on the

Depth-First Search (DFS) algorithm as it pertains to pathway discovery in binary trees. The

primary aim of this study was to contrast the performance of the conventional sequential

DFS approach with a novel parallel strategy designed to exploit the computational

capabilities of multi-core processors. By capitalizing on the resources available in modern

desktop and laptop computers, it was intended to markedly diminish the processing time

necessary for examining all possible pathways in both symmetrical and asymmetrical

binary trees. A meticulous experimental evaluation was conducted using a varied

assortment of binary trees, spanning perfectly balanced to highly skewed structures, to

ensure a thorough assessment of the effectiveness of both strategies. The primary metric

employed for performance evaluation was the total processing time, a crucial consideration

for time-critical applications. The experimental results confirmed the superiority of the

parallelized method over the conventional sequential DFS approach. The parallel technique

demonstrated significantly lower processing times for pathway discovery in all binary tree

scenarios tested. These performance enhancements were particularly noticeable in larger

and more complex trees, underscoring the potential of parallelization for managing

computationally demanding tasks.

Keywords:

parallel processing, amdahl’s law, searching

algorithms, binary tree, speedup and

efficiency of parallel algorithms

1. INTRODUCTION

Searching is an indispensable operation in computer science,

especially when dealing with vast datasets. The efficient

retrieval of specific items or data from such datasets can be a

time-consuming endeavor. Fortunately, modern desktops and

laptops are now equipped with multi-core processors,

presenting an opportunity to expedite search tasks through the

development of parallel algorithms. By identifying

parallelizable segments within the search algorithm and

distributing the workload evenly across available processors,

significant reductions in processing time can be achieved [1-

4].

The focus of this paper lies in addressing the challenging

task of finding all paths in a tree and proposing a novel parallel

algorithm tailored to harness the computational power of

multi-core processors. The primary objective is to minimize

the time required for this intricate search process, all without

the need for additional hardware resources. To accomplish this,

meticulous exploration of parallelization techniques is

undertaken, aiming to strike a balance between effectively

utilizing modern computing resources and efficiently

exploring all paths in the tree.

One of the key challenges lies in identifying the

parallelizable components within the search algorithm and

ensuring proper load balancing across available processors.

Through the optimization of resource utilization, the proposed

parallel algorithm demonstrates its prowess in significantly

reducing processing time compared to its sequential

counterpart.

In this paper, we present comprehensive experimental

validation to support the efficacy of the parallel approach. The

results unequivocally show that the parallel algorithm

outperforms the sequential alternative, thereby affirming its

ability to minimize processing time without necessitating

additional hardware investments.

The importance of parallelization in optimizing search

operations cannot be understated. By tackling the problem of

finding all paths in a tree and devising an efficient parallel

algorithm, we showcase the potential of harnessing multi-core

processors to achieve remarkable time reduction. As computer

systems continue to evolve, the application of parallel

algorithms represents a promising pathway towards enhancing

search performance and addressing the challenges posed by

ever-expanding datasets.

1.1 Finding all paths in a binary tree

From Figure 1 the possible paths from the root to terminals

are 1→2→4, 1→2→5→6, 1→2→5→7 and 1→3. The number

of possible paths will be equal to Number of Terminal nodes

in a tree. We know that in a binary tree a node will have

maximum two child node. All the paths will start from the root

it travels through left and right child up to the terminal node to

Revue d'Intelligence Artificielle
Vol. 37, No. 4, August, 2023, pp. 963-968

Journal homepage: http://iieta.org/journals/ria

963

https://orcid.org/0009-0003-2335-9948
https://orcid.org/0000-0002-0097-2921
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370417&domain=pdf

find the path. Using DFS method we can find all paths of this

tree. The time complexity of this sequential algorithm is O(n),

where n is the total number of nodes in the binary tree.

Figure 1. Binary tree

2. RELATED WORK

In recent years, search algorithms and their parallelization

have been subjects of significant research interest in computer

science. We review several relevant studies that have explored

parallelization techniques for tree traversal and path finding,

as well as investigations into load balancing and performance

evaluation of parallel algorithms.

Sequential Algorithms for Tree Traversal:

Traditional sequential algorithms, such as Depth-First

Search (DFS) and Breadth-First Search (BFS), have long been

employed for tree traversal and path finding. Lai et al. [5]

proposed an optimized recursive DFS algorithm with

memory-efficient data structures for path finding in trees.

Despite their widespread use, these sequential algorithms face

limitations when dealing with large-scale datasets, motivating

the need for parallel approaches.

Parallel Search Algorithms:

In the domain of parallel algorithms, there have been

notable efforts to address tree traversal and related problems.

Wodziński and Krzyżanowska [6] introduced a parallel BFS

algorithm that utilizes a multi-threaded approach to achieve

faster exploration of tree structures. Additionally, Uenoet al.

[7] presented a parallel DFS variant employing task

parallelism and synchronization techniques for graph traversal,

demonstrating improved scalability on multi-core

architectures.

Parallelization Techniques:

Researchers have explored various parallelization

techniques that are relevant to our problem domain. Acar al.

[8] discussed the challenges of load balancing in parallel graph

search algorithms and introduced a work-stealing strategy for

distributing tasks efficiently among processing units. Thwe

and Kyi [9] proposed a hybrid parallelization method

combining task-level parallelism and data-level parallelism to

enhance the performance of search operations in complex data

structures.

Performance Evaluation in Parallel Algorithms:

In evaluating the efficiency and scalability of parallel

algorithms. Grama and Kumar [10] conducted a

comprehensive study comparing parallel BFS, DFS, and

A*search on multi-core processors. Their findings indicated

that parallelization significantly improved the search

throughput on various tree structures. However, load

imbalance and communication overhead were identified as

potential bottlenecks in certain cases.

Also Weiss [11] proposes the Amdhals effects in comparing

the performance of parallel algorithm with the best sequential

algorithm.

Applications of Parallel Algorithms in Tree Structures:

While parallel algorithms have been explored in various

search domains, their specific application to tree structures has

garnered interest. Riansantiet al. [12] proposed a parallel

algorithm for finding all paths in a tree, using a combination

of task-level and data-level parallelism. Their approach

showed promising results on large-scale trees, providing

insights into the potential advantages of parallelization.

The present work builds upon and extends the findings of

these related studies. Our focus lies in developing a parallel

algorithm specifically tailored for finding all paths in a tree,

with a particular emphasis on load balancing and efficient task

distribution. By addressing the challenges posed by tree

structures and leveraging the computational capabilities of

modern multi-core processors, we aim to achieve significant

reductions in processing time while ensuring effective

resource utilization.

2.1 Parallel approach in finding all paths in a binary tree

We can parallelize this algorithm by finding the path

through left child and right child simultaneously using two

processors. Two Functions called print_pathsl and

print_pathsr will be executed simultaneously. The function

print_pathsl will initiate to find the paths in left sub tree and

the function print_pathsr will initiate to find all paths in a right

sub tree. If these algorithms are executed simultaneously then

our time complexity will be approximately O(n/2). This

algorithm uses maximum two processors because we can split

the tree as Left Sub tree and Right sub tree. But in our laptop

or desktop more than two processors are available [9].

For implementing these functions we are using two single

dimensional arrays called pathl and pathr which are used by

the functions print_pathsl and print_pathsr respectively.

2.2 Parallel algorithm for finding all paths in a binary tree

Step 1: Declare a node with data, Left child address and

Right child Address.

Step 2: Create a tree using the function

struct node* newnode (int data).

Step 3: Call the functions

Void print_pathsl (struct node*node) and Void print_pathsr

(struct node*node) in parallel to process the left sub tree and

right sub tree simultaniouly.

Step 4: Both the functions calls the Void print_paths_recur

(struct node*node, int path [], intpath_len) recursively to print

all the paths in left sub tree and right sub tree using the function

void print_array (intints [], intlen).

A. Declaration of a node as in Step 1.

struct node {int data; struct node*left; struct node*right;};

B. Function to Create a tree as in Step 2.

struct node*newnode (int data) {struct node*node=(struct

node*) malloc (sizeof (struct node)); node->data=data;

node->left=NULL; node->right=NULL; return (node);}

C. Function to store all the paths in left sub tree from the

964

root node to all terminal nodes in an array as in the Step 3.

Void print_pathsl (struct node*node) {intpathl []; pathl

[0]=node->data; print_paths_recur (node->left, pathl, 1);}

D. Function to store all the paths in right sub tree from

the root node to all terminal nodes in an array as in the

Step 3.

Void print_pathsr (struct node*node) {intpathr []; pathr

[0]=node->data; print_paths_recur (node->right, pathr, 1);}

E. A recursive function which findsall the path from

given node as in Step 4.

Void print_paths_recur (struct node*node, int path [],

intpath_len) {if (node==NULL) return; path

[path_len]=node->data; path_len++; if (node->left==NULL

&& node->right==NULL) {printf(“\n”); print_array (path,

path_len);} else {print_paths_recur (node->left, path,

path_len); //recursively calls the left node of the tree

print_paths_recur (node->right, path, path_len); //recursively

calls the right node of the tree}}

F. Function to print all the paths as in Step 4.

Void print_array (intints [], intlen) {int i; for (i=0; i<len; i++)

{printf (“->%d”, ints [i]);} printf (“\n”);}

In the main program create a tree by calling the function

newnode. After creating the tree call the functions in parallel

environment.

print_pathsl (root);

print_pathsr (root);

3. EXPERIMENTAL RESULTS

3.1 Example 1: Given a symmetric binary tree

A Symmetric binary tree is shown in Figure 2.

Figure 2. A symmetric binary tree

Table 1. Parallel execution of a balanced binary tree

Steps
Processor 1 Processor 2

Paths
Pathl Node Path_len Terminal? Pathr Node Path_len Terminal?

0 1 1 1 1 3 1

1 1 2 2 2 1 3 3 2

2 1 2 4, 5 2 1 3 6, 7 2

3 1 2 4 4 3 1 3 6 6 3

4 1 2 4 4 3 Y 1 3 6 6 3 Y 1, 2, 4 & 1, 3, 6

5 1 2 4 5 2 1 2 6 7 2

6 1 2 5 5 3 Y 1 2 7 7 3 Y

7 1 2 5 5 1 2 7 7 1, 2, 5 & 1, 3, 7

Table 2. Parallel execution of an unbalanced binary tree

Steps
Processor 1 Processor 2

Path
Pathl Node Path_len Terminal? Pathr Node Path_len Terminal?

1 40 2 1 40 3 1

2 40 20 20 2 40 60 60 2

3 40 20 10, 30 2 40 60 null, 80 2

4 40 20 10 10 3 40 60 80 80 3

5 40 20 10 null 3 40 60 80 80 3

6 40 20 10 null 3 Y 40 60 80 null, 90 3 40, 20, 10

7 40 20 10 30 2 40 60 80 90 null 4

8 40 20 30 30 3 40 60 80 90 null 4 Y 40, 60, 80, 90

9 40 20 30 null 3

10 40 20 30 null 3 Y 40, 20, 30

From Table 1 we can see that four possible paths of Figure

2 is 1→2→4, 1→3→6, 1→2→5 and 1→3→7 processed

simultaneously by both the processors and terminated at the

same time. In a Symmetric tree number of nodes and number

of paths will be equal. Hence the load balancing in the

symmetric tree will be perfect and time taken for left binary

tree and right binary tree is same.

3.2 Example 2: Given an asymmetrical binary tree

In an asymmetrical binary tree, the nodes are arranged in

such a way that one subtree is denser and deeper than the other.

This imbalance can lead to varying path lengths from the root

node to the leaf nodes in each subtree [13-15]. As a result, the

time complexity of certain operations, such as searching for a

specific element or finding all paths from the root to the leaves,

can differ significantly depending on which subtree the

element is located in.

Figure 3 shows an unbalanced binary tree in which the

number of nodes and paths in left sub tree is need not be equal

to the number of nodes and paths in the right sub tree.

From Table 2 we can see three possible paths 40→20→10,

40→20→30 and 40→50→80→90 processed simultaneously

by both the processors and terminated at different time. We

can also notice that Number of nodes in the left sub tree is

equal to the right sub tree. But only difference is left sub tree

965

has two terminals and right sub tree has one terminal. Hence

the number of path in the left hand side is two and in the right

hand side is one. So the time taken for unbalanced tree depends

on height of a binary tree.

Figure 3. An asymmetrical binary tree

4. TIME COMPLEXITY OF PARALLEL ALGORITHM

4.1. Symmetricbinary tree

In a symmetric binary tree height of the tree can be ignored

because all the terminals of the tree will be in the same height.

So the time taken to travel from the root node to terminal node

will be the same for all paths. For finding the all paths of a tree

it is necessary to visit the entire node once. The time

complexity of sequential algorithm to find all paths in DFS is

O(|V|+|E|) where V is the Vertices and E is the edges in a

binary tree. For the symmetric binary tree, the number of

vertices in our Example 1 (Figure 2) is 7 and the edges are 6.

Hence the time complexity of sequential algorithm is O (7+6)

i.e., 13.

Figure 4 shows our parallel algorithm process the tree by

starting in sequential and then by parallel. Hence the time

taken for sequential portion is O (1+2) (1 vertices and 2 Edges)

and time taken for one parallel portion is O (3+2) (3 vertices

and 2 Edges). Hence the total time taken for the Example 1 is

O (3+5) i.e., O (8).

Now the speedup by Amdahl’s Law is [10, 11]:

Speedup =
𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

Now efficiency of the parallel algorithm is given as:

Efficiency =
𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑋 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑢𝑠𝑒𝑑

Similarly, we can prove if the level of the binary tree

increases the speed and efficiency also increases as shown in

the Table 1 [10, 11].

Table 3 shows the speedup (1) and efficiency (2) of the

parallel algorithm of Figure 4. Both the Speedup and

efficiency [10, 11] are satisfying the Amdahl’s Law. Figure 5

graphically represents the time taken for Sequential and

Parallel algorithms.

Figure 4. Sequential and parallel portions of

balanced binary tree

Table 3. Speedup and efficiency of parallel algorithm for balanced binary tree

S. No Tree Levels No. of Vertices No. of Edges Sequential Time Parallel Time Speedup (1) Efficiency (2)

1 2 7 6 13 8 1.60 0.81

2 3 15 14 29 16 1.81 0.90

3 4 31 30 61 32 1.90 0.95

Figure 5. Comparing parallel and sequential time of balanced

binary tree

Figure 6. Speedup and efficiency of balanced binary tree

966

Figure 6 shows that the if the level of a balanced binary tree

increases then the speedups and efficiency also increases.

A. Asymmetrical binary tree

Figure 7. Sequential and parallel portions of

Un balanced binary tree

Figure 8. Sequential program execution

Figure 9. Parallel program execution

In Figure 7, the height of left and right trees differs from

each other. Note that number of edges and vertices are same in

left sub tree and right sub tree. Height of left sub tree is 3 and

height of right sub tree is 4. Hence the height is Max (3, 4)=4.

Time complexity with branching factor and height of the tree

for DFS is O (bm) [9] where b is he branching factor and m is

the height of the tree. Hence the time taken for sequential

algorithm is O (24)=16. From the Figure 7 time taken for

parallel portion left tree is O (22)=4 and the parallel portion of

the right sub tree is O (23)=8. Among these two parallel

portions maximum of 8 is taken. Time complexity of

sequential portion is O (21)=2. Therefore total time taken for

parallel algorithm is 8+2=10. Table 4 shows the speedup and

efficiency of the parallel execution of Figure 7.

Table 4. Speedup and efficiency of parallel algorithm

for Un balanced binary tree

Sequential Time Parallel Time Speedup (1) Efficiency (2)

16 10 1.6 0.8

From the Table 3 and Table 4 speedup and efficiency

satisfies the Amdahl’s Law. i.e., Amdahl’s Law says that

Criterium for Speedup (Sn) is 0<Sn<=n and Criterium for

Efficiency (Es) 0<Es<=1. We can see that both the Tables 3

and 4 satisfies these criterium.

The OPENMP sequential and parallel programs were

executed on Intel® Core (TM) i3-5005U CPU @2.00GHz (4

CPUs) machine using Code block software and gcc compiler

with windows 10 operating system. The output of sequential

program is shown in the Figure 8 and the output of the parallel

program is shown in the Figure 9. An unbalanced tree in

Figure 2 is given as input. From the Figures 8 and 9 the time

taken for the parallel algorithm (0.047 Seconds) is less than

the time taken for the sequential algorithm (0.094 Seconds).

5. CONCLUSION

This parallel algorithm reduces the time considerably for all

types of binary trees. This algorithm uses maximum two

processors because we can split the tree as Left Sub tree and

Right sub tree. But in our laptop or desktop more than two

processors are available. As a future enhancement this

algorithm may be modified to utilize more than two processors.

The same concept can also be applied for all types of DFS

search algorithms like finding the path from source to

destination in a tree.

REFERENCES

[1] Naumov, M., Vrielink, A., Garland, M. (2017). Parallel

depth-first search for directed acyclic graphs. In

Proceedings of the Seventh Workshop on Irregular

Applications: Architectures and Algorithms, 1-8.

https://doi.org/10.1145/3149704.3149764

[2] Sharma, R., Kumar, R. (2018). Design and analysis of

parallel linear search algorithm. International Journal of

Latest Trends in Engineering and Technology, 10(1): 35-

38. https://doi.org/10.21172/1.101.06

[3] Al-Dabbagh, S.S.M., Barnouti, N.H., Naser, M.A.S., Ali,

Z.G. (2016). Parallel quick search algorithm for the exact

string matching problem using openMP. Journal of

Computer and Communications, 4(13): 1-11.

https://doi.org/10.4236/jcc.2016.413001

[4] Buluç, A., Madduri, K. (2011). Parallel breadth-first

search on distributed memory systems. In Proceedings of

2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, 1-12.

https://doi.org/10.1145/2063384.2063471

[5] Lai, X., Li, J.H., Chambers, J. (2021). Enhanced center

constraint weighted a*algorithm for path planning of

petrochemical inspection robot. Journal of Intelligent &

Robotic Systems, 102: 78.

967

https://doi.org/10.1145/3149704.3149764
http://dx.doi.org/10.4236/jcc.2016.413001
https://doi.org/10.1145/2063384.2063471

https://doi.org/10.1007/s10846-021-01437-8

[6] Wodziński, M., Krzyżanowska, A. (2017). Sequential

classification of palm gestures based on a*algorithm and

MLP neural network for quadrocopter control.

Metrology and Measurement Systems, 24(2): 265-276.

https://doi.org/10.1515/mms-2017-0021

[7] Ueno, K., Suzumura, T., Maruyama, N., Fujisawa, K.,

Matsuoka, S. (2017). Efficient breadth-first search on

massively parallel and distributed-memory machines.

Data Science and Engineering, 2: 22-35.

https://doi.org/10.1007/s41019-016-0024-y

[8] Acar, U.A., Chargueraud, A., Rainey, M. (2015). A

work-efficient algorithm for parallel unordered depth-

first search. The International Conference for High

Performance Computing, Networking, Storage and

Analysis. https://doi.org/10.1145/2807591.2807651

[9] Thwe, P.P., Kyi, L.L.W. (2018). Performance

comparison of parallel searching algorithms on the

network of workstations. The Seventh National

Conference on Science and Engineering, Mandalay

Technological University, Upper Myanmar.

[10] Grama, A., Kumar, V. (1995). Parallel search algorithms

for discrete optimization problems. ORSA Journal on

Computing, 7(4): 365-385.

https://doi.org/10.1287/ijoc.7.4.365

[11] Weiss, S. (2019). Chapter 6 performance analysis. CSci

493.65 Parallel Computing, Licensed under the Creative

Commons Attribution-Share Alike 4.0 International

License, 1-18.

[12] Riansanti, O., Ihsan, M., Suhaimi, D. (2018).

Connectivity algorithm with depth first search (DFS) on

simple graphs. In Journal of Physics: Conference Series,

IOP Publishing, 948(1): 012065.

https://doi.org/10.1088/1742-6596/948/1/012065

[13] Kaur, N., Garg, D. (2012). Analysis of the depth first

search algorithms. Data Mining Knowl Eng, 4: 37-41.

[14] Akl, S.G. (1989). The design and analysis of parallel

algorithms. Prentice-Hall, Inc.

[15] Schryen, G. (2022). Speedup and efficiency of

computational parallelization: A unifying approach and

asymptotic analysis. arXiv Preprint arXiv: 2212.11223.

https://doi.org/10.48550/arXiv.2212.11223

968

http://dx.doi.org/10.1515/mms-2017-0021
https://doi.org/10.1287/ijoc.7.4.365

