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The classification of liver diseases is of paramount importance in healthcare, assisting both 

in decision-making and diagnosis. Current methodologies for liver disease classification are 

often undermined by overfitting issues, inefficient feature learning, and problems arising 

from imbalanced data. This paper proposes an innovative model that integrates a 

Convolutional Neural Network (CNN) with an Attention Layer Gated Recurrent Unit 

(AGRU) to augment the efficiency of liver disease classification. The performance of the 

CNN-AGRU model was evaluated using a liver tumor dataset. The CNN model was 

employed to extract pertinent features from the input image dataset, which were 

subsequently applied to the AGRU. The AGRU technique, incorporating energy vector 

normalization, was designed to enhance unique feature learning and mitigate issues related 

to overfitting and imbalanced data. Furthermore, the network identified a context vector 

related to the spatio-temporal information in the input data, thereby bolstering the learning 

performance of classification. The proposed CNN-AGRU model demonstrated a 

commendable accuracy rate of 98.2%, outperforming the existing Google-Net model, which 

achieved an accuracy rate of 96.7%. This paper thus presents a promising advancement in 

the field of liver disease classification, offering potential improvements in both diagnostic 

accuracy and efficiency. 
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1. INTRODUCTION

Colorectal cancer, along with other conditions in the liver 

region, are typically caused by malignant polyps that form in 

the colon. Based on statistical data, colon cancer is the most 

prevalent type in the United States. Fortunately, the 

proliferation of early detection programs for these tumors and 

their precursor polyps is helping to mitigate the prevalence of 

colorectal cancer. It's broadly recognized that adenomatous 

polyps - benign lesions with dysplastic epithelium and varied 

malignancy potential - account for over 95% of colorectal 

malignancies. The progression from adenoma to carcinoma is 

well understood. Generally, this is a slow process, taking many 

years to manifest following an incremental accumulation of 

genetic alterations. 

Malignant polyps penetrate the muscularis mucosa but 

remain confined to the submucosa (pT1). Adenomatous 

polyps may exhibit high-grade dysplasia and other non-

invasive histological features. Such polyps constitute up to 12% 

of polypectomy series, a figure that is on the rise due to 

increasingly effective screening programs using colonoscopy. 

These programs not only prevent colorectal cancer but also 

treat some advanced polyps. Between 80% and 90% of 

adenomas are smaller than 1cm, enabling standard snare 

polypectomy to be executed more easily, especially for 

pedunculated polyps. Larger lesions are treated with 

endoscopic mucosal resection (EMR) and endoscopic 

submucosal dissection (ESD) at specialized centers, allowing 

for total rather than piecemeal excision. Full removal enables 

a more comprehensive histological examination, thus serving 

as the initial step in malignant polyp management. However, 

in clinical practice, scenarios often differ. A patient typically 

presents for examination after a resected polyp, initially 

thought to be benign during endoscopy, is subsequently found 

to have invasive adenocarcinoma upon pathological 

evaluation. This situation may be further complicated if the 

polypectomy site wasn't marked during the initial endoscopy, 

hindering endoscopic re-evaluation and making colon segment 

identification unreliable if definitive resection is required. The 

consulting physician will need to stratify risk by considering 

potential residual or recurrent disease, lymph node metastases, 

and operative risk. Current data indicates that this remains a 

contentious topic requiring a multidisciplinary approach. The 

prognostic features of malignant polyps will most significantly 

alter this risk profile. Effective management strategies will 

also be explored [1]. 

Colon cancer is the second leading cause of death 

worldwide and the third most common cancer. Expert 

physicians are necessary for early diagnosis of this malignancy 

[2]. Gastrointestinal diseases, such as Crohn's disease, cancer, 

polyps, bleeding, and ulcers, are prevalent. Researchers in the 

Computer Vision domain employ various computer-based 

techniques for early-stage liver cancer diagnosis, but the 

handcrafted features used in the process sometimes lead to 

misclassification. Feature extraction and lesion segmentation 

receive significant attention in image processing and 

Computer Vision across various applications, including 

agriculture, medical imaging, and surveillance [3]. Early 
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stages of small liver lesions often go undetected and can lead 

to fatal conditions. Hence, it's crucial to implement computer-

based methods to aid doctors in effectively diagnosing and 

treating patients [4, 5]. Quantitative features, consisting of 

both visible non-texture features and invisible texture features, 

are extracted from input data and applied to the classification 

model. Statistical methods or machine learning techniques are 

utilized to build a robust classifier for the classification of 

gastrointestinal diseases [6]. 

Existing research has leveraged various feature extraction 

methods such as Log filter bank, texture features, Scale 

Invariant Feature Transform (SIFT), discriminative joint 

features, and color features [7, 8]. Feature reduction 

techniques employed include Principal Component Analysis 

(PCA) and Linear Discriminant Analysis (LDA), while 

classifiers such as K-Nearest Neighbor (KNN), Naïve Bayes, 

Support Vector Machine, and Artificial Neural Networks 

(ANN) have been applied for robust classification [9]. 

Backpropagation algorithms have been utilized to extract 

clinical features, and deep learning techniques have enabled 

models to handle a large number of training images. This 

capability allows machines to diagnose newly acquired 

clinical images based on a database of clinical features. 

Convolutional Neural Networks (CNN) are deep learning 

systems that accurately emulate the structure and function of 

brain neurons on computers [10, 11]. 

The CNN-AGRU model is proposed for liver disease 

classification to enhance efficiency. The input images undergo 

preprocessing for image augmentation and enhancement. The 

AGRU model performs the classification process, while the 

CNN model extracts features from the input images. The 

performance of the CNN-AGRU model in liver disease 

classification is evaluated and compared with existing 

machine learning and deep learning techniques. 

Machine learning models, due to their lack of feature 

learning and difficulty with data imbalance, perform less 

effectively when classifying liver diseases. The proposed 

model was compared with the Decision Tree (DT), Random 

Forest (RF), Support Vector Machine (SVM), and K-Nearest 

Neighbors Algorithm (KNN) methods using machine learning 

techniques. Due to overfitting issues, SVM, KNN, and 

Decision Tree present unstable performance compared to 

Random Forest. Performance indicators compared include 

accuracy, sensitivity, and specificity. The accuracy rate for 

CNN-AGRU is 98.2%, while the rates for the DT, RF, SVM, 

and KNN models are 74.3%, 82.1%, 85.1%, and 86.2%, 

respectively. Similarly, CNN-AGRU's sensitivity value is 

98.5%, while the DT, RF, SVM, and KNN models' respective 

sensitivity values are 76.2%, 83.2%, 86.7%, and 85.3%. 

Moreover, CNN-AGRU has a specificity value of 99.2%, 

whereas the DT, RF, SVM, and KNN models achieved 

specificities of 77.1%, 85.7%, 87.9%, and 86.8%, respectively. 

The overfitting problem of the CNN model in the deep 

learning framework lowers classification performance. RNN 

models perform poorly in classification due to the loss of 

critical knowledge acquired early in the training process. The 

LSTM model's network updates also lose crucial data for 

classification due to the vanishing gradient problem. 

Meanwhile, the GRU approach has an overfitting issue in 

classification and discards new irrelevant features to improve 

learning. The CNN-AGRU model provides energy vector 

normalization to extract distinct features from the input data. 

The attention layer of the GRU better identifies pertinent 

features by learning the context vector of the spatio-temporal 

model. The accuracy of the CNN-AGRU model is 98.2%, 

whereas that of the RNN, LSTM, GRU, and CNN is 88.2%, 

91.8%, 92.3%, and 95.1%, respectively. 

Unlike conventional methods, the CNN-AGRU model 

discards recently learned irrelevant information, while the 

standard GRU model selectively identifies relevant features. 

The use of collaborative feature learning enhances the 

performance of the CNN-AGRU model when learning 

features with GoogleNet, ResNet-50, AlexNet, and TAS-RF. 

The CNN-AGRU model learns a context vector, which is 

responsible for selecting pertinent features for spatiotemporal 

input classification. A distinguishing feature of the CNN-

AGRU model is its usage of energy vector normalization, 

which aids in learning distinctive features and addressing 

imbalances in data. CNN-based models using AlexNet, 

ResNet-50, and GoogleNet are limited by an overfitting issue. 

The LSTM-CNN model's performance is hindered due to 

increased overfitting, and the enhanced RCNN model is less 

efficient at feature learning. The CNN-AGRU model has an 

accuracy of 98.2%, while the accuracy of the GoogleNet, 

ResNet-50, AlexNet, and TAS-RF models is 96.7%, 95%, 

97%, and 86.2%, respectively. 

Convolutional Neural Network-Attention Layer Gated 

Recurrent Unit (CNN-AGRU) for Liver Disease Classification 

offers several advantages, including: 

High Accuracy: The model has demonstrated excellent 

accuracy in classifying liver disease cases, assisting healthcare 

professionals in formulating more precise diagnoses and 

treatment plans. 

Efficient Feature Extraction: The use of a Convolutional 

Neural Network (CNN) enhances the extraction of significant 

features from liver images, thereby improving disease 

classification accuracy. 

Robustness: The method exhibits resilience against 

variations in liver image brightness and contrast, leading to 

more consistent and reliable diagnoses. 

Attention Mechanism: The attention mechanism helps the 

model focus on the most relevant parts of the image, boosting 

the classification accuracy. 

Attention Layer Gated Recurrent Unit (GRU): The use of a 

GRU helps the model capture temporal dependencies in image 

data, aiding in pattern recognition and accurate predictions 

[12]. 

Automated Diagnosis: The model can automatically 

diagnose liver diseases, reducing the workload of medical 

professionals and improving patient outcomes by facilitating 

early detection of disorders. 

Non-invasive: As this method relies on routine medical 

imaging for diagnosis, it is non-invasive, avoiding the need for 

additional invasive tests or procedures. 

The structure of this paper is as follows: Section 2 presents 

recent deep learning techniques for classifying liver diseases, 

while Section 3 describes the CNN-AGRU model. Section 4 

provides details on the implementation of the CNN-AGRU 

model, and Section 5 presents the results of liver disease 

classification using the model. Finally, the conclusion of this 

research study is presented in Section 6. 

 

 

2. RELATED WORKS 

 

Liver cancer, characterized by the abnormal proliferation of 

tissues in the stomach and colon region, can be detected early, 

making endoscopy a vital tool in its early detection. This 

1030



 

section reviews recent research on the diagnosis of liver cancer 

using machine learning techniques. 

Hmoud Al-Adhaileh et al. [13] put forth three deep learning 

methods—Alex-Net, ResNet-50, and GoogleNet—for disease 

diagnosis. Image enhancement and noise elimination 

techniques were applied prior to these deep learning methods. 

The Kvasir dataset, containing 5000 images across five classes 

of lower gastrointestinal diseases, was used to evaluate the 

proposed model. Transfer learning was leveraged to fine-tune 

the pre-trained CNN model for classification. The Softmax 

activation function was employed to categorize images into 

five classes of gastrointestinal disorders. The Alex-Net model 

showed superior performance in diagnosing gastrointestinal 

disorders compared to ResNet-50 and GoogleNet. However, 

deep learning techniques encountered the issue of overfitting, 

which reduced efficiency. 

Gupta et al. [14] identified the Tumor Aggression Score 

(TAS) as a prognostic factor in machine learning for predicting 

colon cancer. The performance of various machine learning 

techniques was assessed using five-fold cross-validation. The 

constructed model achieved higher efficiency by determining 

the Tumor Aggression Score in TNM staging. The Random 

Forest model, in conjunction with the Tumor Aggression 

Score, achieved an F-measure value of 0.89. Random Forest 

outperformed other machine learning models in classification, 

achieving approximately 84% accuracy and an AUC of 0.82. 

However, the Random Forest model was unstable and prone 

to overfitting when handling diverse features. 

Chen et al. [15] employed an enhanced Faster RCNN model 

with online complicated example mining for cancer detection. 

The performance of this enhanced model was evaluated using 

1520 gastrointestinal CT images from 421 patients. The 

enhanced Faster RCNN model was compared to its 

predecessor and the Inception-v2 model in terms of detection 

time, Mean Average Precision, and F1 measure. The Faster 

RCNN model proved superior for cancer classification. The 

enhanced model scored an F1-measure of 95.71%, a map of 

92.15%, and a detection time of 5.3 seconds per CT image. 

However, the Faster RCNN model suffered from overfitting. 

Öztürk and Özkaya [16] integrated LSTM layers into each 

pooling layer of the CNN model for gastrointestinal cancer 

classification. The model was tested with various methods 

such as Google-Net, ResNet, and Alex-Net. Three sample 

datasets were used to evaluate the effectiveness of the 

developed model for cancer classification. The CNN-LSTM 

model outperformed other approaches in classifying 

gastrointestinal cancer, but overfitting occurred in the feature 

extraction and classification steps. 

Singh and Singh [17] developed a method that combines ant 

lion optimization, feature weighting, and preprocessing to 

effectively classify gastrointestinal lesions. The high-

dimensional gastrointestinal dataset, featuring shape, color, 

and texture properties from colonoscopy videos, was utilized 

to evaluate the model. Preprocessing was performed to address 

dominant, outlier, and zero-valued features. Feature weighting 

was employed to assign importance to features, enhancing 

classification performance. The enhanced ant lion 

optimization was used for simultaneous feature weight and 

SVM parameter searching. The developed technique, 

integrating texture and color data, demonstrated superior 

categorization performance. However, the enhanced ant lion 

optimization approach exhibited weak convergence of the 

search process and was easily caught in local optima. 

 

2.1 Summarization 

 

In this discussion, we delve into recent research on 

diagnosing liver cancer using machine learning and deep 

learning methodologies. 

Various classes of data are harnessed in image processing 

tasks within the medical sector, according to existing literature 

on database compilation. These tasks involve identifying 

malignant or non-cancerous regions, assigning a particular 

class or category to the tumor, distinguishing between organ 

and non-organ parts of the image, and using a minimal number 

of images as input, taken via a vaguely defined type of non-

invasive technology. In many of these methods, there's a lack 

of correlation maintained between the specific details of the 

organs and the type of cancer. The current work addresses this 

issue of image abundance and also elucidates how to interpret 

the stages of liver tumors and classify diseases based on their 

severity. 

An exhaustive review of medical image processing 

literature suggests that feature extraction techniques are more 

suitable for diagnosing malignant liver conditions. In this 

current study, multiple features are extracted from a vast 

database, and classifiers are employed to enhance the accuracy 

of tumor detection. Enhanced images serve as the input for 

feature extraction, and a fitting algorithm distinctly 

differentiates between the intensity levels of normal and 

abnormal tumor images. The detection process yields a 

satisfactory classifier rate. 

Thoroughly examining the literature on medical image 

processing reveals how different liver cancer conditions can 

be appropriately categorized. The current work improves the 

efficiency of tumor classification by leveraging multi-

classifiers, a large database, and the extraction of numerous 

features. All classifiers maintain a steady classifier rate in 

detecting the disease. The classification of the substantial 

database yields a unique classifier rate, which helps to 

categorize the different types of liver cancer. This 

classification system for liver cancer enables a deeper 

understanding of a specific tumor class and aids in interpreting 

the tumor's stage. 

Most techniques currently described in the literature depend 

on a handful of images that require enhancement for the 

development and testing of computer-aided diagnostic 

methods due to a lack of precise organ and disease details. 

Thus, it's not justified to assess detection and classification 

methods based on such databases.  

Although a few researchers have combined different 

databases to categorize various tumor types, the database 

should also encompass clinically obtained images that 

radiologists deal with daily.  

Therefore, the present work considers a composite database 

that includes various clinically identified liver cancer tumor 

classes.  

This approach ensures the maintenance of an appropriate 

category of cancerous liver images in relation to the type of 

tumors, the field of view, the number of patients, machine 

settings, among other factors.  

Furthermore, several methods for classifying a range of 

liver cancers will be tested on this substantial composite 

database to verify their generalizability. In order to combine 

images and provide relevant information, a large database was 

employed in experiments dealing with the detection, 

classification, and interpretation of tumors and tumor stages. 
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2.2 Limitations of existing system 

 

Limited accuracy: While the system can classify liver 

disease accurately based on specific parameters, it may only 

sometimes provide the correct diagnosis. Other factors the 

system may need help to account for may result in incorrect 

classifications. 

Data quality: The system's accuracy dramatically depends 

on the quality and quantity of data used to train it. The system's 

performance may deteriorate if the data used to train it is 

inadequate, biased, or of poor quality. 

Limited scope: The system may be designed to classify only 

certain types of liver illnesses and may be incapable of 

diagnosing less prevalent or unusual conditions. 

Need for expert validation: Before being utilized to make 

medical choices, the system's outputs may need to be 

confirmed by a medical expert. This takes more time and 

resources away from the diagnostic process. 

Ethical considerations: Using AI systems for medical 

diagnosis raises ethical concerns about privacy, data 

protection, and the possibility of AI replacing human judgment 

in medical decision-making. Before deploying any AI-based 

diagnostic system, it is critical to address these challenges 

thoroughly. 

 

2.3 Problem identification of existing system 

 

Liver disease is a significant public health concern affecting 

millions globally. Accurate diagnosis and appropriate 

treatment can improve patient outcomes dramatically, yet 

diagnosis can be difficult and time-consuming for doctors. The 

classifications of liver diseases attempt to give a quick and 

precise diagnosis, which can help improve patient outcomes 

and lower healthcare costs. However, there are several 

challenges to liver disease classification, including a lack of 

standardized diagnostic criteria, complex and heterogeneous 

disease manifestations, and a scarcity of expert clinicians. 

Furthermore, because liver disease can be caused by various 

factors, such as viral infections, alcohol abuse, obesity, and 

genetic factors, classification is difficult. 

As a result, the challenge of liver disease classification 

necessitates developing precise, efficient, and dependable 

diagnostic procedures that can assist physicians in diagnosing 

liver illness more effectively and efficiently, resulting in better 

patient outcomes and lower healthcare costs. 

 

 

3. PROPOSED METHOD 

 

The performance of the suggested model was assessed using 

the liver tumour dataset. The pre-processing for categorization 

used image augmentation and enhancement techniques. The 

feature extraction was done using Convolutional Neural 

Network (CNN) from the pre-processed image. The extracted 

features were applied to the AGRU method for the 

classification of Liver disease. Figure 1 shows the proposed 

CNN-AGRU model in Liver disease classification. 

 

3.1 Pre-processing 

 

Images of the Liver were pre-processed before applying to 

CNN models to resize and enhance the images. Color 

constancy was scaled in the image, and the image size was 

changed to 244×244 pixels for ResNet-50 and GoogleNet and 

227×227 pixels for the AlexNet model. The three RGB 

channels mean it was calculated for Liver images, and an 

average filter was used to enhance the images. The average 

filter measures each pixel's average value with its neighbors 

and replaces it, and this process is carried out for the whole 

image. 

CNN model is highly based on data volume, and training 

data in a more extensive set generates a model for promising 

results. The data augmentation method improves the 

classification accuracy for the CNN model, and data 

augmentation was applied due to the lack of medical images. 

The data augmentation also balances the dataset for some 

images between classes. The rotation, shifting, zooming, and 

flipping operations were used in augmented training data in 

this research. 

 

 
 

Figure 1. The CNN-AGRU model in liver diseases 

classification 

 

3.2 Convolutional Neural Network 

 

Convolutional Neural Network (CNN) is based on Deep 

Learning (DL) and Neural Networks (NN) [17, 18], which is 

suitable for handling 2D images. CNN model consists of Fully 

Pooling Layers (PL), Convolutional Layer (CL), and 

Connected Layers (FCL). Because CNNs acquire features 

through training and dramatically shorten the time for feature 

design or choosing the most distinctive features, they perform 

better than other machine learning techniques like Decision 

Tree, SVM, and Naive Bayes. 

Convolution is an essential process in CNN, and the 

convolution layer is an important layer in CNN that performs 

a 2D convolution process on input and passes in kernels. Each 

Convolution Layer kernel’s weights are randomly initialized, 

and the network training loss function is updated at each 

iteration. Final Kernels learn some types of patterns in input 

images. 

CNN model consists of non-linear activation function, stack, 

and Convolution. Consider X as an input matrix and 

Convolution Layer has an output O and a set of kernels Fj 

exists ∀𝑗∈ [1,⋯ , 𝐽], then convolution output is defined in Eq. 

(1). 
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𝐶(𝑗) = 𝑋 ⊗ 𝐹𝑗, ∀𝑗∈ [1, … , 𝐽] (1) 

 

The dot product of inputs and filter is defined using 

convolution operation ⊗. 

In Eq. (2) a new 3D activation map is applied using C(j) the 

activation map. 

 

𝐷 = 𝑆(𝐶(1), … , 𝐶(𝐽)) (2) 

 

where, J stands for the total number of filters and 𝒮 stands for 

the pile operation's channel direction. 

Eq. (3) provides the 3D activation map D final output 

activation map and Non-Linear Activation Function (NLAF). 

 

𝑂 = 𝑁𝐿𝐴𝐹(𝐷) (3) 

 

The output, filters, and input are three important matrixes 

with sizes S, as given in Eq. (4). 

 

𝑆(𝑥) = {

𝑉1 × 𝑄1 × 𝐻1 𝑥 = 𝑋
𝑉𝐾 × 𝑄𝐾 × 𝐻𝐾 𝑥 = 𝐹𝑗, ∀𝑗∈ [1, … , 𝐽]

𝑉0 × 𝑄0 × 𝐻0 𝑥 = 0
 (4) 

 

where, activation map of channels, height size, and width are 

denoted using three variables (V, H, Q) , respectively. The 

output, filter and input are denoted using subscripts I, K, and 

O. It has two equalities: HK indicate filter channel which is 

equal to the input channel 𝐻𝐼  (𝐻𝐼 = 𝐻𝐾), the second number 

of filters J is equal to the output channel HO that is HO=J. 

Eq. (5) and Eq. (6) measure values of (𝑉𝑂, 𝑄𝑂 , 𝐻𝑂), 𝐴 the 

stride, and padding denotes B. 

 

𝑉0 = 1 + 𝑓𝑓𝑙[(2 × 𝐵 + 𝑉1 − 𝑉𝐾)/𝐴] (5) 

 

𝑄0 = 1 + 𝑓𝑓𝑙[(2 × 𝐵 + 𝑄1 − 𝑄𝐾)/𝐴] (6) 

 

where, the term "floor function" is used as 𝑓𝑓𝑙. 

Eq. (7) selects rectified linear unit (ReLU) and NLAF is 

denoted as 𝜎. 

 

𝜎𝑅𝑒𝐿𝑈(𝑑𝑖𝑗) = 𝑅𝑒𝐿𝑈(𝑑𝑖𝑗) = max(0, 𝑑𝑖𝑗) (7) 

 

where, activation map 𝐷  elements denote 𝑑𝑖𝑗 ∈ 𝐷 . Sigmoid 

(SM) function and traditional Hyperbolic Tangent (HT) have 

considerable performance, and ReLU is a popular Non-Linear 

Activation Function (NLAF), as in Eq. (8) and Eq. (9). 

 

𝜎𝐻𝑇(𝑑𝑖𝑗) = tanh(𝑑𝑖𝑗)

= (𝑒𝑑𝑖𝑗 − 𝑒−𝑑𝑖𝑗)/(𝑒𝑑𝑖𝑗 + 𝑒−𝑑𝑖𝑗) 
(8) 

 

𝜎𝑆𝑀(𝑑𝑖𝑗) = (1 + 𝑒−𝑑𝑖𝑗)
−1

 (9) 

 

ReLU is one-sided that is more plausible biologically than 

𝜎𝐻𝑇. The CNN model is shown in Figure 2. 

 
 

Figure 2. The CNN model 

 

3.3 Attention Gated Recurrent Unit 

 

Generally, the RNN suffer from vanishing and exploding 

gradient problem in the classification. RNN has a limitation of 

exploding gradient, and the term ‘long-term’ of gradient grows 

exponentially faster than short term. GRU [19] and LSTM [20] 

are RNN types, and unlike CNN, the RNN model backward 

connection affects the model accuracy, and the LSTM model 

is developed to tackle this problem. The LSTM model is 

designed for temporal features handled in long-range 

dependency, and cell blocks are present in LSTM internal 

structure. The hidden and cell states are transferred from one 

block to another, and that memory block is used to remember 

through gates. 

A complex non-linear function is handled in sequence-to-

sequence architecture, and encoder-decoder GRU networks 

with attention models jointly promote features. Specific 

spatial-temporal inputs are linked with a context vector at each 

time step 𝑡. Most relevant input features are adopted in the 

attention mechanism, as in Eq. (10). 

 

𝑒𝑗𝑡 = tanh(𝑊𝑎𝑠𝑡−1 + 𝑈𝑎ℎ𝑗𝑡) (10) 

 

where, weight matrices are denoted as 𝑈𝑎  and 𝑊𝑎 . The 

normalized weight of the energy vector is given in Eq. (11): 

 

𝛼𝑗𝑡 = (
exp(𝑒𝑗𝑡)

∑ exp(𝑒𝑙𝑡)
𝑇
𝑙=1

) (11) 

 

where, input sequence of local region and target symbol 

denotes the alignment of attention probability in ∑ 𝛼𝑗𝑡
𝑇
𝑗=1 = 1, 

and 𝑎𝑗𝑡. Attention probabilities of the encoded hidden state are 

measured based on weighted sum at each step at time step 𝑡 of 
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the context vector. 

Output prediction of different encoded input variables used 

to represent the vector. GRU model of sequence to sequence 

with attention to measure input sequence elements at required 

attention. 

LSTM has three gates such as input, output, and forget. 

GRU model has two gates an update and a reset gate. The 

update gate checks earlier cell memory to keep it active, and 

the Next cell combines with the preceding cell memory, which 

is carried out by the reset gate. LSTM input and forget gate are 

merged to the update gate, and the reset gate of the hidden state 

is directly applied. The GRU cell of general equations is given 

in Eq. (12)-Eq. (15). GRU of multi-layer considers faster 

training based on a smaller number of parameters. 

 

𝑧𝑡 = Θ(𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) (12) 

 

𝑟𝑡 = Θ(𝑊𝑟 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) (13) 

 

ℎ�̂� = tanh(𝑊ℎ . [𝑟𝑡 . ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) (14) 

 

ℎ𝑡 = ((1 − 𝑧𝑡). ℎ𝑡−1 + 𝑧𝑡 . ℎ̂𝑡) (15) 

 

The sequence representation of CNN is measured using 

multi-layered GRU for its effective sequence learning. Spatial 

feature extraction of CNN layers is measured from refined 

input data, and multi-layer GRU is fed into the model. Two 

CNN layers of the ReLU activation function are applied and 

followed by a kernel filter with the size of 2 in 1×16 and 1×8, 

which were applied for the first and second layers, respectively. 

GRU layers are applied with spatial extracted features. Two 

GRU layers used temporal characteristics, and a dense layer 

carried out the prediction. The GRU model is shown in Figure 

3. 

 

 
 

Figure 3. GRU model 

 

3.4 Managerial implications 

 

The proposed method can assist doctors and medical 

workers in more precisely and rapidly diagnosing liver 

illnesses, leading to better patient treatment outcomes. Deep 

learning techniques can also assist in uncovering trends in 

medical data that are not visible to the naked eye, resulting in 

more successful treatment strategies. 

Using automated classification systems can reduce medical 

personnel workloads, allowing them to focus on other areas of 

patient care. This can result in improved patient outcomes and 

increased job satisfaction among healthcare professionals. 

Automated classification systems can also minimize manual 

diagnosis and treatment expenses, which are significant in 

healthcare organizations. Deep learning techniques can assist 

in identifying potential health risks early on, avoiding the need 

for more expensive and intrusive procedures later on. 

As with any program that handles patient data, it is critical 

to safeguard the system's security and patient privacy. 

Healthcare organizations must establish adequate security 

measures to ensure that patient data is not compromised or 

misused. 

The proposed strategy is a foundation for future automated 

medical diagnosis and therapy studies. Building on this work, 

healthcare organizations and researchers can create more 

advanced deep-learning models for different medical 

applications, leading to better patient outcomes and healthcare 

delivery. 

 

 

4. SIMULATION SETUP 

 

The implementation details of the dataset and parameter 

settings of the proposed method are discussed in this section. 

Dataset: The liver tumour segmentation dataset [21] is used 

to evaluate the CNN-AGRU model. This dataset consists of 

130 CT images of the liver. 

Parameter Settings: The Adam method is used as an 

optimizer in the CNN-AGRU method; the batch size is 128, 

epochs are 10, and the learning rate is 0.001. 

Metrics: Accuracy, Sensitivity, and Specificity were 

evaluated from CNN-AGRU and compared with standard and 

existing methods. The formulas are given in Eq. (16)-Eq. (18). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 (16) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (17) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 (18) 

 

System Requirement: The CNN-AGRU approach for 

classifying liver diseases was implemented on an Intel i7 

processor, a 6GB GPU, 16GB of RAM, and a Windows 10 

operating system. 

 

 

5. RESULTS 

 

The CNN-AGRU model is proposed for Liver disease 

classification to increase efficiency. The pre-processing of 

image enhancement and augmentation were carried out in 

input images. The CNN model extracts the features from the 

input images, and the AGRU model performs classification. 

The CNN-AGRU model is tested on Liver disease 

classification and compared with machine learning models, as 

given in Figure 4 and Table 1. Machine learning models 

perform less in Liver disease classification due to a lack of 

feature learning and an imbalanced data problem. The 

Decision Tree and Random Forest provide unstable 

performance due to the overfitting problem. The KNN model 

has outlier restrictions, but the SVM model struggles with data 

imbalance. The CNN-AGRU model offers a standard feature 

learning method that improves the feature learning efficiency 

in the GRU model. The context vector learning in the attention 

layer of GRU helps to learn the context vector of a spatio-

temporal model. 

The CNN-AGRU model is evaluated in Liver disease 

classification and compared with the deep learning model, as 

given in Figure 5 and Table 2. The CNN model's overfitting 

limitation degrades the performance of classification RNN 
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models do less well in classification because they lose the 

essential information learned early in the training process. The 

vanishing gradient problem in the LSTM model causes 

network updates to lose important information for 

categorization. GRU method washouts the new irrelevant 

features to improve the learning and has an overfitting problem 

in classification. The CNN-AGRU model provides energy 

vector normalization to learn the unique features from the 

input data. The attention layer in GRU learns a context vector 

related to the spatio-temporal model to select the relevant 

features and improves efficiency. The CNN-AGRU model has 

98.2% accuracy, and GRU has 92.3% accuracy. 

 

 
 

Figure 4. CNN-AGRU and standard classifiers in liver 

disease classification 

 

 
 

Figure 5. CNN-AGRU and deep learning models in liver 

disease classification 

 

Table 1. CNN-AGRU model and standard classifier 

comparison 

 
Methods Accuracy (%) Sensitivity (%) Specificity (%) 

Decision Tree 74.3 76.2 77.1 

Random Forest 82.1 83.2 85.7 

SVM 85.1 86.7 87.9 

KNN 86.2 85.3 86.8 

CNN-AGRU 98.2 98.5 99.2 

 

Table 2. CNN-AGRU model and deep learning model 

comparison 

 
Methods Accuracy (%) Sensitivity (%) Specificity (%) 

RNN 88.2 86.3 89.7 

LSTM 91.8 91.7 91.4 

GRU 92.3 92.5 93.7 

CNN 95.1 92.4 93.5 

CNN-AGRU 98.2 98.5 99.2 

5.1 Comparative analysis 

 

The existing methods in related works were compared with 

the CNN-AGRU model to show its efficiency. 

The CNN-AGRU model is compared with existing Liver 

disease classification methods, as shown in Figure 6 and Table 

3. Unlike the average GRU model, which chooses the pertinent 

features, the CNN-AGRU model discards newly learned 

irrelevant information. The CNN-AGRU model learns 

features collaboratively, which enhances the model's feature 

learning performance. When classifying spatiotemporal input, 

the CNN-AGRU model learns a context vector that chooses 

the pertinent features. The CNN-AGRU model has energy 

vector normalization that helps to learn unique features and 

solves imbalanced data problems. The CNN-based models of 

GoogleNet, ResNet-50, and AlexNet have the limitation of 

overfitting issues. The LSTM-CNN model increases the 

overfitting in the model and degrades the performance. The 

improved RCNN model has lower efficiency in feature 

learning. The CNN-AGRU model has an accuracy of 98.2%, 

and the Google-Net model has 96.7% accuracy. 

 

Table 3. CNN-AGRU model and existing method 

comparison 

 

Methods 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

CNN-AGRU 98.2 98.5 99.2 

GoogleNet [11] 96.7 96.6 99 

ResNet-50 [11] 95 94.8 98.8 

AlexNet [11] 97 96.8 99.2 

TAS-RF [12] 86.2 89.4 90.5 

 

 
 

Figure 6. CNN-AGRU and existing methods in Liver disease 

classification 

 

 

6. CONCLUSION 

 

The most popular medical imaging technologies are quickly 

developing computer-aided diagnosis. Furthermore, the 

research in this area is still in its early stages due to a lack of 

infrastructure and environmental factors. There are a lot of 

people that are afflicted with various illnesses. Diseases must 

be accurately diagnosed before receiving the appropriate 

treatment. For the identification of liver disorders, 

computerized diagnostics do not need the assistance of 

medical radiologists. As a result, there is a good likelihood that 

medical professionals will have trouble identifying conditions. 

The difficulties include creating an effective learning 
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machine-based method for accurately and quickly classifying 

diseases and identifying disorders. 

It is recommended that the CNN-AGRU model be 

employed to improve the categorization of liver diseases. 

While the CNN model extracts the relevant details from the 

input images, the AGRU model performs the classification. 

The CNN-AGRU model's performance in diagnosing liver 

disorders was evaluated using the liver cancer dataset. The 

current CNN-based model has an overfitting issue, whereas 

the LSTM and GRU models have vanishing gradient issues. 

The AGRU model employs an attention layer to learn the 

distinctive features based on energy vector normalization to 

address the overfitting imbalance issue. The CNN-AGRU 

model picks up on certain features and the context vector 

associated with spatiotemporal data. The CNN-AGRU model 

is evaluated for the categorization of liver diseases and 

contrasted with existing techniques, machine learning, and 

deep learning. Due to a lack of feature learning and difficulty 

with data imbalance, machine learning models perform less 

well when classifying liver diseases. The Decision Tree (DT), 

Random Forest (RF), Support Vector Machine (SVM), and K-

Nearest Neighbours Algorithm (KNN) methods were 

evaluated with the suggested model using machine learning 

techniques. Due to the overfitting issue, SVM, KNN, and 

Decision Tree offer unstable performance compared to 

Random Forest. Accuracy, sensitivity, and specificity are 

performance indicators that are compared. The accuracy rate 

for CNN-AGRU is 98.2%, whereas the rates for the DT, RF, 

SVM, and KNN models are 74.3%, 82.1%, 85.1%, and 86.2%, 

respectively. 

 

6.1 Future directions 

 

Future directions for research into the suggested detection 

and classification processes are as follows: 

• The success of reducing the detected information or its 

propagation is only partially satisfying since, before the 

rapid spread of diseases, asymptomatic phenomena, and 

patient carelessness, they may enter a critical stage with 

significant alterations. Therefore, a mechanism for 

detecting liver disease earlier should be created. 

• Due to its complexity, the proposed mechanism's 

implementation must be handled correctly in real-world 

circumstances. Therefore, a more limited mechanism 

should be created in the future to address practical 

problems. 

• A deep learning technique, such as a convolutional 

network, should be created to identify and categorize the 

various stages of liver disease. 
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