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Cervical cancer is the second most common cancer among women worldwide. According 

to the 2020 estimates by GLOBOCAN in 185 countries, there were 604,000 new cases of 

cervical cancer and 342,000 deaths. In clinical practice, the segmentation of LSIL+ 

(cervical intraepithelial neoplasia+cervical cancer) lesions in colposcopic images (cervical 

imaging) is essential for assisting gynecologists in diagnosing cervical intraepithelial 

neoplasia grading and cervical cancer. It can also aid gynecologists in identifying the 

precise lesion area for further pathological examination. Existing computer-aided 

diagnosis algorithms exhibit poor segmentation performance due to insufficient training 

data that fail to focus on semantically meaningful lesion parts. In this study, we employed 

the improved Pyramid Scene Parsing Network (PSPNet-ResNet50) computer-aided 

diagnosis algorithm to automatically segment LSIL+ lesion areas in colposcopic images. 

We collected 971 images containing low-grade cervical intraepithelial neoplasia LSIL 

(CIN 1), high-grade cervical intraepithelial neoplasia HSIL (CIN 2/CIN 3), and cervical 

cancer from the Department of Obstetrics and Gynecology at Hebei University Affiliated 

Hospital. Two experienced gynecologists annotated the LSIL+ lesion areas to create a 

dataset for cervical lesion segmentation. We designed a lesion-aware convolution neural 

network transfer learning strategy to accomplish the lesion segmentation task. 

Comprehensive experiments were conducted to evaluate the proposed method's 

segmentation performance on clinical cervical images. Our research findings indicate that 

the PSPNet-ResNet50 network used in this study achieved the best segmentation results 

for automated (LSIL+ area) segmentation, with pixel accuracy (PA), mean pixel accuracy 

(MPA), precision (Pre), recall (Re), F1 score (F1), and mean intersection over union 

(MIoU) values of 95.21%, 89.83%, 84.58%, 82.22%, 83.38%, and 83.83%, respectively.  
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1. INTRODUCTION

Cervical cancer (CCA) is a malignant tumor caused by 

human papillomavirus (HPV) infection [1] and is one of the 

most common cancers among women. According to the latest 

data from the World Health Organization (WHO), the global 

incidence of cervical cancer reached 600,000 cases in 2020, 

with the disease causing approximately 340,000 deaths. 

Cervical cancer ranks fourth in terms of the number of new 

cases and deaths among all female cancers worldwide, 

accounting for 6.5% and 7.7% of the total incidence and 

mortality rates, respectively [2]. The cure rate for early-stage 

cervical cancer is relatively high, with different reports 

indicating a cure rate of over 95%, while the cure rate drops to 

around 20%-50% for advanced stages [3-7]. Although cervical 

cancer is one of the most preventable cancers, it remains the 

second leading cause of cancer-related death in women aged 

20 to 39 [8]. This is primarily due to the lack of signs and 

symptoms in the early stages, hindering early diagnosis. 

Therefore, regular cervical cancer screening for women is 

crucial as it enables early detection and diagnosis of 

precancerous cervical lesions, preventing the progression to 

cervical cancer and reducing the incidence and persistence of 

the disease [9]. Women with lower socioeconomic status are 

approximately twice as likely to die from cervical cancer 

compared to affluent women [10, 11]. Developing countries 

face a severe shortage of cervical cancer screening facilities 

due to a lack of experienced healthcare personnel and 

insufficient funding for screening systems [12]. Therefore, 

implementing effective cervical cancer screening programs 

can significantly reduce the disease incidence and prevent a 

substantial number of cervical cancer-related deaths. Deep 

learning has achieved remarkable success in the field of 

medical image segmentation, and computer-aided diagnosis 

plays an increasingly important role in the diagnosis of 

malignant tumors. In recent years, researchers have proposed 

various methods for diagnosing lesions from colposcopic 

images, mainly focusing on the extraction and segmentation of 

cervical regions or transformation zones. The current research 

primarily involves the segmentation of the acetic acid area and 

the segmentation of LSIL+ lesions. 

Shi et al. [13] segmented the acetic acid area using the gray-

level co-occurrence feature and the level set algorithm. Yue et 

al. [14] generated attention maps based on CICN combined 
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with UNet and CAM blocks to segment the acetic acid area 

using the proposed AWL-CNN network. Liu et al. [15] 

proposed a method for automatically segmenting the acetic 

acid area from colposcopic images. The method utilized the k-

means clustering algorithm to extract the cervical region from 

the original colposcopic images. Then, DeepLab V3+ was 

employed to segment the acetic acid area from the cervical 

images, achieving an average accuracy of 91.2%. However, 

the acetic acid area includes not only lesion areas but also 

inflammation, partially normal metaplastic squamous 

epithelium areas, and other non-lesion areas. Thus, 

segmenting only the acetic acid area does not provide more 

accurate lesion-assisted diagnosis for doctors. 

Currently, the segmentation of cervical precancerous 

lesions mainly involves region-based methods and pixel-based 

methods. Park et al. [16] generated anatomical maps based on 

color and texture in addition to region segmentation. They 

defined adult areas of the tissue region based on the anatomical 

feature maps using K-means clustering. Then, they combined 

the classification results of adjacent regions using the 

probability from the CRF classifier and determined the final 

classification result through KNN and LDA integration. 

Viñals et al. [17] proposed reducing the dimensionality of 

RGB vectors using PCA and generated probability maps for 

precancerous lesions in each pixel using ANN. They then 

connected points exceeding the threshold to segment the 

segment regions using seed point region growing and 

determined whether they were HSIL+ based on the size of the 

lesion area. However, HSIL+ is not related to the size of the 

region. Moreover, this method is susceptible to noise, resulting 

in cavities and over-segmentation, and requires high accuracy 

in extracting results from neural networks. Zhang [18] 

performed general lesion localization based on CAM on the 

region segmentation but did not provide specific contours. 

Zhang [19] proposed an improved U-Net by adding two 

convolutional blocks at the input and output to better extract 

image feature information. Yuan et al. [20] used ResNet 

instead of U-Net for CIN 1+ segmentation. In this paper, we 

propose a deep learning-based cervical lesion segmentation 

method. The main contributions of this study are as follows: 

(1) This paper investigates a deep learning-based method 

for LSIL+ area segmentation and collects and annotates a 

dataset for cervical lesion segmentation. 

(2) We employ the PSPNet-ResNet50 image segmentation 

model based on an encoder-decoder architecture, which 

efficiently segments lesions (LSIL+) and normal areas under 

colposcopy, accurately delineating the HSIL+ lesion area. 

(3) The PSPNet-ResNet50 network-based model can 

segment cervical lesion areas and achieves the best 

segmentation results in terms of evaluation metrics such as 

pixel accuracy (PA), mean pixel accuracy (MPA), precision 

(Pre), recall (Re), F1 score (F1), and mean intersection over 

union (MIoU) when compared to other segmentation models. 

This demonstrates the effectiveness of the proposed 

segmentation algorithm for cervical lesion segmentation and 

its potential for assisting clinical diagnosis.  
 

 

2. METHOD DESCRIPTION 
 

The overall workflow of this method consists of image 

preprocessing, network architecture, and model evaluation. 

Specifically, the five-class labels of the training set are first 

processed as single-channel representations. Then, the training 

samples are proportionally scaled. Next, the improved network 

is trained using the augmented training images with various 

transformations. Finally, to evaluate the classification 

performance, the test samples are fed into the pre-trained 

model, and the network's performance is analyzed and 

evaluated through the comparison of evaluation indices. The 

methods for each step will be comprehensively discussed in 

the following subsections. 

 
2.1 Pyramid pooling module in PSPNet 

 
PSPNet is a deep learning network proposed by Zhao et al. 

[21] in 2017. The core module is the pyramid pooling module, 

which aggregates contextual information from different scales 

and enhances the capability of capturing multi-scale features. 

The specific model structure is shown in Figure 1. First, classic 

neural networks such as VGG and ResNet are utilized to 

extract features from the input image. This step is represented 

by the CNN box in Figure 1. Then, the obtained feature maps 

undergo pooling at different scales to enhance the actual 

receptive field of each pixel, referred to as the pyramid pooling 

module in this paper. The dashed rectangular boxes in Figure 

1 represent the pyramid pooling module. The red section 

consolidates the entire feature map into a single pixel, 

followed by a 1×1 convolution with a kernel that reduces the 

depth to one-fourth of the original depth. The yellow module 

divides the entire feature map into 4 grids and merges them 

into 1 pixel, resulting in a feature map of size 2×2 pixels, 

which is then subjected to a 1×1 kernel convolution to reduce 

the depth to one-fourth. The blue module divides the entire 

feature map into 9 grids and pools them into 1 pixel, obtaining 

a feature map of size 3×3 pixels, which is then convolved with 

a 1×1 kernel to reduce the depth to one-fourth of the original. 

The green module divides the entire feature map into 36 grids 

and merges them into 1 pixel, yielding a 6×6 pixel feature map, 

which is then convolved with a 1×1 kernel to reduce the depth 

to one-fourth of the original. Finally, the merged results of the 

four different scales are upsampled to the same size as the 

input feature map, concatenated with the input feature map, 

and then fused through convolution to obtain the prediction 

result. 

 

 
 

Figure 1. The PSPNet model architecture 

 
2.2 PSPNet-ResNet50 model architecture 

 
PSPNet utilizes a pre-trained CNN and dilated network 

technique to extract feature maps from input images. The size 

of the obtained feature maps is 1/8 of the input image. Finally, 

the collection of these features is used to generate the output 

binary mask. The ResNet50 [22] model, which incorporates 

"skip connections" and "batch normalization" in a sequential 

manner, is employed to train deep networks without 

sacrificing efficiency. This allows gradients to bypass a certain 
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number of layers. The detailed diagram of PSPNet-ResNet50 

is illustrated in Figure 2. 

 

 
 

Figure 2. Detailed explanation of the PSPNet-ResNet50 

network structure 
 

2.3 Transfer learning 
 

In the field of computer vision, transfer learning [23, 24] is 

commonly employed by leveraging pre-trained models. Pre-

trained weights essentially refer to model parameters that have 

already been trained. In deep learning, model parameters are 

typically represented by weight matrices and bias vectors, 

which are learned through the backpropagation algorithm from 

a large volume of training data. Pre-trained models are trained 

on large benchmark datasets that usually contain millions or 

billions of images or textual data, such as ImageNet, COCO, 

Wikipedia, and others. Training models on these datasets 

enables the learning of general features and patterns, which 

can be transferred to other tasks, such as object detection, 

image segmentation, natural language processing, etc. For 

instance, in the task of image segmentation, the backbone 

neural network, such as VGG, ResNet, MobileNet, etc., is first 

utilized for feature extraction. When training a target 

segmentation model, the pre-trained weights of these neural 

networks can be used to initialize the network parameters of 

the backbone. By adjusting the parameters to learn features 

and patterns from the data, the model can better fit the data, 

thereby accelerating the training process and improving model 

performance. 

For image segmentation tasks, a substantial amount of 

training data is typically required. To address the issue of 

insufficient training data, this study employs VGG [25], 

ResNet50, MobileNet [26], and Xception [27] as backbone 

networks in different segmentation networks for the feature 

extraction stage. The officially provided pre-trained weights 

are loaded, allowing for better initialization of neural network 

parameters and utilization of the general features learned from 

pre-trained models. This approach accelerates model training, 

enhances model performance, and strengthens generalization. 

Pre-trained models have been trained on large-scale datasets, 

capturing numerous useful general features applicable to 

various tasks. Therefore, the use of pre-trained weights 

enhances the model's generalization ability and enables better 

performance across different tasks. 
 

 

3. DATA ACQUISITION AND PREPARATION 
 

(1) Data Set Acquisition: In this study, the data were 

collected from 971 actual colposcopy cases provided by Hebei 

University Affiliated Hospital from June 2019 to February 

2023. Each case includes a biopsy pathology report, a 

colposcopy pathology report, as well as images taken before 

and after acetic acid application, an iodine test image, and a 

green light image. The data set consists of colposcopy images 

of normal cervix, different grades of cervical precancerous 

lesions (CIN 1 and CIN 2/3), and cervical cancer. Based on 

preliminary recommendations from physicians for computer-

aided diagnosis, the research objective in this chapter focuses 

on a binary classification task: distinguishing between normal 

(non-lesion) and LSIL+ (Low-Grade Squamous Intraepithelial 

Lesion or higher) cases. This task is referred to as the LSIL+ 

diagnostic task. In other words, the aim of this study is to 

determine if the cervical image exhibits any abnormalities. 

When classifying the dataset, the pathology diagnosis report 

of each patient serves as the gold standard for data 

classification. 

(2) Data Set Preparation: The collected data is anonymized 

by removing patient identity information. Subsequently, data 

cleansing is performed by filtering out inadequate images, 

selecting only those colposcopy images that meet the criteria 

of clear and complete cervix without obstructions, no severe 

bleeding, and lesions not heavily covered by discharge. This 

process is carried out by two colposcopy physicians with over 

five years of experience and one with over ten years of 

experience. 

During the colposcopy examination, two images are 

captured separately, one before and one after the application 

of acetic acid, to record the surface changes of the cervix. The 

acetic acid is applied at a concentration of 3%-5%, and the 

second image is taken approximately two minutes after the 

application. The squamocolumnar junction is more clearly 

visible after two minutes of acetic acid application. Therefore, 

in this study, the image taken after two minutes of acetic acid 

application is used for annotation. Figure 3 illustrates the 

colposcopy images before and after acetic acid application. 

 

 
(a)                                              (b) 

 

Figure 3. Raw colposcopy images. (a) image before the 

acetic acid test; (b) the 2-min image after the acetic acid test 

 

A supervised learning approach is employed to segment the 

acetowhite area in colposcopy images. The acetowhite area is 

manually delineated by experienced experts in the field, 

serving as the standard for generating semantic segmentation 

labels. Deep learning-based image semantic segmentation 

methods require manual segmentation of target areas as 

references during the model training process. Semantic 

segmentation labels are typically grayscale or binary images, 

matching the size of the input original images. In this study, 

the Labelme software is used to create image semantic 

segmentation labels. The annotation of the target area is 

completed using points and line segments in the software, 

generating a JSON file (see Figure 4). 
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Figure 4. Annotation schematic diagram 

 

The JSON file is then converted into a label map using a 

program. The label map contains two pixel values: 0 and 1. 

The corresponding regions for these two pixel values are the 

background area and the lesion area in the colposcopy image, 

as shown in Figure 5. From left to right, the first image is the 

original colposcopy image, the second image is the 

corresponding label map image, and the third image is the 

overlay of the original image and the mask image. 

 

 
 

Figure 5. Colposcopy images and their labels 

 

 
4. EXPERIMENTAL SETUP AND RESULT ANALYSIS  

 

In this section, we conducted extensive experiments to test 

and evaluate the feature representation capability of the 

proposed method. Specifically, the evaluation metrics, 

implementation details, and comparative experiments are the 

main topics discussed in the following subsections. 

 

4.1 Experimental environment and parameter 

configuration 

 

Table 1. Experimental configuration table 

 
Item Configure 

Operating system (OS) Linux Ubuntu 18.04 

System memory 128G DDR4 

GPU Nvidia GTX 2080Ti 

CPU Intel(R) Xeon(R) Gold 6240  

Development language  Python 3.9 

Deep learning framework Pytorch 1.10.1; Cuda 11.2 

 

After constructing the cervical lesion dataset, we trained the 

data using a U-Net-based network, performed testing, and 

made improvements to the model. The effectiveness of the 

network model was evaluated using evaluation metrics, and 

the model was fine-tuned for optimal performance. The 

hardware and software configurations used are shown in Table 

1. 

All network models were implemented on an Ubuntu 18.04 

system with an Intel(R) Xeon(R) Gold 6240 processor and 

128GB of DDR4 RAM. The GPU used was Nvidia GTX 

2080Ti. The software stack included Python 3.9, PyTorch 

1.10.1, and Cuda 11.2. 

 
4.2 Model evaluation metrics 

 
For the segmentation of cervical lesion regions, we 

employed six evaluation metrics to assess the segmentation 

performance: pixel accuracy (PA), mean pixel accuracy 

(MPA), precision (Pre), recall (Re), F1 score (F1), and mean 

intersection over union (MIoU). 

 

PA =
∑ pij
k
i=1

∑ ∑ pij
k
j=0

k
i=0

 (1) 

 

MPA =
1

k + 1
∑

pij

∑ pij
k
j=0

k

i=0

 (2) 

 

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

𝑅𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

 

𝐹1 =
2 × 𝑃𝑟𝑒 × 𝑅𝑒

𝑃𝑟𝑒 + 𝑅𝑒
 (5) 

 

𝑀𝐼𝑜𝑈 =
1

𝑘 + 1
∑

𝑝𝑖𝑗

∑ 𝑝𝑖𝑗
𝑘
𝑗=0 + ∑ 𝑝𝑗𝑖 − 𝑝𝑖𝑖

𝑘
𝑗=0

𝑘

𝑖=0

 (6) 

 
Among these metrics, true positive (TP) refers to the pixels 

that are actually lesions and correctly identified as lesions, true 

negative (TN) refers to the pixels that are actually non-lesions 

and correctly identified as non-lesions, false positive (FP) 

refers to the pixels that are actually non-lesions but mistakenly 

identified as lesions, and false negative (FN) refers to the 

pixels that are actually lesions but mistakenly identified as 

non-lesions. 

Here, k represents the label results for different categories, 

where k = 0 represents the background category and k = 1 

represents the cervical lesion category. i represents the ground 

truth, j represents the prediction, and pij represents the 

prediction of i as j. PA is the overall pixel accuracy. MPA is 

the average pixel accuracy for the lesion region and the 

background. Pre and Re represent the proportion of true 

lesions among the samples predicted as cervical lesions and 

the proportion of correctly predicted lesions among all cervical 

lesions, respectively. F1-score (F1) is a balanced measure 

determined by Pre and Re. Mean intersection over union 

(MIoU) is a standard measure for semantic segmentation, 

which evaluates the accuracy of the similarity between 

predicted and ground truth instances. 

 
4.3 Analysis of experimental results 

 
(1) Comparative experiments and result analysis 

In this section, to fully validate the feasibility and 

effectiveness of the proposed model, we conducted 

comparative experiments between the PSPNet-ResNet50 

model used in this study and seven other image semantic 

segmentation models: Unet-VGGNet, Unet-ResNet50, 
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DeeplabV3+-Xception, DeeplabV3+-MobileNet, HRNet-

W18, HRNet-W32, and PSPNet-MobileNet. The 

segmentation performance was evaluated by comparing 

metrics such as pixel accuracy (PA), mean pixel accuracy 

(MPA), precision (Pre), recall (Re), F1 score (F1), and mean 

intersection over union (MIoU). We comprehensively 

compared the performance of several algorithms. To ensure 

the credibility of the comparison results, all models used the 

dataset constructed in this study and were trained under the 

same environment and parameter settings.

 
Table 2. Network comparison of experimental data 

 
Method PA（%） MP（%） Pre（%） Re（%） F1（%） MIoU（%） 

Unet-VGGNet 94.65 88.17 83.50 79.01 81.19 81.15 

Unet-ResNet50 94.33 88.20 81.21 79.55 80.37 80.38 

DeeplabV3+-Xception 94.29 88.29 80.84 79.81 80.32 80.32 

DeeplabV3+-MobileNet 94.56 89.37 80.99 82.02 81.50 81.3 

HRNet-W18 94.47 88.97 81.01 81.19 81.10 80.97 

HRNet-W32 94.58 89.32 81.55 81.78 81.66 81.11 

PSPNet- MobileNet 93.86 86.69 80.44 76.57 77.43 78.82 

PSPNet- ResNet50 95.21 89.83 84.58 82.22 83.38 83.83 

 
Table 2 presents a quantitative comparison of the cervical 

lesion segmentation method used in this study with other 

models. From the table, it can be observed that the proposed 

network achieved the best segmentation results with pixel 

accuracy (PA) of 95.21%, mean pixel accuracy (MPA) of 

89.83%, precision (Pre) of 84.58%, recall (Re) of 82.22%, F1 

score (F1) of 83.38%, and mean intersection over union 

(MIoU) of 83.83%. The effectiveness of the selected network 

in segmenting the LSIL+ region of the cervix can also be 

visually confirmed from Figure 6. 

 

 
 

Figure 6. Mean intersection and ratio (MIoU) of different 

networks 

 

To provide a more intuitive comparison of the training 

results from different networks, we randomly selected an 

image of the cervix and compared the segmentation results 

obtained by our model with several other models. Figure 7 

illustrates the segmentation results of our model compared to 

other models. It can be observed that some models produced 

segmentation results that included areas of squamous 

metaplasia, which appear similar to the lesion region, leading 

to reduced segmentation accuracy. The PSPNet-ResNet50 

model selected in this study effectively distinguished the 

lesion region from the squamous metaplasia region, as shown 

in Figure 7(j), which closely matches the manually annotated 

label in Figure 7(b). The integration of more low-level features 

in PSPNet-ResNet50 resulted in clearer detection of the lesion 

area and more accurate segmentation of the edge details, 

achieving finer results. 

 
 

Figure 7. Effect diagram of different networks. (a) the 

original image; (b) the label; (c) Unet-VGGNet; (d) Unet-

ResNet50; (e) DeeplabV3+-Xception; (f) DeeplabV3+-

MobileNet ;(g) HRNet-W18 ;(h) HRNet-W32; (i) PSPNet- 

MobileNet; (j) PSPNet- ResNet50 

 

 
5. CONCLUSION 

 
In this study, we presented a detailed introduction to the 

PSPNet-ResNet50 network structure, which can effectively 

detect and assist in the diagnosis of cervical lesion regions. 

The main advantage of this method is that the trained model 

enables rapid detection and diagnosis, significantly improving 

the speed and efficiency of diagnosis. In the experimental 

section, we provided specific details about the experimental 

environment, hardware parameter configuration, training 

parameters, data acquisition and processing, model evaluation 

metrics, and result analysis. The data acquisition and 

processing section described the acquisition and selection of 

original colposcopy images, along with the production of 

semantic segmentation label data. The manual annotation of 

the lesion region in the original colposcopy images using 

Labelme software and the conversion of the annotated data 

into binary image labels required for convolutional neural 

network training were explained. In the result analysis, we 

compared our network with other networks and observed 

improved segmentation performance in the cervical lesion 

region. The experimental results demonstrated that the 

optimized model achieved high accuracy in segmenting the 

cervical lesion region, providing valuable assistance in clinical 

diagnosis of cervical lesions. 
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