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This study investigates the efficacy of tensor-based morphometry (TBM) in detecting 

Alzheimer’s Disease (AD) using deep learning techniques. The primary focus is on 

discerning the volumetric variations in brain tissues characteristic of AD, Mild Cognitive 

Impairment (MCI), and cognitively normal (CN) conditions. TBM, as a measure of minute 

local volume differences, is employed as the distinguishing feature. The results are 

juxtaposed with those obtained from machine-learning-based methods, trained using a 

variety of medical images. Three unique models were developed for this purpose. The first 

model, trained using medial slices of the brain (train: 1622; test: 406), displayed an accuracy 

of less than 50%. The second model utilized axial brain slices procured at 5-pixel intervals, 

encompassing the hippocampus and the temporal lobe (train: 1632; test: 406), and 

demonstrated a significantly improved accuracy of 93%. The third model, fine-tuned with 

small kernel sizes to better extract localized changes from the image data used in the second 

model, achieved an accuracy of 92%. The findings suggest that the application of TBM and 

deep learning to medial slices alone is insufficient for an accurate diagnosis of AD. 

However, employing TBM with deep learning techniques to slices covering the 

hippocampus and temporal lobe can potentially offer a highly accurate approach for early 

AD detection. Notably, the use of small filters to extract detailed features from TBM did not 

enhance the model's performance. This research underscores the potential of deep learning 

in advancing the field of AD detection and diagnosis, providing crucial insights into the 

future development of diagnostic tools. 
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1. INTRODUCTION

Prevalent as the most common form of neurodegenerative 

disorder, Alzheimer’s Disease (AD) significantly strains 

global socio-economic structures [1]. Projections indicate that 

the incidence of dementia attributable to AD is set to rise 

rapidly in forthcoming years, engendering an amplified 

demand for healthcare services and resources [1]. The 

resultant pressure is expected to not only burden the 

infrastructure of national health systems but also impose 

additional fiscal and ethical responsibilities on families tasked 

with patient care [2]. According to the World Health 

Organization (WHO), over fifty-five million individuals 

globally grapple with AD, with societal costs estimated at 

US$1.3 trillion in 2019 [2]. Predictions suggest that by 2030, 

these costs could exceed US$2.8 trillion, driven by an increase 

in dementia prevalence and escalating healthcare expenses [3]. 

AD primarily manifests as a deterioration of memory, 

followed by a progressive decline in walking ability, language, 

emotions, and numerous cognitive and behavioral functions 

[4]. Characterized by the accumulation of abnormal proteins 

in the form of amyloid-beta plaques and neurofibrillary tangles, 

AD induces volumetric deformations in brain tissue over time, 

rendering neurons dysfunctional [4]. Regrettably, these 

deformations are irreversible, rendering the prevention of AD 

progression before extensive neurodegeneration a crucial area 

of research [5]. 

AD is typically categorized into three stages: cognitively 

normal (CN), mild cognitive impairment (MCI), and full-

blown AD [6-9]. The MCI stage, considered an intermediary 

between physiological aging and AD, is marked by a mild but 

measurable cognitive decline. Crucially, early diagnosis 

during the MCI stage can potentially delay or prevent disease 

progression to AD, hence its recognition as a critical research 

focus [10]. 

The deployment of computer-based AD diagnosis can assist 

clinicians in identifying high-risk groups, thereby preventing 

disease progression and enabling early diagnosis [11]. 

Magnetic Resonance Imaging (MRI), a common medical 

imaging method, offers detailed visualization of brain 

structures for AD detection [12]. However, it is challenging to 

identify patterns of physiological changes in the brain 

structure during the early stages of AD using traditional 

radiological readings or quantitative analysis [13]. 

Thus, the development of reliable auxiliary systems is 

necessary to improve the accuracy of early disease detection, 

supplementing the observations and decisions of physicians 

[13]. Utilizing MRI-based methods, machine learning (ML)-

based models can reveal fine-scale anatomical changes in the 

brain's internal structure associated with cognitive decline, 

thereby bolstering early AD diagnosis [14]. 

The increasing popularity of research on automatic 
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classification of AD progression from MRI images using 

machine learning methods underlines the significant role of 

these methods in developing computer-based decision support 

systems [15]. Structural deformations in the brain of an AD 

patient, most often observed in the medial temporal lobes and 

hippocampus, can be perceived with the naked eye from an 

MRI scan [16, 17]. Figure 1 illustrates the MRI images of 

subjects with CN, MCI, and AD, showing the reduction in 

hippocampus tissue size and increase in ventricle size as the 

disease progresses. 

This study aims to develop an efficient early diagnosis 

system for patients in the MCI stage before progressing to AD. 

Limited studies in the literature focus on Alzheimer's 

diagnosis based on deep learning (DL)-based feature 

extraction and analysis of morphometric methods, particularly 

tensor-based morphometry (TBM), a medical imaging method 

that allows analysis of morphological brain changes [18]. 

However, the visual interpretation of these images can be 

challenging, highlighting the need for DL-based methods for 

automatic extraction of disease-specific features. 

This research aims to enhance AD detection by integrating 

DL and TBM methods by comparing model performances 

trained with medial slices (in the x, y, and z direction) or axial 

slices covering the hippocampus and temporal lobe. The effect 

of using small kernel sizes for detailed feature extraction from 

local volume changes in the brain on model success was 

examined. While binary classification (CN, AD) studies are 

prevalent in the literature, multiple classification (AD, MCI, 

CN) studies are limited. Therefore, a multiple classification 

approach was adopted in this research. 

The structure of this paper includes "Related Work" in 

chapter 2, "Methods" in chapter 3, "Result and Discussion" in 

chapter 4, and "Conclusion" in chapter 5. 

 

 
 

Figure 1. MRI scans of a) CN, b) MCI, and c) AD [17] 

 

 

2. RELATED WORK 

 

A number of studies have been carried out to identify 

individuals at different stages of Alzheimer’s Disease using 

various algorithms and medical images [19-21]. Göker [19] 

analyzed the brain EEG images of Alzheimer's patients using 

the bidirectional long-short-term memory algorithm and 

obtained an accuracy rate of 98.85%. Sato et al. [20] developed 

a new approach based on VBM analysis to identify individuals 

in the early stages of the disease using quantitative 

susceptibility mapping (QSM). Gao and Lima [21] has shown 

in their studies that DL-based models are effective in 

distinguishing Alzheimer's patients from other cognitive 

disorders thanks to their ability to automatically extract 

features from medical images. Based on these studies, it has 

been seen that individuals at different stages of AD can be 

accurately detected using different algorithms and medical 

images. Early studies on AD detection through machine 

learning focused only on AD-related brain regions and 

compared classification performance and biomarkers to shed 

light on parameters associated with normal and pathological 

aging [22]. In some studies, changes in the brain other than in 

the region(s) examined were not considered [23]. Different 

studies used voxel-based measurements based on image 

preprocessing and feature extraction with classifier types such 

as SVM [24] and random forests [25], which are called 

traditional machine learning methods. The most popular 

traditional algorithm is supporting vector machines (SVM), 

and SVM-based studies remain the most widely used method 

for early diagnosis and classification of AD in the literatures 

[26, 27]. Traditional machine learning models developed with 

limited independent variables in theory may be insufficient 

when applied to real-world problems. That is why traditional 

machine learning-based methods did not achieve satisfactory 

performance and success, especially in large and complex data 

sets. The biggest reason is that real-world problems have a 

much more complex and unpredictable structure [28-30]. 

DL models can be used more effectively and successfully 

compared to other machine learning methods in the analysis of 

neuroimaging data [31]. With the introduction of higher-

resolution MRI data, we can provide a higher success rate for 

DL models, a better performance increase in automatic 

screening and diagnosis of brain disorders, and even more 

detailed extraction of the morphometric features [32]. 

Convolutional neural networks (CNN), the most widely used 

architecture of DL currently for image classification problems, 

are of great interest. CNN is a neural network consisting of 

several layers, which is used in the field of image processing 

[33]. There are intensive studies on CNN based medical image 

processing [34, 35]. Compared to other DL techniques, CNN 

is preferred for disease diagnosis through neuroimaging, as it 

specializes in learning images. For example, Gunawardena et 

al. diagnosed AD in the MCI stage with an accuracy rate of 

84.4% with an SVM-based model and 96% with a DL-based 

technique by converting the 3D sMRI images in the ADNI 

dataset to 2D matrices and then passing them through a series 

of processing. In sMRI data, the CNN-based method could 

detect AD with much higher success than the SVM-based 

method [26]. Seetha and Raja [36] achieved a high success rate 

of 97.5% by using small kernels due to the spatial and 

structural variability of the brain tumor environment in their 

brain tumor classification models based on CNN from MRI 

images. The authors reduced the core size they used in their 

model to 2×2 to achieve low-level features in medical images, 

resulting in 85.5% classification performance [36]. 

 

 

3. METHODS 

 

3.1 Data 

 

The use of a freely available common dataset among 

researchers increases the credibility of the studies. For this 

reason, the ADNI database was used as part of this research. 

The ADNI is a global project dedicated to discovering, 

analyzing, and curing disease with the aim of slowing and 

stopping the progression of AD. The ADNI provides a range 

of datasets, offering a valuable resource for researchers aiming 

to detect AD in its early stages. By supplying these 

standardized datasets, ADNI facilitates consistent research 

practices and promotes the global sharing of compatible data 
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among researchers. 

The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, 

MD. The primary goal of ADNI has been to test whether serial 

MRI, positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can 

be combined to measure the progression of MCI and early AD. 

As such, the investigators within the ADNI contributed to the 

design and implementation of ADNI and/or provided data but 

did not participate in analysis or writing of this report. A 

complete listing of ADNI investigators can be found online. 

(GE Healthcare, Philips Medical Systems, or Siemens) [37]. 

 

3.2 Tensor-based morphometry 

 

For large, multi-site neuroimaging analyses and clinical 

trials of AD and MCI, TBM is an objective, dependable, high-

throughput imaging measure [38]. TBM aims to determine 

local volume differences among groups of brains using 

deformation fields that map points in a template (x1; x2; x3) to 

corresponding locations in individual source pictures (y1; y2; 

y3) using a Jacobian matrix. The local volume differences 

contain information about the local stress, shear, and rotation 

involved in the deformation. Eq. (1) shows how to compute a 

Jacobian matrix [39]. 

 

𝐉 = [

∂𝑦1/ ∂𝑥1     ∂𝑦1/ ∂𝑥2     ∂𝑦1/ ∂𝑥3
∂𝑦2/ ∂𝑥1     ∂𝑦2/ ∂𝑥2     ∂𝑦2/ ∂𝑥3
∂𝑦3/ ∂𝑥1     ∂𝑦3/ ∂𝑥2     ∂𝑦3/ ∂𝑥3

] (1) 

 

T1 MRI images were pre-processed by Hua et al. [40] and 

prepared for TBM analysis. In brief, all images were 

resampled to 1mm voxel sizes in x, y, and z dimensions, then 

non-linearly aligned to a group-average template created with 

40 randomly selected control subjects, and individual Jacobian 

maps were estimated from the warp-fields. Deformation fields 

calculated for deformation-based morphometry and TBM are 

shown in Figure 2 [39]. 

The DBM field calculates the large-scale difference 

between the subject image and template image, whereas the 

TBM field calculates local differences. TBM is a mapping 

method applied to MRI images to visualize brain tissue loss 

and enlargement. Figure 3 shows MRI image of an AD subject 

in the ADNI database. 

In Figure 4, the TBM analysis image of the AD subject, 

whose MRI image is shown in Figure 3, is presented. As can 

be seen in Figure 4, compared to minimally processed MRI 

images, TBM images are blurry and difficult to interpret by 

eye. This is due to the fact that TBM images present the local 

morphological differences of each subject compared to the 

group mean. They are meant to be used for group-level 

statistical analysis rather than visual inspection [41]. 

In this study, we used different variations of ADNI dataset 

for three different models. In the first model, the network was 

trained with only medial slices of three axes (axial, sagittal, 

and coronal) meaning that there were 3 MRI images for each 

subject. Then, the performance values of the network trained 

with those images were analyzed. 156 AD subjects [mean age: 

75.4±7.5 year, 81 males (M) and 75 females (F)]; 330 patients 

with MCI [mean age: 74.8±7.4 year, 172 (M) and 158 (F)]; 

and 190 CN subjects [mean age: 76.0±5.0 years, 100 (M)/90 

(F)] are used. The demographic characteristics of a total of 676 

subjects used in the first model are presented in Table 1. 

 
 

Figure 2. Differences between a) DBM and b) TBM [39] 

 

 
 

Figure 3. Original MRI scan image of a single subject: a) 

Coronal MRI slice, b) Sagittal MRI slice and c) Axial MRI 

slice 

 

 
 

Figure 4. TBM image of the subject: a) Coronal slice; b) 

Sagittal slice; c) Axial slice 

 

The second and third models were trained with the same 

database using only slices of axial planes that cover the 

temporal lobes and hippocampi. Then, the performance values 

of these networks were analyzed. 28 AD subjects [mean age: 

75.0±5.0 year, 16 males (M)/12 females (F)]; 88 patients with 

MCI [mean age: 73.8±5.4 years, 47 (M)/41 (F)]; and 54 CN 

subjects [mean age: 74.4±5.5 years, 30 (M)/24 (F)] are used. 

The demographic characteristics of a total of 170 subjects used 

in the second and third model are presented in Table 2. 

 

Table 1. The demographic characteristics of the first model 

 
Groups CN MCI AD 

Number 190 330 156 

Gender (M/F) 100/90 172/158 81/75 

Age (mean±std) 76.0±5.0 year 74.8±7.4 year 75.4±7.5 year 

 

Table 2. The demographic characteristics of the second and 

third models 

 
Groups CN MCI AD 

Number 54 88 28 

Gender (M/F) 30/24 47/41 16/12 

Age (mean±std) 74.4±5.5 year 73.8±5.4 years 75.0±5.0 year 
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Figure 5. Obtaining the dataset used in feeding the models 

 

3.3 Deep learning 

 

The images, after being downloaded to our local servers, 

were converted to 2D png images from 3D nifti files by using 

med2image software [42]. 3D TBM images are downloaded 

from ADNI. First, the height and width of each nifti file are 

saved. Witht this, axial images (z axis) were sliced at 5-pixel 

intervals starting from the 48th pixel to the 115th pixel, 

covering only the hippocampus and temporal lobe. As a result, 

12 2D axial png brain slices were obtained for each subject. 

Considering that the hippocampus and temporal lobe are the 

regions most affected by AD, slices with these regions in the 

range of 48-115 pixels were taken [6]. The steps for converting 

TBM images from 3D medical image format to 2D png format 

are presented in Figure 5. 

Within the scope of this investigation, we adapted a 2D 

CNN-based DL architecture to diagnose AD early using TBM 

images. We used the AlexNet architecture, which is proven to 

be successful in image classification processes [43, 44]. 

AlexNet has won the 2012 “Imagenet Large-Scale Visual 

Recognition Competition” with an extraordinary difference 

[45]. This architecture is a deep CNN consisting of eight layers, 

five of which are convolutional layers with rectified linear unit 

(ReLU) functions and three of which are batch normalization 

layers. Three of the batch normalization layers are followed by 

max pooling layers, A learnable filter that extracts features 

from an input image is represented by the convolutional layer. 

For a 3D image of dimensions H, W, and C, where H stands 

for height, W for width, and C for channel count. When a 

three-dimensional filter is used, it can be represented as FC 

(number of filter channels), FH (filter height), and FW (filter 

width). Since AH stands for activation height and AW for 

activation width, the output activation map size must be 

AHxAW. Using the Eq. (2) and Eq. (3), activation height and 

width values can be calculated [46]. 

𝐴𝐻 = 1 +
𝐻 − 𝐹𝐻 + 2𝑃

𝑆
 (2) 

 

𝐴𝑊 = 1 +
𝑊 − 𝐹𝑊 + 2𝑃

𝑆
 (3) 

 

P stands for padding, S for stride, and since there are n filters, 

the dimensions of the activation map should be AWx AWxn. 

The pooling layer's key purpose is to reduce the size of the 

feature maps. Thereby, there will be fewer parameters to learn 

and fewer computations to be made by the network. By 

applying a non-linear conversion to the given inputs, an 

activation function addresses non-linearity in the network [47] 

Eq. (4). 

 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑  𝐾
𝑗=1 𝑒𝑧𝑗

 (4) 

 

where, 𝑧 is the softmax function's input vector, and each zi 

value is an input vector component, which can have any real 

value. The normalizing term, which appears in the formula 

below, makes sure that the function's output values add up to 

1, producing a legitimate probability distribution. K is the 

number of classes in the classifier with multiple classes. If the 

input is positive, the rectified linear activation function, or 

ReLU for short, will output the input directly; if it is negative, 

it will output zero Eq. (5). Because a model that utilizes ReLU 

is simpler to train and frequently performs better, it has 

evolved into the default activation function for many diverse 

types of neural networks [48]. 

 

𝑓ReLU = 𝑚𝑎𝑥(0, 𝑥) (5) 

 

In this study, we used three models. The first model that was 

trained using medial brain slices (in x, y, and z directions) 

belongs to 676 subjects (train: 1622; test: 406). In the second 

and third models, twelve axial brain slices obtained at 5-pixel 

intervals covering the hippocampus and temporal lobe from 

170 subjects were used (train: 1632; test: 406). Since the 

number of medical images used for the training of all three 

models was intended to be close to each other, fewer subjects 

were used in the second and third models. 20% of the resulting 

dataset was separated as test datasets for each clinical group 

(AD, CN, MCI). 80% of the data was allocated for training and 

20% for testing. For the training of the models, 80% of the data 

was used for training and 20% for testing. During model 

training, 20% of the training data was selected as validation 

data. 

In our study, models are trained using AlexNet or fine-tuned 

AlexNet architecture. The architecture ends with two dense 

layers and a dropout layer with 0.5 rates between them. 

In the first model, we observed the performance of original 

AlexNet by feeding it medial slices (in the x, y, and z directions) 

of TBM images from each subject. The model produced an 

accuracy of less than 50%, failing to perform a successful 

diagnosis. 

For the second and third model of the study, 5-pixel-spaced 

axial images covering only the hippocampus and temporal 

lobe were extracted, yielding twelve images per subject. 

Hippocampus and temporal lobe were selected as the regions 

of interest because they are the regions that suffer the most 

from AD [6]. The second model that fed these images achieved 

over 93% accuracy using the original AlexNet network [44]. 
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In the third model, we fine-tuned the parameters of the 

second model to see if we could improve the performance of 

the diagnosis. In the third model, in addition to implementing 

the original AlexNet model, an adaptation of it with a smaller 

kernel size and stride length was used. The idea was to make 

the model more consistent with the nature of the TBM images. 

Since they show differences in more minor scales, the kernel 

size and stride length were fine-tuned to catch those 

differences. Specifically, kernel size and stride length in the 

first convolutional layer were set to 3×3 and 2×2, respectively. 

And the strides in the first max pooling layer were changed to 

2×2, the second convolutional layer was changed to 3×3 and 

2×2, the second max pooling layer was changed to 2×2, the 

third convolutional layer was set to 2×2 and 1×1, the fourth 

was changed to 1×1 and 1×1, and the last max pooling layer 

was formed at 1×1. Naturally, the decrease in resolution 

caused an increase in the total learning parameters. The details 

of the second model can be seen in Table 3. 

The accuracy of our third fine-tuned model, trained using 

axial slices covering the temporal lobe, was over 92%. 

 

Table 3. Details of the CNN architecture used for the third 

model 

 
Layer Output Shape Parameter 

conv2d 113×113×96 2688 

batch_normalization 113×113×96 384 

max_pooling2d 56×56×96 0 

conv2d_1 28×28×256 221440 

batch_normalization_1 28×28×256 1024 

max_pooling2d_1 14×14×256 0 

conv2d_2 7×7×384 393600 

batch_normalization_2 7×7×384 1536 

conv2d_3 7×7×384 147840 

batch_normalization_3 7×7×384 1536 

conv2d_4 13×13×256 98560 

batch_normalization_4 7×7×256 1024 

max_pooling2d_2 7×7×256 0 

flatten 12544 0 

dense 4096 51384320 

dropout 4096 0 

dense_1 10 40970 

Total Parameter  52.294.922 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Training and evaluation of CNN models 

 

The original size of the 2D slices is 220×200. The required 

image input size for AlexNet is 227 by 227. Therefore, the 

slices are converted to 227×227 pixels. The following 

parameter values were selected for all CNN models: The 

learning rate was chosen as 1e-5 for the models that 

automatically improved with adaptive moment estimation 

(Adam optimizer). Each model is trained for 50 epochs. The 

reason for this is that the validation loss value was chosen as 

the early stop in the second model with the best performance. 

In 47 steps, the model reached its automatic optimum value. 

For this reason, the number of steps was chosen at 50 to train 

all three models under equal conditions. Since there are more 

than two output labels, “categorical crossentropy” and 

“categorical accuracy” functions are used for loss and 

accuracy in classification models, respectively. For the 

training of the models, two different data sets were trained on 

three different models. The data sets that feed the models are 

not balanced. Therefore, after calculating the accuracy of all 

three models, the model with the best accuracy was 

determined. The precision, recall, and F-Score values of this 

model have been calculated. The study was carried out in the 

Google Colab environment. The flow chart of the Alzheimer's 

diagnosis proposed in the present study is shown in Figure 6. 

 

 
 

Figure 6. The Alzheimer's diagnosis flowchart proposed in 

the present study [0: AD; 1: CN; 2: MCI] 

 

A classification problem's performance is calculated using 

a confusion matrix. It is a table containing four different 

combinations of predicted and actual values: True positive 

(TP), true negative (TN), false positive (FP), and false 

negative (FN). Hence, accuracy (ACC-Eq. (6)), F-Score (F-

SCR-Eq. (7)), precision (PRE-Eq. (8)), recall (Eq. (9)), and 

specificity (SP-Eq. (10)) are defined as [49]: 

 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6) 

 

𝐹 − 𝑆𝐶𝑅 =
2 ∗ 𝑃𝑅𝐸 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑅𝐸 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (7) 

 

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (8) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (9) 

 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (10) 

 

In the first model that was trained with the medial slices, 

accuracy was below 0.5. However, performance was greatly 

improved in the second and third methods, where axial slices 
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covering the hippocampus and temporal lobe were used to feed 

the models (Figure 7, Figure 8.). In the second model, the 

training accuracy was 93%, and the loss was 0.22. The pattern 

of the graphs does not show any sign of overfitting. When 

evaluated on the test set, the model was still successful with 

89% accuracy. The results show that local morphological 

atrophy patterns around hippocampal and temporal regions 

can successfully predict AD and MCI. The accuracy of a 

subsequent model, in which the CNN algorithm was forced to 

learn finer details of the images, was comparable to the 

previous one (92%) (Table 4). 

 

Table 4. Accuracy and loss parameters of the models used in 

this study 

 
Model Accuracy Loss 

Medial slices 0.47 0.86 

Temporal lobe 0.93 0.22 

Temporal lobe with smaller kernel 0.92 0.19 

 

Some models were trained with raw MRI and processed 

morphometric datasets, respectively, using different 

traditional methods. Morphometric methods were found to be 

able to achieve higher accuracy compared to raw MRI data 

[50]. Although the TBM images contained information about 

minor regional differences, extracting more details from the 

images did not alter their accuracy as expected. Chen et al. 

used a VBM analysis-based approach on 3D images with 

AlexNet, VGGNET, GoogleNet, and ResNet. The most 

successful results were obtained from the AlexNet and 

GoogleNet architectures [51]. Therefore, the high success of 

the AlexNet architecture used in this study supports the 

previous finding, showing that it can be used in morphology-

based classification processes. Although using AlexNet 

achieved an accuracy rate of 96.22%, which is approximately 

four points better than the one in the current study (93%), the 

results show that TBM-based analyses can succeed as highly 

as VBM analyses. In their CNN-based method used in study 

[36] to diagnose brain tumors from small local deformations, 

they improved the accuracy of the model by reducing the core 

size of the mesh. 

 

 
 

Figure 7. Loss and accuracy of the training and validation sets for the original AlexNet model trained with the axial slices (The 

second model) 

 

 
 

Figure 8. Loss and accuracy of the training and validation data for the fine-tuned AlexNet model trained with the axial slices 

(The third model) 

 

4.2 Comparative of results with literature 

 

Classifier performance can be measured with a confusion 

matrix based on a set of predictive data whose true values are 

known beforehand. Typically, in the matrix, instances of a 

predicted class are represented in each column, while instances 

of a real class are represented in each row. The diagonal of the 

matrix shows how many samples belonging to the same class 

are classified correctly, and the remaining squares show how 

many samples belonging to the two classes are incorrectly 

classified. Accordingly, the confusion matrix of our second 

model, which has the highest accuracy among the proposed 

models, is presented in Figure 9, where [0: AD; 1: CN; 2: MCI] 

shows the actual diagnostic results of the samples in each row 

and the predictive diagnostic results of the samples in each 

column (Table 5). 
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Table 5. Compared with other studies in the literature 

 

Reference Biomarker Database Method(s) ACC (AD, MCI, CN) Dataset Approach 

8 FDG-PET ADNI RF+RFSVM CN/MCI: 90.53% 272 ROI based 

20 VBM 

Hokkaido 

University 

Hospital 

SVM 

CN/AD: 94% 

111 ROI CN/MCI: 87% 

MCI/AD: 68% 
       

26 sMRI ADNI 
SVM 84.4% 

504 2D subject level 
CNN 96% 

51 VBM ADNI 

LeNet 93.83% 

479 3D subject level 

AlexNet 96.22% 
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Figure 9. Confusion matrix of the second model 

 

Table 6 presents the precision, sensitivity, and F1-score 

values obtained for the test data of second model. 

 

Table 6. Precision, sensitivity and F1-score values of the 

second model obtained from test data 

 
 Precision     Sensitivity F1-Score 

0:AD 0.91 0.74 0.82 

1:CN 0.95 0.82 0.88 

2: MCI 0.85 0.88 0.92 

Average accuracy  0.89 

When these values are analyzed, it is seen that the highest 

precision score is obtained in the estimation of CN. This 

demonstrates that the model can perform CN prediction (95%) 

with higher precision compared to MCI and AD. When the 

sensitivity values are analyzed, the MCI (88%) and AD value 

(74%) are calculated, respectively. This indicates that the 

model was able to weed out non-MCI subjects at a high rate 

compared to AD subjects. Our data set is not evenly distributed. 

For this reason, F1 scores should be evaluated. It is seen that 

MCI's estimations (92% accuracy) have the highest accuracy. 

This implies that most datasets belong to the MCI class, and 

the model learns this well. In addition, the average accuracy 

value of the test data was calculated at 0.89, which shows that 

the model achieved high success not only in the training and 

validation data but also in the testing data. 

In their study, a number of deep learning-based methods, 

including AlexNet, achieved higher accuracy compared to 

traditional machine learning methods [52]. Similar to previous 

studies, the AD diagnosis was made with high accuracy using 

AlexNet in this study (93%). Achieved 97.28% accuracy in the 

training dataset with the EfficientNetB3 pre-trained network 

[53]. However, the AlexNet network was able to achieve an 

accuracy of 89.95% on the test data. In another transfer 

learning method, they used three different DNN models 

(VGG19, Inception v3, and ResNet50) to predict MCI stage. 

They used an fMRI dataset to predict multiclass AD stages. 

And achieved the highest accuracy of 90% with the VGG19 

network [54]. The studies of Huang et al. [53] and Zheng et al. 

[54] were able to achieve this accuracy with the help of the 
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weights obtained from the pre-trained networks, while we 

acquired 89% accuracy by training our model on a limited 

dataset. In their study on the early diagnosis of AD as a multi-

classification problem, they found a high accuracy rate of 

97.77% [55]. However, this high accuracy was achieved by 

adopting an approach based on the CNN and SVM methods 

using a 3D dataset. This method is costly, and in our study, we 

adopted a more cost-effective approach by using 2D slices 

obtained from the affected areas. The spiking deep 

convolutional neural network-based pipeline designed by 

Savaş [56] achieved 83.90% accuracy in CN/MCI 

classification. they analyzed cerebral grey matter changes in 

MCI using VBM and acquired 80.9% accuracy for CN/MCI 

prediction [57]. The method proposed in this study is superior 

to studies [56, 57] methods; it offers a solution to the triple 

classification problem with 89% accuracy. 

TBM-based methods used in hippocampus tissue analysis 

are more accurate than volumetric measurements for the 

diagnosis of AD and MCI [58]. This implies parallel results 

with this study, in which TBM-based hippocampus analysis 

was performed with DL methods. High accuracy was achieved 

with DL-based TBM analysis, which is compatible with the 

literature. Despite the relatively unstable nature of the dataset, 

as compared to the findings reported in the literature, the study 

[59] achieved notable accuracy levels (95%) in their respective 

studies by employing DL-based VBM morphometric analysis. 

However, they achieved this accuracy with the help of transfer 

learning. This signifies that DL-based morphometric analysis 

can be used in AD diagnosis. Raju et al. [60] found the CN/AD 

classification with 96.5% high accuracy, whereas the CN/MCI 

classification was diagnosed with 91.74% accuracy. In the 

proposed study, an accuracy rate of 93% was obtained. This 

can be attributed to DBM analyzes the disturbances at the 

macro level. Volumetric changes in the brain are greater in 

CN/AD classification problems. Volumetric changes in the 

brain are greater in CN/AD classification problems. 

Nevertheless, in the case of CN/MCI or MCI/AD classification 

problems, the diagnostic accuracy for micro-level 

deformations tested using the DBM-based method has been 

hindered due to the relatively limited volumetric changes. 

TBM analyzes local shape differences at a microlevel. TBM-

based morphometric analysis can be recommended as a more 

successful method for early diagnosis of the disease, especially 

in the MCI stage. VBM, DBM, and TBM analysis-based 

morphometric methods have been used for AD diagnosis. 

When these methods were examined, their overall accuracy 

was over 85%. These are presented in Table 5. 

In the study conducted with traditional machine learning-

based methods, accuracy (MCI/AD: 68%) was low compared 

to DL-based methods [20]. In this research based on deep 

learning, higher accuracy was obtained than with traditional 

methods. We obtained an accuracy of 93%. This is because 

DBM analyzes disturbances at the macrolevel. TBM examines 

local shape differences at a finer scale. TBM-based 

morphometric analysis can be recommended as a more 

successful method for the early diagnosis of the disease, 

especially in the MCI stage. In conclusion, this study 

demonstrates the effectiveness of DL methods for predicting 

neurodegenerative diseases using TBM images. It has been 

demonstrated that morphological changes, especially in the 

hippocampal and temporal regions, can be used to successfully 

predict these diseases. Moreover, the results of the study show 

that DL-based morphological analysis outperforms SVM-

based classification. 

5. CONCLUSIONS 

 

This study presents a new method to distinguish between 

AD, MCI, and CN stages using TBM and DL techniques. The 

study proposed three different models to differentiate between 

subjects. In addition, TBM-based analyses are compared with 

VBM-based analyses used in previous studies. Local 

morphological changes are helpful in identifying AD and 

MCI. As a result, TBM-based analyses achieve similar success 

levels compared to VBM-based analyses. The CNN-based 

methodology employed Within the confines of this study 

effectively discriminates between individuals with AD and 

those with MCI based on localized morphological alterations 

quantified through TBM. Consistent with its concept, TBM 

was useful only when the brain regions that are subject to the 

most severe local atrophy (namely, the hippocampi and 

temporal lobes) were used to feed the CNN algorithm. When 

medial slices from each axis were used, although they also 

contained meaningful information such as larger ventricles in 

AD subjects, the CNN algorithm was not able to capture the 

differences. However, this was not the case for the studies that 

used VBM or sMRI as input. A high level of predictive 

accuracy was reached for different 2D ROIs (covering the 

hippocampus). TBM is more suitable to diagnose diseases or 

abnormalities that are associated with a fairly small region in 

the brain, such as tumors, and the regions that are susceptible 

to atrophy should be chosen as the region of interest to run the 

prediction algorithm. The results show that TBM analysis 

using DL-based methods can be successfully used as an 

effective and usable method in the early diagnosis of 

Alzheimer's. Although the TBM contained information about 

minor regional differences, extracting more details using small 

kernels from the images did not significantly alter the model 

results. According to the results of all models in the study, DL-

based systems can successfully perform early detection of 

Alzheimer's using TBM covering the hippocampus. In 

addition, TBM can be more successful than DBM-based 

morphometric methods in the early diagnosis of Alzheimer's. 

This study brings a new perspective to research in this area. 

In future studies, researchers should explore other neural 

networks such as Xception, MobileNet, and newer state-of-

the-art networks to construct the classifier. Additionally, they 

can experiment with preprocessing steps like skull stripping 

and density normalization to achieve similar or better results. 

Furthermore, by leveraging the feature extraction ability of 

pre-trained models, they can enhance the overall performance 

of the different classifiers they propose. 
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