

A Deep Reinforcement Learning Approach for Efficient Image Processing Task Offloading

in Edge-Cloud Collaborative Environments

Ming Sun1,2* , Tie Bao1 , Dan Xie1 , Hengyi Lv2 , Guoliang Si2

1 College of Computer Science and Technology, Jilin University, Changchun 130012, China
2 Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

Corresponding Author Email: sunm19@mails.jlu.edu.cn

https://doi.org/10.18280/ts.400403

ABSTRACT

Received: 8 March 2023

Revised: 12 June 2023

Accepted: 18 June 2023

Available online: 31 August 2023

 In the wake of the burgeoning Internet of Things (IoT) era and the increasing prevalence of

image-based applications on mobile platforms, a significant demand for computing

resources has been witnessed. While traditional cloud computing has been limited by

substantial transmission distances and notable response delays, mobile edge computing,

where communication, computation, and storage resources are situated on edge devices, has

emerged as a superior alternative. In this context, the challenge of offloading image

processing tasks for multiple users, especially considering the collaboration of edge servers

under computational and communication resource constraints, is investigated. A primary

objective is to strike a balance between energy consumption and task delays, thereby aiming

to curtail the total associated costs. The novel framework introduced, termed as Image

Collaborative Task Offloading System using Deep Reinforcement Learning (I-CTOS-

DRL), is specifically designed for image processing tasks in edge-cloud collaborative

scenarios. Through the integration of a set updating mechanism, complications arising from

interactions with neighboring edge servers are effectively diminished. Simultaneously, a

heuristic algorithm was constructed to identify the most viable servers for task offloading

purposes. Building on this foundation, a pioneering methodology for image processing task

offloading was devised, leveraging fully connected neural network training. Evaluations

conducted extensively indicate that the proposed strategy outperforms established

benchmarks in terms of efficiency.

Keywords:

edge computing, task offloading, image

processing, multiple users, edge-cloud

collaborative, cost efficiency

1. INTRODUCTION

In the current digital era, remarkable developments in

image-based applications have been observed. As the

proliferation of smartphones, intelligent devices, and IoT

gadgets has been documented, a heightened intricacy in real-

time image processing has emerged [1, 2]. Often, traditional

cloud computing architectures were identified as insufficient

to address the evolving needs of these complex image

processing tasks, faced with challenges such as increased

latency and limited computational capacity.

The impetus for the present research was derived from the

pressing need to facilitate real-time image processing across

various sectors, spanning healthcare, entertainment,

autonomous vehicles, and industrial automation. A mounting

urgency has been discerned for the formulation of an adept

system proficient in offloading extensive image processing

tasks for myriad users spread across diverse geographic

terrains.

1.1 Problem definition and contextualization

At the heart of the study lies the investigation of task

offloading within the framework of edge-cloud collaboration.

Interactions between edge devices, the central cloud data

center, and neighboring edge devices were examined, focusing

on enhancing image processing efficiency. The intricacy of

this paradigm can be exemplified in a multi-user environment,

characterized by concurrent image processing tasks (e.g.,

multiple colored users in various regions as illustrated in

Figure 1). If tasks were processed locally, notable delays could

be experienced, attributable to the limited computational

capacities of individual devices. Although offloading to an

edge node or cloud data center might reduce processing time,

subsequent challenges, including transmission delay and

queuing time, could be encountered.

Figure 1. A motivation example

Traitement du Signal
Vol. 40, No. 4, August, 2023, pp. 1329-1339

Journal homepage: http://iieta.org/journals/ts

1329

https://orcid.org/0009-0001-9021-0057
https://orcid.org/0000-0003-1547-5407
https://orcid.org/0000-0001-5589-7853
https://orcid.org/0000-0003-3628-0991
https://orcid.org/0000-0001-5809-3818
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400403&domain=pdf

1.2 Proposed framework: I-CTOS-DRL

In response to these challenges, the I-CTOS-DRL

framework has been proposed. The salient contributions of this

study include:

• A keen understanding of image processing requirements,

with the offloading problem articulated to optimize total costs,

encompassing delays and energy expenditure. Collaboration

among edge servers was underscored to facilitate efficient

real-time image processing.

• The introduction of the I-CTOS-DRL framework, an

innovative method utilizing DRL and a heuristic algorithm to

reduce inherent complexities. An innovative task updating

mechanism for image processing was incorporated, promoting

fluid collaboration among edge servers.

• A tailored simulator was devised to rigorously appraise

the I-CTOS-DRL methodology. Evaluations corroborated its

prowess in managing real-time image processing tasks across

distinct sectors.

1.3 Applications and future directions

The I-CTOS-DRL exhibits considerable potential for

applications in domains like augmented/virtual reality, digital

medical intervention, autonomous driving, and advanced

industrial control. A shift in the understanding and application

of image processing within the realm of contemporary digital

technology is anticipated.

This study augments the existing body of literature by

offering a robust solution to the challenges posed by real-time

image processing via edge computing. Fresh perspectives in

the image processing domain have been unearthed, paving the

way for future innovations.

1.4 Conclusion

This research illuminates a significant stride in image

processing via edge computing, thereby enhancing the

technological panorama. By delineating and addressing the

intrinsic challenges of real-time image processing, a

prospective era where digital interactions become more

intuitive, prompt, and significant is envisioned.

2. RELATED WORK

2.1 Edge computing and task offloading: A focus on image

processing

Edge computing has been documented as a pivotal shift,

channeling computational resources to the network's periphery.

This shift has enabled a multitude of applications, spanning

from the IoT to autonomous vehicles, and importantly, image

processing. At the heart of this evolution, task offloading has

been observed, where the relocation of computationally

intensive tasks to edge servers was optimized, yielding a

marked reduction in latency [3].

(a) Image Processing within the Edge Computing Paradigm

Emerging task offloading techniques have been linked to

the ascension of image processing capabilities in edge

computing. Significant advancements in this domain are

evidenced by:

• Medical Imaging: Task offloading in ultra-dense networks,

as studied by Chen and Hao [4], was found to minimize delays

in medical image processing. Concurrently, battery

conservation was achieved through software-defined networks.

• Video Analytics: Through their research, Xia et al. [5]

established both exact solutions and approximation algorithms,

facilitating the offloading of real-time video processing tasks

within multi-cell mobile edge computing environments.

(b) Integration of Machine Learning in Image Processing

The incorporation of machine learning has been

acknowledged as a transformative step in the domain of

intelligent image processing. Key developments include:

• Machine Learning in Task Offloading: A decision tree-

based design for image classification was presented by Guo et

al. [6].

• Disease Recognition: Enhanced recognition capabilities

for early-stage brown spot disease in paddy leaves were

attained through a CNN-based model, as documented by

Upadhyay and Kumar [7].

• Alzheimer's Classification: It was reported by

Thayumanasamy and Ramamurthy [8] that the DenseNet-169

model exhibited superior performance in Alzheimer's disease

classification using brain MRI scans.

• Underwater Image Enhancement: A deep underwater

image enhancement network utilizing a convolutional neural

network algorithm was put forward by El Rejal et al. [9],

showcasing enhancements in visibility, contrast, and the

overall quality of deep-sea images.

(c) Efficiency-Driven Strategies in Image Processing

Prioritizing efficiency has remained a cornerstone of edge

computing strategies tailored for image processing.

Noteworthy strategies encompass:

• Power and Delay Reduction: Efforts to minimize system

power consumption and delays during image execution were

pursued by Keshavarznejad et al. [10], utilizing meta-heuristic

techniques.

• Tomato Seedling Recognition: Zhang [11] introduced an

information acquisition method leveraging the Cycle-

Consistent Adversarial Network. This method was

demonstrated to achieve a recognition accuracy ranging

between 91% to 97%, bolstering the automation capabilities of

tomato transplanters.

2.2 Evolution of task offloading within edge-cloud

interfaces

The rapid proliferation of mobile devices has been

perceived to amplify the demands on edge networks. In

response to these increasing pressures, several innovative

solutions have been proposed, as outlined below:

(a) Blockchain-Integrated Architectures for Image Data

Processing

• A blockchain-facilitated edge-cloud computing

architecture was put forward by Wu et al. [12]. This

framework aimed to bridge the gap between mobile cloud

computing and mobile edge computing, seeking to streamline

the efficiency of image data processing.

(b) Defensive Measures Against Distributed Denial of

Service Attacks

• In an effort to counteract volumetric-based Distributed

Denial of Service attacks targeting cloud and edge computing

networks, Yudhana et al. [13] integrated the Packet Filtering

Firewall and Circuit Level Gateway Firewall. It was observed

that these measures led to a substantial decline in both traffic

and server resource usage, with reductions ranging between

64%-98.88% and reaching up to 96% respectively.

1330

(c) Advanced Techniques for Image Edge Detection

• Moussa and Douik [14] ventured into refining edge

detection methodologies for image processing. By leveraging

information theory combined with metaheuristic and

intelligent algorithms, a considerable improvement in

execution time was achieved when compared to conventional

operators.

(d) 3D Visual Image Recognition in Athletic Training

• An innovative 3D visual image recognition technique

based on contourlet domain edge detection was elucidated by

Wang [15]. This method, specifically tailored for recognizing

and rectifying athletes' improper motions during training,

showcased noticeable advancements in the accuracy of motion

evaluations.

(e) Profit-Centric Offloading in Mobile Edge Computing

Servers

• Tunga et al. [16] unveiled a strategy aimed at maximizing

intrinsic profit when offloading tasks to Mobile Edge

Computing servers. Given the constraints of fixed memory

capacities and the necessity for low latency, the Ant Colony

Optimization model was adeptly employed, demonstrating its

efficacy in real-time applications.

2.3 Reinforcement learning's role in edge-based image

processing

The incorporation of reinforcement learning into image

processing at the edge has been increasingly examined. A

notable instance includes the work by:

• Qu et al. [17-19], wherein a deep meta-reinforcement

learning-based offloading algorithm was developed. This

algorithm, tailored for intricate image processing decisions,

harnessed the capabilities of several parallel deep neural

networks.

2.4 Opportunities and challenges ahead

Despite the significant strides observed in amalgamating

edge computing, task offloading, and image processing,

persistent challenges remain. These primarily relate to the

optimization of action and state spaces. Such challenges hint

at a vast scope for deeper exploration, suggesting that a

synthesis of reinforcement learning, task offloading, and

image processing in the paradigm of edge-cloud cooperation

might offer promising avenues of investigation.

2.5 Envisaging the evolution of task offloading in image

processing in edge-cloud interfaces

Efforts have been directed toward enhancing task offloading

methodologies grounded in Deep Reinforcement Learning

(DRL), especially for applications in image processing. The

predominant goal here revolves around reducing both latency

and energy expenditure within the ambit of edge-cloud

collaborative computing. This endeavor is perceived to be a

pivotal stride in refining edge computing frameworks and task

offloading mechanisms specifically for image processing

applications.

3. MODELS AND PROBLEM FORMULATION

3.1 The edge-cloud system architecture

In this research, an overarching topology of the edge-cloud

framework, with an emphasis on image processing tasks, is

delineated by the notation 𝑮 = {𝑪, 𝑴, 𝑼}.

• Cloud Data Center (C): Situated distally from the user

group and acting as the pinnacle of the system's hierarchy, the

cloud data center, designated by C, is recognized as the central

hub for expansive image processing undertakings.

• Edge Nodes and Base Stations: It is observed that the user

cluster interacts with edge nodes via wireless channels and

base stations. These edge layer entities, with their

heterogeneous and autonomous stances, span across diverse

regions. The notational representation, 𝑴 = {𝑚𝑘}, has been

adopted to capture the spread of edge nodes facilitated by

various operators. Every individual edge node, given by 𝑚𝑘,

is noted to be connected to its respective base station with a

predetermined computing potential reserved for image data

tasks. The computing capacity of each 𝑚𝑘 is subsequently

denoted by 𝑓𝑘.

• Adjacent Edge Servers: These are depicted by 𝑨(𝑚𝑘). It

is inferred that the selection of neighboring edge servers for

cooperation can substantially enhance the effectiveness of

image processing and dissemination.

• User Layer: Within this structure, the set of users

interfacing with the edge node 𝑚𝑘 is represented as 𝑼𝑚𝑘 =

{𝑢𝑖
𝑘}. Users are found to establish connections with the closest

edge node, which in turn augments the system's capability to

swiftly address image processing demands.

• End Devices: Such devices, embodying users within this

schema, range from computers and smartphones to smart

wristbands. A continuous stream of atomic tasks is generated

by these entities. These tasks, ranging from image recognition

to filtering and enhancement, are intrinsic to image processing.

The computational capacity of 𝑢𝑖
𝑘 , enveloping the

essentialities of image processing, is indicated by 𝑙𝑖
𝑘.

For a comprehensive understanding, Table 1 has been

curated to enlist pivotal notations, with a special focus on those

crafted to elucidate the specifics of image processing tasks.

Table 1. Symbol definition

Symbols Definitions

𝑮 Topology of edge-cloud architecture, 𝑮 = {𝑪, 𝑴, 𝑼}

𝑴 Set of edge nodes in 𝑮, where 𝑴 = {𝑚𝑘}

𝑚𝑘 The 𝑘𝑡ℎ edge node in 𝑴

𝑓𝑘 The computing capacity of edge node 𝑚𝑘

𝑼𝑚𝑘 Set of users located in the area of 𝑚𝑘, where 𝑼𝑚𝑘 =

{𝑢𝑖
𝑘}

𝑢𝑖
𝑘 The 𝑖𝑡ℎ user located in the area of 𝑚𝑘, where 𝑢𝑖

𝑘 ∈
𝑼𝑘

𝑙𝑖
𝑘 The computing capacity of 𝑢𝑖

𝑘

𝜒𝑖
𝑘 Set of tasks, including image processing tasks, where

𝜒𝑖
𝑘 = {𝑤𝑖

𝑘 , 𝑑𝑖
𝑘 , 𝛿𝑖

𝑘 , 𝜏𝑖
𝑘}

𝑤𝑖
𝑘 Task workload produced by user 𝑢𝑖

𝑘, including image

processing workload

𝑑𝑖
𝑘 Data size of user 𝑢𝑖

𝑘, specifically related to image

data size

𝛿𝑖 Ratio of output to input data volume user 𝑢𝑖, for

image transformation tasks

𝜏𝑖 The maximum tolerant delay of user 𝑢𝑖, for image

processing

𝑨(𝑚𝑘) The set of adjacent edge nodes of 𝑚𝑘

ℤ(𝑚𝑘) The feasible collaborative set of 𝑚𝑘

𝑫(𝑢𝑖
𝑘) The total delay of user 𝑢𝑖

𝑘

𝑬(𝑢𝑖
𝑘) The total energy consumption of user 𝑢𝑖

𝑘

𝛹(𝑢𝑖
𝑘) The total cost of user 𝑢𝑖

𝑘

𝜙(𝑠𝑡) The updating function of state 𝑠𝑡

1331

3.2 Transmission model for image processing tasks

In this segment, a specialized transmission model has been

formulated, concentrating predominantly on the intricacies of

managing image processing tasks. Emphasis is placed on the

offloading of tasks by users to edge servers. The pronounced

need for extensive bandwidth and dependable transmission

arises from the nature of high-resolution image data. Under

this framework, the collaborative essence of edge nodes is

highlighted, ascertaining proficient offloading to either a

directly connected edge node or its collaborative counterpart.

Based on the Rayleigh fading channel model [20], the

transmission rate 𝑟
𝑢𝑖

𝑘,𝑚𝑘
 between user 𝑢𝑖

𝑘 and the associated

edge node 𝑚𝑘 is articulated as:

𝑟
𝑢𝑖

𝑘,𝑚𝑘
= 𝑏𝑖,𝑘 ⋅ log2 (1 +

𝛾𝑖,𝑘ℎ𝑖,𝑘

𝑝(𝑢𝑖
𝑘, 𝑚𝑘)𝜔𝑖𝑁𝑖

) (1)

where, 𝑏𝑖,𝑘 and ℎ𝑖,𝑘 are established to signify the channel gain

and transmission bandwidth between user 𝑢𝑖
𝑘 and 𝑚𝑘 ,

respectively. Given the data-heavy constitution of images,

these parameters become central to the process. Concurrently,

𝑝(𝑢𝑖
𝑘 , 𝑚𝑘) defines the spatial relation between 𝑢𝑖

𝑘 to 𝑚𝑘 ,

while 𝛾𝑖,𝑘 represents the transmission power. Parameters like

Gaussian noise and path loss exponent, represented by 𝑁𝑖 and

𝜔𝑖 respectively, are identified as cardinal for maintaining

transmitted image data's authenticity.

In parallel, the transmission rate 𝑟𝑚𝑘,𝑚ℎ
between edge nodes

𝑚𝑘 and 𝑚ℎ is framed as:

𝑟𝑚𝑘,𝑚ℎ
= 𝐵𝑘,ℎ ⋅ log2 (1 +

Υ𝑘,ℎ𝐻𝑘,ℎ

𝑝(𝑚𝑘, 𝑚ℎ)𝜔𝑖𝑁𝑖

) (2)

The above Eq. (2) elucidates the channel gain 𝐵𝑘,ℎ and

transmission bandwidth 𝐻𝑘,ℎ between the said edge nodes. By

facilitating collaborations in image processing, an uptick in

efficiency and a dip in latency are witnessed. The spatial

dynamics between 𝑚𝑘 and 𝑚ℎ are mapped by 𝑝(𝑚𝑘 , 𝑚ℎ) ,

and Υ𝑘,ℎ documents the transmission power. The Gaussian

noise and path loss exponent for the edge node 𝑚𝑘 are

symbolized by 𝑁𝑘 and 𝜔𝑘, respectively.

In the presented model, meticulous considerations are made

to cater to the unique transmission requirements of images.

Factors such as bandwidth, channel gain, and inter-node

collaboration are seamlessly integrated to form a

comprehensive framework. This model, thus, offers insights

tailored to fortify reliable image processing tasks, cognizant of

the nuanced challenges that high-fidelity image data

transmission incurs.

3.3 Execution model for image processing

The concept of task offloading, particularly for image

processing tasks, is examined within a three-tier edge-cloud

framework. Image processing tasks possess unique attributes

like high computational requirements and significant data

volume, necessitating a distinct approach when considering

offloading. Potential offloading locations for these tasks could

encompass the local device, the directly connected edge node,

collaboratively connected edge nodes, or the cloud. Various

scenarios have been identified and the execution models are

outlined as follows:

(1) Execution on Local Device

The offloading issue is initially envisioned for multiple

users choosing to conduct image processing tasks locally.

These tasks could encompass image enhancement, filtering, or

object detection, all of which demand considerable

computational resources. The execution delay for a user,

denoted by 𝐷𝑙(𝑢𝑖
𝑘), is formulated as follows:

𝐷𝑙(𝑢𝑖
𝑘) =

𝑤𝑖
𝑘

𝑙𝑖
𝑘 (3)

In this context, 𝑤𝑖
𝑘 represents the workload, and 𝑙𝑖

𝑘 signifies

the CPU frequency of the user 𝑢𝑖
𝑘. The energy consumption

for task 𝜒𝑖
𝑘 of 𝑢𝑖

𝑘 is then defined:

𝐸𝑙(𝑢𝑖
𝑘) = 𝜅𝑖

𝑘 ⋅ 𝑤𝑖
𝑘 ⋅ (𝑙𝑖

𝑘)
2
 (4)

where, 𝜅𝑖
𝑘 is the coefficient factor of chip architecture for user

𝑢𝑖
𝑘 , reflecting the specific requirements of image-related

computations.

(2) Execution on Connected Edge Node

Subsequently, the scenario is studied wherein the image

processing tasks are executed on the directly connected edge

node. This strategy proves to be advantageous for real-time

image analytics. The transmission delay and the execution

delay between 𝑢𝑖
𝑘 and 𝑚𝑘 are respectively defined as follows:

𝐷𝑚
𝑡 (𝑢𝑖

𝑘) =
𝑑𝑖

𝑘

𝑟𝑢𝑖
𝑘,𝑚𝑘

 (5)

where, 𝑑𝑖
𝑘 is the data size of 𝑢𝑖

𝑘, reflecting significant volume

of image data. The execution delay on edge node 𝑚𝑘 is

𝐷𝑚
𝑒 (𝑢𝑖

𝑘) =
𝑤𝑖

𝑘

𝑓𝑘

 (6)

Thus, the total delay for image processing on the connected

edge node is expressed as:

𝐷𝑚(𝑢𝑖
𝑘) = 𝐷𝑚

𝑡 (𝑢𝑖
𝑘) + 𝐷𝑚

𝑒 (𝑢𝑖
𝑘) (7)

And the energy consumption is given by:

𝐸𝑚(𝑢𝑖
𝑘) = 𝛾𝑖,𝑘 ⋅ 𝐷𝑚

𝑡 (𝑢𝑖
𝑘) (8)

where, 𝛾𝑖,𝑘 is the transmission power from user 𝑢𝑖
𝑘 to 𝑚𝑘.

(3) Execution on Collaborative Edge Node

For more intricate image processing tasks, an analysis is

conducted where execution on the collaborative edge node is

contemplated. The transmission delay in this case is composed

of two parts:

𝐷𝑧
𝑡(𝑢𝑖

𝑘) =
𝑑𝑖

𝑘

𝑟𝑢𝑖
𝑘,𝑚𝑘

+
𝑑𝑖

𝑘

𝑟𝑚𝑘,𝑚ℎ

 (9)

where,
𝑑𝑖

𝑘

𝑟
𝑢𝑖

𝑘,𝑚𝑘

 is the transmission delay from user 𝑢𝑖
𝑘 to edge

node 𝑚𝑘.
𝑑𝑖

𝑘

𝑟𝑚𝑘,𝑚ℎ

 is the transmission delay from edge nodes 𝑚𝑘

to 𝑚ℎ.

1332

Since the task produced by user 𝑢𝑖
𝑘 processes on edge node

𝑚ℎ, the execution delay 𝐷𝑧
𝑒(𝑢𝑖

𝑘) is defined as:

𝐷𝑧
𝑒(𝑢𝑖

𝑘) =
𝑤𝑖

𝑘

𝑓ℎ

 (10)

where, 𝑓ℎ is the computing capacity of 𝑚ℎ. So the total delay

for executing image tasks on the collaborative edge node is:

𝐷𝑧(𝑢𝑖
𝑘) = 𝐷𝑧

𝑡(𝑢𝑖
𝑘) + 𝐷𝑧

𝑒(𝑢𝑖
𝑘) (11)

which is the sum of the transmission delay and the execution

delay. Similar to the scenario of execution on the connected

edge node, the energy consumption of execution on the

collaborative edge node is defined as:

𝐸𝑧(𝑢𝑖
𝑘) = 𝛾𝑖,𝑘 ⋅

𝑑𝑖
𝑘

𝑟𝑢𝑖
𝑘,𝑚𝑘

+ Υ𝑘,ℎ ⋅
𝑑𝑖

𝑘

𝑟𝑚𝑘,𝑚ℎ

 (12)

where, Υ𝑘,ℎ is the transmission power from 𝑚𝑘 to 𝑚ℎ.

(4) Execution on Cloud

Lastly, the prospect of executing image processing tasks on

the cloud is scrutinized, particularly for tasks that necessitate

significant computational resources. The transmission delay

and energy consumption in this case are defined as follows:

𝐷𝑐
𝑡(𝑢𝑖

𝑘) =
𝑑𝑖

𝑘

𝑟𝑢𝑖
𝑘,𝐂

 (13)

where, 𝑟
𝑢𝑖

𝑘,𝑪
 is the transmission rate between user 𝑢𝑖

𝑘 and the

cloud 𝑪. Based on that, the energy consumption of execution

on the cloud is defined as:

𝐸𝑐(𝑢𝑖
𝑘) = 𝛾𝑖,𝑘 ⋅

𝑑𝑖
𝑘

𝑟𝑢𝑖
𝑘,𝐂

 (14)

This section has conducted a thorough exploration of

diverse execution models within an edge-cloud framework,

with a specific focus on image processing tasks. Explicit

expressions for delays and energy consumption across

different scenarios have been provided, incorporating the

unique attributes of image processing into a cohesive

framework. This investigation aids in understanding the

specific requirements and potential advantages of different

offloading strategies, ensuring the efficient use of

computational resources and effective management of the

unique aspects of image data. The models proposed here can

further guide the design and optimization of edge-cloud

architectures for real-time image analytics.

4. PROBLEM FORMULATION

4.1 Representation of image processing tasks

In the rapidly evolving landscape of image processing tasks,

which includes activities such as object detection, image

classification, filtering, enhancement, and other complex

computational tasks, a critical need has arisen to optimize both

energy consumption and delay in multi-user scenarios.

Numerous users are engaged in a variety of image processing

tasks, and decisions related to offloading need to be carefully

crafted to meet the unique requirements of each task.

4.2 User delay and energy consumption

The unique characteristics of tasks generated by users,

particularly those related to image processing, demand a

simultaneous optimization of the overall energy consumption

and delay experienced by multiple users. The total delay for a

specific user, denoted by 𝑢𝑖
𝑘, is articulated as follows:

𝑫(𝑢𝑖
𝑘) = 𝛼𝑙 ⋅ 𝐷𝑙(𝑢𝑖

𝑘)

+𝛼𝑚 ⋅ 𝐷𝑚(𝑢𝑖
𝑘)

+𝛼𝑧 ⋅ 𝐷𝑧(𝑢𝑖
𝑘) + 𝛼𝑐 ⋅ 𝐷𝑐(𝑢𝑖

𝑘)

(15)

The Boolean variables 𝛼𝑙, 𝛼𝑚, 𝛼𝑧, 𝛼𝑐 are defined, with the

constraints:

𝛼𝑙 + 𝛼𝑚 + 𝛼𝑧 + 𝛼𝑐 = {0,1} (16)

The overall energy consumption of use 𝑢𝑖
𝑘 is denoted as

𝑬(𝑢𝑖
𝑘), and is formulated as:

𝑬(𝑢𝑖
𝑘) = 𝛽𝑙 ⋅ 𝐸𝑙(𝑢𝑖

𝑘)

+𝛽𝑚 ⋅ 𝐸𝑚(𝑢𝑖
𝑘)

+𝛽𝑧 ⋅ 𝐸𝑧(𝑢𝑖
𝑘) + 𝛽𝑐 ⋅ 𝐸𝑐(𝑢𝑖

𝑘)

(17)

The constraints on the Boolean variables 𝛽𝑙, 𝛽𝑚, 𝛽𝑧 and 𝛽𝑐

are defined:

𝛽𝑙 + 𝛽𝑚 + 𝛽𝑧 + 𝛽𝑐 = {0,1} (18)

Subsequently, the total cost for user 𝑢𝑖
𝑘 is defined as:

𝛹(𝑢𝑖
𝑘) = 𝛼 ⋅ 𝑫(𝑢𝑖

𝑘) + 𝛽 ⋅ 𝑬(𝑢𝑖
𝑘) (19)

4.3 Objective function

The main goal of this formulation is to identify an effective

framework that minimizes the aggregate cost of image

processing and associated tasks. This includes various

challenges inherent to image processing, such as handling

high-resolution images, complex image analysis computations,

and requirements for real-time responses. The formulation is

outlined as follows:

minimize ∑𝑘=0
|𝑴|

 ∑𝑖=1

|𝑼𝑚𝑘|
 𝛹(𝑢𝑖

𝑘) (20)

subject to:

𝑫(𝑢𝑖
𝑘) ≤ 𝜏𝑖

𝑘 (21)

𝛼, 𝛽 ∈ [0,1],0 ≤ 𝛼 + 𝛽 ≤ 1 (22)

∀𝑢𝑖
𝑘 ∈ 𝑼𝑚𝑘 , ∀𝑚𝑘 ∈ 𝑴 (23)

4.4 Complexity of image processing offloading

The challenge of task offloading, given capacity constraints

while optimizing overall energy consumption and delay for

multiple users, is identified as NP-hard. The inherent

complexity of image processing tasks introduces an additional

1333

layer of intricacy to this optimization puzzle.

4.5 Special considerations for image processing

Within the sphere of image processing, certain

considerations are crucial, including the need for powerful

computational capabilities, sensitivity to delay, and a focus on

energy efficiency. Unique algorithms may require specific

offloading strategies. The above formulation thoroughly

encompasses these aspects, thereby providing a solid

foundation for the analysis and application of image

processing tasks.

5. DRL-BASED COLLABORATIVE IMAGE

PROCESSING AND TASK OFFLOADING

FRAMEWORK (CTOS-DRL-IP)

This section introduces a DRL-based Collaborative Task

Offloading and Image Processing Framework (CTOS-DRL-

IP). This framework extends the CTOS-DRL, with a focused

objective of optimizing image processing in edge network

environments. The key goal of CTOS-DRL-IP is the efficient

management of image processing tasks by crafting a practical

collaborative set during the decision-making process. This is

accomplished using deep Q-learning. The subsequent sections

provide an in-depth discussion of the components and

functions of the CTOS-DRL-IP.

5.1 DRL formulation for image processing

In this subsection, the CTOS-DRL-IP framework, inspired

by deep Q-learning and specifically tailored for image

processing applications, is introduced. This includes the

representation of the total cost and the agent's knowledge of

image processing applications within the state space to

accurately model the edge network environment.

Definition 1 (State):

The state, denoted as 𝑠𝑡, is defined as a vector consisting of

𝑠𝑡 = [𝑇𝑖
𝑘, 𝑈𝑖/�̂�𝑖 , 𝐼𝑖

𝑝
]

𝑡
. Here 𝑼𝑖/|�̂�𝑖| represents the task

generated by users that requires processing. 𝑻𝑖
𝑘 =

∑𝑘=1

|�̂�𝑖|
 𝑇𝑖

𝑘 signifies the cumulative cost of the scheduled

completed tasks �̂�𝑖 , while the last part of the vector

symbolizes the attributes of the image processing task, such as

resolution, type, and processing requirements.

Definition 2 (Action):

The action space 𝑎𝑡 , embodying the adjusting action, is

represented by the vector [𝜁𝑖
𝑙 , 𝜁𝑖

𝑐 , 𝜁𝑖]𝑡
. Within this, 𝜁𝑖

𝑙 or 𝜁𝑖
𝑐

indicates whether the destination location of the adjustment

resides on a local device or in the cloud. The vector 𝜁𝑖 ,

denoting the set of feasible edge nodes 𝕄𝑖 is characterized by

𝜁𝑖 = (𝜁𝑖
𝑚(𝑘)|𝑚𝑘∈𝕄𝑖

) . Additionally, depicts the processing

action specific to the image task, such as filtering, sharpening,

or scaling.

Definition 3 (Reward):

The immediate reward is expressed by 𝑅(𝑠𝑡 , 𝑎𝑡) = (�̄�𝑖 −
𝐸)/�̄� − 𝛼 ⋅ 𝑄𝑖

𝑝
 , where �̅�𝑖 is the aggregate cost of multiple

tasks for users, �̅� is a fundamental cost that is being selectively

offloaded, and 𝛼 ⋅ 𝑄𝑖
𝑝

 is a quality factor pertinent to image

processing. This factor ensures a balance between cost

efficiency and quality of image processing.

In this context, the agent is prepared by selecting a

destination for various users and defining particular image

processing tasks. Training the agent, as a result, is anticipated

to facilitate the simultaneous accomplishment of offloading

and image processing tasks. The action 𝑎𝑡 is designed for each

time slot t, and the agent is rewarded 𝑅(𝑠𝑡 , 𝑎𝑡) in a given state

𝑠𝑡. Efforts are made to minimize the total cost, comprised of

energy consumption and delay, without undermining the

quality of image processing. This aligns with the

reinforcement learning objective of maximizing long-term

reward.

In conclusion, the CTOS-DRL-IP framework presents an

innovative method for collaborative image processing and task

offloading in edge networks, utilizing DRL. Through the

provision of tailored state, action, and reward definitions, the

framework provides a robust solution for managing complex

image processing tasks. This results in the achievement of

optimal energy efficiency and a reduction in delay without a

compromise in image quality. The insights and findings from

this study extend the current understanding of the field,

opening new avenues for exploration and application in real-

world scenarios.

5.2 Feasible collaborative set construction with image

processing consideration (FCSC-IP)

The goal of the agent operating within the CTOS-DRL-IP

framework is to achieve effective task offloading for multiple

users, aiming to minimize the overall cost, with special

attention given to image processing requirements. The nature

of these decisions depends on the observation of the

environment and the overall architecture, which, given the

constraint of edge server capacities, influences the number of

tasks that can be offloaded to individual regions. When an

edge node reaches its capacity, collaboration with neighboring

nodes becomes necessary, particularly when managing

complex image processing tasks that require stringent

adherence to processing, quality, and time parameters. The

complexity and high dimensionality of this collaborative set

construction process are addressed through the introduction of

the FCSC-IP method.

5.2.1 Image processing integration into collaborative decisions

In an edge network comprising seven interconnected edge

nodes, where each node has the ability to choose collaboration

partners for task completion, decisions are not made solely

based on proximity and availability. A novel method, FCSC-

IP, is proposed, taking into account specific image processing

capabilities such as resolution handling, filtering, and

transformation. Users serving at edge nodes 𝑚1 that connect

with 𝑚2 to 𝑚5 will have collaboration options, with

consideration given to the complexity introduced by the

adjacency matrix.

Definition 4 (Collaborative Influence Factor with Image

Processing Consideration):

The collaborative influence factor with image processing

consideration, denoted as 𝜑(𝑚𝑘), is formulated to assess the

collaborative capacity of edge node 𝑚𝑘 ∈ 𝐀(𝑚𝑘) for user 𝑚𝑘,

reflecting the image processing requirements:

𝜙(𝑚𝑘) =
𝑓ℎ

(𝑝(𝑚𝑘 , 𝑚ℎ) ⋅ |𝑈(𝑚𝑘)|)
× 𝛽(𝐼𝑖

𝑝
)

where, 𝛽(𝐼𝑖
𝑝

) serves as a weight parameter, factoring in image

processing attributes such as type, resolution, and complexity.

1334

Definition 5 (Feasible Collaborative Set with Image

Processing Consideration):

The feasible collaborative set with image processing

consideration, denoted as ℤ(𝑚𝑘) = {𝑚ℎ}, is derived from the

edge nodes in set 𝑨(𝑚𝑘) , with the collaborative influence

factor under the boundary parameter Γ𝑚𝑘
, such that 𝜑(𝑚ℎ) ≤

Γ𝑚𝑘
.

5.2.2 Algorithm for FCSC-IP

Algorithm 1. Feasible Collaborative Set Construction, FCSC
Input: The topology G of the edge-cloud architecture;
Output: The feasible collaborative set ℤ of each edge node in 𝐌;

1: for each edge node 𝑚𝑘 in 𝐌 do

2: Initialize the set 𝐔𝑗 in the area of edge node 𝑚𝑘;

3: Calculate the boundary parameter Γ𝑚𝑘
 according to the

maximum tolerant delay of users in set 𝐔𝑗 , where Γ𝑚𝑘
=

arg min𝑢𝑖
𝑘∈𝐔𝑚𝑘  {𝜏𝑖

𝑘};

4: Initialize the set 𝐀(𝑚𝑘) of adjacent edge nodes of 𝑚𝑘;

5: for each adjacent edge node 𝑚ℎ in 𝐀(𝑚𝑘) do

6: Calculate the collaborative influence factor 𝜑(𝑚ℎ) =
𝑓ℎ

𝑝(𝑚ℎ,𝑚𝑘)⋅|𝐔ℎ|
;

7: if 𝜑(𝑚ℎ) ≤ Γ𝑚𝑘
 then

8: Adding edge node 𝑚ℎ into set ℤ;

9: Update 𝐀(𝑚𝑘) = 𝐀(𝑚𝑘)/𝑚ℎ;
10: end if

11: end for

12: end for

13: return the feasible collaborative set ℤ;

The procedure for feasible collaborative set construction is

outlined in Algorithm 1, with explicit attention to the

requirements of image processing. The FCSC-IP algorithm

focuses on image processing needs, aiming to reduce

complexity while improving efficiency in the formation of a

feasible collaborative set. The time complexity of FCSC-IP is

𝑂(|𝑴| ⋅ |𝑼ℎ|) , taking into account the attributes of image

processing.

In conclusion, the FCSC-IP presents an innovative method

that enables edge nodes to participate in collaborative

decisions in task offloading, specifically reflecting the

complexity inherent in image processing tasks. By integrating

image processing prerequisites into both collaborative

influence factors and feasible set construction, FCSC-IP offers

a balanced and efficient solution, harmonizing cost, efficiency,

and quality in managing complex image processing tasks

within edge networks. This method not only enhances existing

offloading strategies but also provides a nuanced

understanding of the interaction between task distribution and

image processing, making a significant contribution to the

field.

5.3 CTOS-DRL for image processing tasks

In this subsection, a task offloading algorithm specifically

designed to meet the demands of image processing tasks is

introduced, grounded in DRL. The fundamental principle of

CTOS-DRL, summarized in Algorithm 2, involves using a

DRL agent to facilitate dynamic offloading of image

processing tasks from multiple users, with the goal of

minimizing the total cost.

The set of image processing tasks, denoted by χ, comes from

various users in set U and forms the input. The output, denoted

as the offloading strategy X, might include numerous image

manipulations such as filtering, object detection, segmentation,

and enhancements that require substantial computational

resources.

The approach is summarized as follows:

Algorithm 2 CTOS-DRL

Input: The tasks 𝜒 generated by users in set 𝐔;

Output: Offloading strategy 𝕏;

1: Initialize Θ to 𝑁, 𝑄 with random weights 𝜃, and �̂� with weights

�̅�: = 𝜃;

2: for episode from 1 to 𝜅 do

3: Initialize sequence 𝑠 for multiple users;

4: Construct the feasible set ℤ based on Algorithm 1;

5: for 𝑡 from 1 to 𝑇 𝐝𝐨

6: Select a random action 𝑎𝑡 with probability 𝜀 under the feasible

set ℤ;

7: Otherwise select 𝑎𝑡 = argmax𝑎 𝑄(𝜙(𝑆𝑡), 𝑎; 𝜃);

8: Set 𝑠𝑡+1 = 𝑠𝑡 , 𝑎𝑡 , 𝑥𝑡+1,and preprocess 𝜙𝑡+1 = 𝜙(𝑠𝑡+1);

9: Store transition (𝜙𝑡 , 𝑎𝑡, 𝑟𝑡, 𝜙𝑡+1) in Θ;

10: Sample random minibatch of transitions(𝜙𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝜙𝑗+1) from

Θ;

11: if episode terminates at step 𝑗 + 1 then

12: Set 𝑦𝑗 = 𝑟𝑗;

13: else

14: Set 𝑦𝑗 = 𝑟𝑗 + 𝛾max𝑎′  �̂�(𝜙𝑗+1, 𝑎′; 𝜃−);

15: Perform a gradient descent step on (𝑦 − 𝑄(𝜙𝑗 , 𝑎𝑗 ; 𝜃))
2

with

respect to the network parameters 𝜃;

16: Reset �̂� = 𝑄 every 𝐶 steps;

17: end if

18: end for

19: end for

20: return Offloading strategy 𝕏 for multiple users

(1) Initialization: Basic settings are initialized (Line 1),

including the capacity N of replay memory Θ, the target

action-value function �̂� with weights �̅�: = 𝜃, and the random

weights 𝜃 of action-value function Q.

(2) Environment Familiarization: Over a series of kappa

episodes, the agent becomes familiar with the environment,

tailored to the complex nature of image processing tasks

(Lines 2 to 19).

(3) Sequence Initialization: The sequence for multiple users

is initialized (Line 3), considering the unique characteristics

inherent to image processing tasks.

(4) Collaborative Set Construction: A feasible collaborative

set Z is constructed (Line 4) based on Algorithm 1, with

specific attention to the constraints and requirements of image

processing.

(5) Training Process: Spanning lines 5 to 18, the agent's

decision-making process encompasses action selection (lines

6-7), state and action setting (line 8), storing transitions in

replay memory (line 9), and applying gradient descent to

minimize total cost (lines 14 to 16).

(6) Final Offloading Strategy: Representing the optimized

solution for handling image processing tasks, the offloading

strategy X is returned (Line 20).

(7) Time Complexity: The time complexity of CTOS-DRL

is denoted by 𝑂(𝜅 ⋅ |𝑴| ⋅ |𝑼ℎ| ⋅ |�̃�𝑖|), where κ represents the

number of episodes, and U ˜_i refers to the scale of sub-tasks

pending scheduling on edge server mi, expressed as |�̃�𝑖| =

|𝑼𝑖/�̂�𝑖|.

The CTOS-DRL algorithm provides a robust and efficient

method for managing the offloading of image processing tasks.

By recognizing and accommodating the specific requirements

and complexities associated with image processing, it offers a

flexible and optimized solution that can adapt to the dynamic

1335

nature of contemporary applications involving image

manipulation.

6. EXPERIMENTAL EVALUATION FOR IMAGE

PROCESSING TASKS

This section provides a comprehensive investigation of the

task offloading problem through both simulations and

experimental methodologies. A particular emphasis is placed

on image processing tasks within the realm of edge-cloud

collaborative computing, echoing the growing demand for

real-time image processing in current applications such as

facial recognition, augmented reality, medical imaging, and

surveillance.

A prototype framework was utilized for these experiments,

developed using Python. This included the structure of the

edge network and the generation of image processing tasks by

multiple users, covering operations such as image

classification, segmentation, and enhancement. These tasks

are representative of the common requirements in

contemporary applications, requiring quick and proficient

image processing.

The experimental results were meticulously examined from

multiple perspectives, incorporating both computational and

communicational aspects of the offloading strategies, with the

quality of image processing acknowledged as a critical factor

in performance assessment.

6.1 Basic setting for image processing task evaluation

This subsection explores the effectiveness of the CTOS-

DRL approach to the task offloading problem, focusing on

image processing tasks, using a synthetic dataset generated by

6 to 10 edge nodes. The tasks included areas such as filtering,

object detection, enhancement, and segmentation.

A 500 square meter area, interacting with 6 to 14 mobile

users for each edge server, was included in the analysis. This

setup mirrors real-world situations where image processing

tasks might come from various sources, including mobile

applications, surveillance cameras, or IoT devices.

Table 2 outlines the essential parameter settings employed

in this study, tailored to meet the specific demands of image

processing, as referenced in literatures [20-22].

Four baseline algorithms were considered for comparative

evaluation in these experiments, each evaluated for its capacity

to manage image processing tasks:

• Offloading Tasks on Local Devices (OTLD): Image

processing tasks generated by users were iteratively offloaded

on local devices, considering the computational capabilities

and power limitations of these devices.

• Offloading Tasks on Edge Nodes (OTEN): Image

processing tasks generated by users were iteratively offloaded

on directly connected edge nodes, assessing the implications

on processing time and quality.

• Offloading Tasks on the Cloud (OTC): Image processing

tasks generated by users were iteratively offloaded on the

cloud, focusing on scalability and potential latency.

• Offloading Tasks through Greedy Strategy (OTGS): The

offloading location was chosen based on total cost

consideration for each iteration of image processing tasks

created by users, taking into account both computational and

communication expenses.

CTOS-DRL was compared with these four baseline

algorithms, and the effectiveness of CTOS-DRL in managing

image processing tasks was confirmed.

By incorporating the unique prerequisites and constraints of

image processing into the experimental design, a robust

foundation was established for evaluating the performance of

the proposed algorithm in a relevant context. These results

further validate the practicality and efficiency of the CTOS-

DRL approach in offloading image processing tasks within

edge-cloud collaborative computing environments.

Table 2. Setting of parameters for image processing tasks

Parameters Values

The path loss exponent 𝜔𝑖 3

The data volume of tasks (specific to image

processing)
0.5Mb~1Mb

The local device’s transmission power 𝛾𝑖,𝑘 3W

The local device’s computing capacities (suitable

for image processing)
0. 5-1GHz

The edge nodes’ computing capacities (optimized

for image processing)
5GHz

The channel’s fading coefficient 10−6

The chip architecture coefficient factor 10−20

6.2 Performance evaluations for image processing tasks

In this subsection, the performance of the strategy was

evaluated, focusing on image processing tasks such as object

detection, segmentation, and recognition. The goal was to

collaboratively optimize the overall energy consumption and

delay for these tasks. In this regard, the results were examined

in three distinct groups, characterized by α=0.3, β=0.7, α=0.5,

β=0.5, and α=0.4, β=0.6. These groups, with varying

parameters, indicate the proportion of delay and energy

consumption, crucial factors for real-time image processing.

A comparative analysis was performed to understand the

impact of the number of servers within identical strategies.

Here, the average total cost was calculated under the same

number of servers but varying numbers of users. Focus was

given to the relationship between costs and key variables such

as image quality, processing speed, and energy efficiency.

These are particularly relevant for edge devices constrained by

limited computational resources.

The findings, illustrated in Figures 2-4, led to several key

conclusions:

(1) It was observed that the total costs under OTLD and

OTC were significantly higher than other strategies. This

pattern became more pronounced when dealing with complex

image processing tasks, which can place increased

computational demands on local devices. An analysis was

conducted on the scenario with increasing edge servers in

OTLD and OTC, revealing the inherent shortcomings of these

strategies in managing image processing tasks.

(2) Conversely, the total costs under OTEN, OTGS, and

CTOS-DRL were found to decrease with the expansion of

edge servers. Specifically for image processing tasks, CTOS-

DRL showed the lowest total cost, enhancing efficiency by an

average of 48.93% compared to OTEN, and 22.29% relative

to OTGS.

Further insights were derived from the graphs in Figures 5-

10, providing comprehensive comparisons of costs under

various edge server conditions.

In the final analytical segment, Figures 11-13 depicted the

convergence of the strategies, showcasing how CTOS-DRL

operated across different scenarios of image processing. This

included tasks such as real-time object tracking, feature

1336

extraction, and image enhancement. The examination

underscored the substantial improvements brought about by

CTOS-DRL, particularly within groups with smaller scale

edge servers. This presents a powerful solution for mobile

edge computing within the realm of image processing

applications.

The explicit integration of specific image processing tasks

added a layer of practical relevance to the analysis, affirming

the applicability of the findings to real-world scenarios where

efficient image processing at the edge remains of utmost

importance.

Figure 2. The average cost of the first group (α=0.3, β=0.7)

Figure 3. The average cost of the second group (α=0.4,

β=0.6)

Figure 4. The average cost of the s third group (α=0.5,

β=0.5)

Figure 5. Total cost under 5 edge servers

Figure 6. Total cost under 6 edge servers

Figure 7. Total cost under 7 edge servers

Figure 8. Total cost under 8 edge servers

Figure 9. Total cost under 9 edge servers

Figure 10. Total cost under 10 edge servers

1337

Figure 11. The convergence of the s first group (α=0.3,

β=0.7)

Figure 12. The convergence of the s second group (α=0.4,

β=0.6)

Figure 13. The convergence of the s third group (α=0.5,

β=0.5)

6.3 Convergence evaluations for image processing tasks

In this subsection, the convergence of CTOS-DRL across

various user groups was examined, with a special focus on

image processing tasks that include classification, feature

extraction, and texture analysis. For each group of users, the

average total cost was calculated over a span of 500 iterations,

capturing performance metrics relevant to image processing.

After fitting, the results were outlined in Figures 11-13,

leading to the following conclusions:

(1) As illustrated in Figures 11-13, the cumulative costs

under the five strategies were found to nearly converge to a

specific value after 500 iterations. This trend attests to a

consistent performance across different parameters, even

when dealing with computationally demanding image

processing tasks. However, it should be noted that the rate of

convergence might be slow in some cases, especially when the

number of users is relatively high. Evidence of this

phenomenon can be seen in the group with α=0.4 and β=0.6

consisting of 10 users, as explained in Figure 12.

(2) The overall speed of convergence was found to be

closely related to the proportion of latency and energy

consumption to the total cost, both critical aspects for image

processing tasks. As shown in Figure 11, when the factor of

energy consumption is high, convergence was observed

around the 300th iteration. In stark contrast, when the

proportion dropped to β=0.5, convergence was noticed around

the 400th iteration. This sensitivity of convergence to these

variables underscores the importance of balancing

computational resources within edge computing environments,

especially when faced with image processing tasks requiring

immediate responses.

(3) Within the groups where α=0.3, β=0.7, α=0.5, β=0.5,

and α=0.4, β=0.6, a significant decrease in total costs was

recorded after approximately 50 iterations. This rapid

convergence highlights the effectiveness of the CTOS-DRL

method in adapting to diverse computational demands,

validating its suitability for a wide range of image processing

applications.

In summary, the findings demonstrate that CTOS-DRL

effectively achieves and maintains quick convergence, an

essential characteristic for real-time or near-real-time image

processing tasks. The analysis included here not only confirms

the robustness of the proposed model but also provides

insights into its successful deployment across various

scenarios requiring advanced image processing at the

network's edge.

7. CONCLUSION

In this study, the crucial issue of task offloading for multiple

users was explored, with a focus on image processing tasks

such as object detection, segmentation, and feature extraction

within an edge-cloud collaborative environment. The intricate

nature of image processing requires careful examination of

computational and communicative resource limitations,

especially in situations requiring prompt responses.

The main findings and contributions of this study are

outlined as follows:

(1) Optimization of Total Cost: An optimized offloading

strategy was developed that simultaneously considers delays

and energy consumption. The integration of these aspects

enables efficient processing of image-related tasks, avoiding

performance degradation or unnecessary costs.

(2) Innovative Offloading Strategy (CTOS-DRL): A novel

CTOS, based on DRL, was proposed that incorporates a crowd

updating mechanism within the collaborative edge cloud

computing framework. This approach reduces the high

complexity traditionally associated with nearby edge servers,

offering a heuristic algorithm to identify feasible ones.

Through the implementation of a fully connected neural

network, the task offloading process was further refined,

making it particularly suitable for image processing

applications.

(3) Extensive Simulations and Experiments: The efficiency

and effectiveness of the algorithms were confirmed through

detailed simulations and practical experiments, specifically

focusing on the context of image processing. Such

experimental results provided empirical evidence for the

superiority of the proposed approach in reducing the total cost,

while maintaining high image processing performance at the

edge.

(4) Implications for Image Processing at the Edge: The

proposed CTOS-DRL was found not only to solve the task

offloading problem but also to open new possibilities for the

execution of complex image processing applications at the

1338

network's edge. By leveraging advanced DRL techniques, a

pathway for future innovations in the field was established,

including potential extensions into video processing,

augmented reality, and other visual computing domains.

In summary, the findings of this investigation represent a

significant step forward in realizing the potential of edge

computing for image processing tasks, offering a promising

solution that expertly balances efficiency, cost-effectiveness,

and robust performance. The methodologies and insights

gleaned from this research provide a valuable foundation for

further exploration and enhancement in this rapidly evolving

field.

REFERENCES

[1] Luo, Q., Hu, S., Li, C., Li, G., Shi, W. (2021). Resource

scheduling in edge computing: A survey. IEEE

Communications Surveys & Tutorials, 23(4): 2131-2165.

https://doi.org/10.1109/COMST.2021.3106401

[2] Mach, P., Becvar, Z. (2017). Mobile edge computing: A

survey on architecture and computation offloading. IEEE

Communications Surveys & Tutorials, 19(3): 1628-1656.

https://doi.org/10.1109/COMST.2017.2682318

[3] Wang, B., Wang, C., Huang, W., Song, Y., Qin, X.

(2020). A survey and taxonomy on task offloading for

edge-cloud computing. IEEE Access, 8: 186080-186101.

https://doi.org/10.1109/ACCESS.2020.3029649

[4] Chen, M., Hao, Y. (2018). Task offloading for mobile

edge computing in software defined ultra-dense network.

IEEE Journal on Selected Areas in Communications,

36(3): 587-597.

https://doi.org/10.1109/JSAC.2018.2815360

[5] Xia, Q., Lou, Z., Xu, W., Xu, Z. (2020). Near-optimal

and learning-driven task offloading in a 5G multi-cell

mobile edge cloud. Computer Networks, 176: 107276.

https://doi.org/10.1016/j.comnet.2020.107276

[6] Guo, H., Liu, J., Lv, J. (2019). Toward intelligent task

offloading at the edge. IEEE Network, 34(2): 128-134.

https://doi.org/10.1109/MNET.001.1900200

[7] Upadhyay, S.K., Kumar, A. (2021). Early-stage brown

spot disease recognition in paddy using image processing

and deep learning techniques. Traitement du Signal,

38(6): 1755-1766. https://doi.org/10.18280/ts.380619

[8] Thayumanasamy, I., Ramamurthy, K. (2022).

Performance analysis of machine learning and deep

learning models for classification of Alzheimer’s disease

from brain MRI. Traitement du Signal, 39(6): 1961-1970.

https://doi.org/10.18280/ts.390608

[9] El Rejal, A.A., Nagaty, K., Pester, A. (2023). An end-to-

end CNN approach for enhancing underwater images

using spatial and frequency domain techniques. Acadlore

Transactions on AI and Machine Learning, 2(1): 1-12.

https://doi.org/10.56578/ataiml020101

[10] Keshavarznejad, M., Rezvani, M.H., Adabi, S. (2021).

Delay-aware optimization of energy consumption for

task offloading in fog environments using metaheuristic

algorithms. Cluster Computing, 24: 1825-1853.

https://doi.org/10.1007/s10586-020-03230-y

[11] Zhang, Y. (2023). Information acquisition method of

tomato plug seedlings based on cycle-consistent

adversarial network. Acadlore Transactions on AI and

Machine Learning, 2(1): 46-54.

https://doi.org/10.56578/ataiml020105

[12] Wu, H., Wolter, K., Jiao, P., Deng, Y., Zhao, Y., Xu, M.

(2020). EEDTO: An energy-efficient dynamic task

offloading algorithm for blockchain-enabled IoT-edge-

cloud orchestrated computing. IEEE Internet of Things

Journal, 8(4): 2163-2176.

https://doi.org/10.1109/JIOT.2020.3033521

[13] Yudhana, A., Riadi, I., Suharti, S. (2022). Network

forensics against volumetric-based distributed denial of

service attacks on cloud and the edge computing.

International Journal of Safety and Security Engineering,

12(5): 577-588. https://doi.org/10.18280/ijsse.120505

[14] Moussa, M., Douik, A. (2021). Synthesis and

comparison of improved edge detection technique based

on metaheuristic and intelligent algorithm optimization.

Traitement du Signal, 38(6): 1613-1622.

https://doi.org/10.18280/ts.380605

[15] Wang, H.Y. (2020). Three-dimensional image

recognition of athletes' wrong motions based on edge

detection. Journal Européen des Systèmes Automatisés,

53(5): 733-738. https://doi.org/10.18280/jesa.530516

[16] Tunga, H., Kar, S., Giri, D. (2022). Intrinsic profit

maximization of the offloading tasks for mobile edge

computing with fixed memory capacities and low latency

constraints using ant colony optimization. Mathematical

Modelling of Engineering Problems, 9(3): 668-674.

https://doi.org/10.18280/mmep.090313

[17] Qu, G., Wu, H., Li, R., Jiao, P. (2021). DMRO: A deep

meta reinforcement learning-based task offloading

framework for edge-cloud computing. IEEE

Transactions on Network and Service Management,

18(3): 3448-3459.

https://doi.org/10.1109/TNSM.2021.3087258

[18] Hou, W., Wen, H., Song, H., Lei, W., Zhang, W. (2021).

Multiagent deep reinforcement learning for task

offloading and resource allocation in cybertwin-based

networks. IEEE Internet of Things Journal, 8(22): 16256-

16268. https://doi.org/10.1109/JIOT.2021.3095677

[19] Chen, X., Liu, G. (2021). Energy-efficient task

offloading and resource allocation via deep

reinforcement learning for augmented reality in mobile

edge networks. IEEE Internet of Things Journal, 8(13):

10843-10856.

https://doi.org/10.1109/JIOT.2021.3050804

[20] Sun, M., Bao, T., Xie, D., Lv, H., Si, G. (2021). Towards

application-driven task offloading in edge computing

based on deep reinforcement learning. Micromachines,

12(9): 1011. https://doi.org/10.3390/mi12091011

[21] Li, Q.P., Zhao, J.H., Gong, Y. (2019). Computation

offloading and resource management scheme in mobile

edge computing. Telecommunications Science, 35(3):

36-46. https://doi.org/10.11959/j.issn.1000-

0801.2019060

[22] Guo, F., Zhang, H., Ji, H., Li, X., Leung, V.C. (2018). An

efficient computation offloading management scheme in

the densely deployed small cell networks with mobile

edge computing. IEEE/ACM Transactions on

Networking, 26(6): 2651-2664.

https://doi.org/10.1109/TNET.2018.2873002

1339

