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With rapid economic and urban progression, water resource and environmental challenges 

have become increasingly evident. This research focuses on water environment monitoring 

in the Beijing-Tianjin-Hebei region, employing advanced remote sensing and image 

processing methodologies. A technique was developed to extract the spatial location features 

of water bodies using remote sensing image segmentation. In addition, a novel spectral 

feature extraction technique predicated on a double inverse Gaussian model was introduced. 

This innovative method adeptly captures the contours of absorption peaks, facilitating the 

expression and extraction of spectral characteristics inherent to the water bodies. These 

methodologies were primarily designed to offer both theoretical and technical insights into 

the spatial distribution and temporal dynamics of the water environment. The outcomes of 

this study are comprehensively examined, with potential enhancements and prospective 

trends in water environment monitoring elucidated. 
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1. INTRODUCTION

Amidst the backdrop of rapid economic growth and 

urbanization, challenges concerning water resources and their 

environments have become increasingly salient [1-3]. Regions 

of pronounced economic, political, and cultural significance, 

characterized by extensive populations and burgeoning 

industrial activities [4], have been observed to face an 

escalating demand for water resources [5]. Owing to inherent 

regional climatic factors and natural conditions, water 

resources are reported to be limited [6]. Contemporary 

challenges, encompassing water pollution, deterioration of 

aquatic ecosystems, and increasing water environment risks, 

have emerged [7, 8]. It has been suggested that the security 

and well-being of the water environment are pivotal for 

sustainable regional development [9]. Consequently, timely 

and precise monitoring and evaluation of the water 

environment in the Beijing-Tianjin-Hebei region of China 

have been deemed imperative [10]. 

Remote sensing, recognized for its non-contact, wide-

ranging, and high-frequency observation capacities, has been 

proposed as a viable technique to scrutinize the water 

environment in the Beijing-Tianjin-Hebei region [11]. The 

attributes of remote sensing, including high spatial-temporal 

resolution, extensive area coverage, and real-time observation 

[12-14], render it advantageous, especially when traditional 

field monitoring methods often encounter constraints such as 

time, geographical limitations, and financial costs [15]. In 

water environment assessments, the application of remote 

sensing has been widely acknowledged for its ability to 

effectively discern spectral attributes, spatial distributions, and 

temporal modifications of water bodies [16, 17]. 

Simultaneously, advances in image processing technology, 

which primarily focuses on the analysis and processing of 

remote sensing imagery, have bolstered its application in water 

environment studies. Enhanced resolution of remote sensing 

images and capabilities for processing large datasets have 

fostered its appeal [18-20]. Through refined image processing 

methodologies, insights into water bodies, identification of 

pollution sources, and alterations in water quality can be 

swiftly acquired from remote sensing imagery [21-23]. Such 

technologies have been noted to offer substantial assistance for 

water resource management, aligning seamlessly with diverse 

water environment scenarios and monitoring prerequisites [24, 

25]. 

This research pivots on the evaluation of water environment 

monitoring methodologies in the Beijing-Tianjin-Hebei region, 

anchored by remote sensing and image processing innovations. 

The subsequent section delineates a technique for extracting 

spatial location attributes of water bodies based on remote 

sensing image segmentation. Thereafter, a spectral feature 

extraction method rooted in a double-inverse Gaussian model 

is explicated. This methodology is recognized for aptly 

depicting the contour of absorption peaks, thereby facilitating 

the extraction of water body spectral characteristics, and 

offering theoretical and technical insights into the spatial and 

temporal dynamics of the water environment. Conclusively, 

the study's findings, potential enhancements, and emerging 

trends in water environment monitoring are detailed.
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2. EXTRACTION OF WATER SPATIAL POSITION 

FEATURES VIA REMOTE SENSING IMAGE 

SEGMENTATION 

 

For effective water environment monitoring within the 

Beijing-Tianjin-Hebei region, it is essential that both spectral 

and spatial position features of water bodies are accurately 

obtained. The diagnostic spectral features extracted from 

remote sensing images serve as crucial tools for analyzing 

parameters of water quality and overall water environment 

conditions. Such spectral features have been observed to 

reflect concentrations of suspended particles, chlorophyll-a, 

and dissolved organic matter, all of which are pivotal 

indicators for water quality assessments. Through the analysis 

of these spectral features, real-time pollution levels of water 

bodies within the Beijing-Tianjin-Hebei region can be 

determined, thereby providing a scientific foundation for 

pollution control efforts. Conversely, spatial position feature 

extraction through image segmentation effectively 

discriminates water body areas from other terrestrial features 

in remote sensing images. This distinction offers insights into 

the spatial distribution of water bodies, facilitating the 

identification of pollution origins, analysis of water body 

dynamics, and risk assessments of the water environment. By 

exploring the relationships between water bodies, pollution 

diffusion routes, and the efficacy of water environment 

protection measures, spatial position features prove 

indispensable for water resource management and protection. 

Thus, the combined extraction of diagnostic spectral and 

spatial position features is paramount for enhancing water 

environment monitoring within the Beijing-Tianjin-Hebei 

region. 

To optimize water quality assessments, pollution source 

identification, and monitoring of water body dynamics, spatial 

position features are extracted, primarily relying on remote 

sensing image segmentation. Initially, a selection of bands 

based on spectral features is performed to refine the spectral 

data of water bodies. Such a process has been reported to hone 

the precision of remote sensing image processing, ensuring a 

more accurate differentiation between water bodies and other 

terrestrial features. This in turn heightens the fidelity of water 

environment monitoring. Subsequently, the results of the 

SLIC segmentation are integrated to address the frequent issue 

of over-segmentation observed with SLIC methods. By 

employing spatial features for the preliminary classification's 

refinement, issues like salt-and-pepper noise and fragmented 

misclassification are effectively rectified, further enhancing 

classification accuracy. The entire methodology for water 

remote sensing image classification is depicted in Figure 1. 

 

 
 

Figure 1. Overall framework of water remote sensing image classification 

 

 
 

Figure 2. Schematic diagram of the region adjacency 

graph 

For the segmentation of hyperspectral remote sensing 

images within the Beijing-Tianjin-Hebei region, the fast 

region adjacency graph method is utilized to consolidate 

superpixel blocks. This method has been lauded for its 

efficiency in merging neighboring superpixel blocks that are 

similar, reducing instances of over-segmentation and ensuring 

the preservation of water body boundaries. Crucially, during 

the merging phase, the spatial relationships between pixels are 

taken into account, mitigating the potential for incorrect 

merges of non-adjacent yet similar regions. This precision 

ensures segmentation outcomes align more accurately with 

real-world conditions. The schematic framework of the region 

adjacency graph is illustrated in Figure 2. 

Following SLIC segmentation of the water environment 

remote sensing image, it is assumed that the pseudocolor 

image, represented as T, comprises L sub-regions, denoted by 

EL={E1
L,E2

L,...,EL
L}. The pixel set within each sub-region is 

expressed as Ej
L={oj,1,oj,2,...,oj,||EjL||}. In these remote sensing 
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image samples, the characteristics of each sub-region are 

defined by the mean squared error parameter. Assuming the 

pixel count in each region is represented by ||E||, the 

subsequent equation is derived: 
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The mean squared error of each sub-region can then be 

calculated using the following equation: 
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Assuming that the adjacency between sub-regions is 

represented by U(u, k), the dissimilarity function between 

regions can be further calculated based on the results of the 

previous equation: 
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In the scenario where two sub-regions are adjacent, the 

assigned adjacency value U(u,k) is determined to be 1. 

Conversely, for non-adjacent sub-regions, the adjacency value 

U(u,k) approaches positive infinity. Utilizing the outcomes 

from the aforementioned equation, the dissimilarity between 

regions is then computed. It has been chosen in this study to 

conjoin sub-regions based on their dissimilarity, culminating 

in a reduction of the number of remote sensing images of the 

water environment to L-U post-merging. The elucidated steps 

underscore the principle underlying the segmentation of water 

environment remote sensing images centered on region 

merging. Figure 3 offers a comprehensive schematic detailing 

the mechanics of node merging. 

 

 
 

Figure 3. Schematic diagram of node merging 

 

Given the intrinsic high-dimensionality and voluminous 

data characterizing hyperspectral images, band selection 

grounded on spectral features becomes pivotal. Such an 

approach facilitates the filtration of the most indicative bands, 

thereby diminishing data dimensions. Consequently, this 

curtails the intricacy involved in data processing, preserving 

computational resources and minimizing time expenditures. It 

has been observed that in remote sensing images, the 

analogous spectral features spanning disparate objects could 

engender spectral confusion. The act of earmarking bands that 

exemplify the disparities between regions has been shown to 

ameliorate this spectral confusion dilemma, amplifying the 

capacity for object differentiation. Thus, in the specific realm 

of water environment monitoring within the Beijing-Tianjin-

Hebei region, the necessity for spectral feature-based band 

selection in remote sensing imagery becomes pronounced. The 

metric of mean squared error, identified as a salient spectral 

feature, proves instrumental in discerning bands that optimally 

underscore regional differences. The incorporation of these 

selected bands in the region merging operation has been 

proven to augment the precision of the remote sensing image 

segmentation process. 

For the extraction of bands boasting the peak mean squared 

error values in water environment remote sensing images, it 

becomes imperative to initially compute the mean squared 

error values spanning various bands. Under the presumption 

that the water environment remote sensing image, denoted as 

S, encompasses M bands, and the dimensions of each band 

image is characterized by l×b, the average pixel value across 

each band is captured by Nm .̄ Subsequently, the formula for 

deducing the mean squared error for each distinct band is 

encapsulated in the ensuing equation: 

 

1

1 lb

m u mu
f n N

lb =
= −  (4) 

 

In the domain of water environment surveillance within the 

Beijing-Tianjin-Hebei region, when endeavoring to identify 

efficacious bands from images captured under heterogeneous 

light sources, a direct ranking based on mean squared error 

values may culminate in the selected data predominantly 

originating from a singular light source, thereby engendering 

information redundancy. Clustering methodologies, adept at 

conglomerating data with analogous traits, permit the 

nomination of the most emblematic bands within each cluster. 

This strategy is instrumental in preserving multi-source data, 

thereby elevating the precision and resilience of the remote 

sensing image interpretation. Through clustering, similar 

regions spanning diverse light sources and bands are 

systematically grouped, mitigating the spectral confusion 

conundrum. By pinpointing the most discerning bands within 

each assemblage, object differentiation becomes markedly 

enhanced, thus optimizing classification accuracy. Figure 4 

delineates the hierarchal classification methodology deployed 

for aquatic environments. 

 

 
 

Figure 4. Stratified classification technique route for water 

environments 
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Within a homogeneously segmented domain, in scenarios 

where pixels of divergent categories coexist and a certain 

category is predominantly represented, it can be surmised that 

pixels outside this dominant category might be noise pixels or 

inaccurately categorized pixels. The incorporation of spatial 

location attributes facilitates the identification of these 

aberrant pixels, thereby diminishing their influence on the 

culminating outcomes. In the experimental framework of this 

research, the spatial location attributes of the water 

environment remote sensing imagery are predicated upon 

post-segmentation regions, mandating a synergistic approach 

between segmentation outcomes and initial classification 

findings. Under the premise that image T is compartmentalized 

into L regions, epitomized by EL={E1
L,E2

L,...,EL
L}, the 

extraction is orchestrated as follows: 

Step 1: The preliminary remote sensing image undergoes 

segmentation, orchestrating akin pixels into cohesive regions, 

culminating in distinct segmented territories. The 

segmentation outcome, represented as EL={E1
L,E2

L,...,EL
L}, is 

superimposed upon the nascent classification outcome. 

Step 2: Surrounding information for each segmented 

domain is meticulously extracted. This encompasses the 

classification data of proximate pixels, spatial distribution 

intel, and adjoining texture specifics. A systematic tally of 

variant pixel types within each segmented region is conducted. 

Step 3: A spatial relationship paradigm, grounded on 

proximate information, is formulated. This model, in tandem 

with spectral traits, coalesces to spawn an integrated feature 

set. The category M, with the predominant pixel presence in 

each segmented region, is identified, and subsequently, the 

proportion μ of these categorized pixels within the entire sub-

region of the remote sensing water environment image is 

computed. 

Step 4: The results emanating from the remote sensing 

image processing are rigorously evaluated, leading to the 

extraction of spatial location features (Mu, μu) pertinent to each 

region. 

 

 

3. SPECTRAL FEATURE EXTRACTION FROM 

AQUATIC ENVIRONMENTS 

 

Assessing the quality of water bodies, implementing sound 

water resource protection strategies, and safeguarding human 

sustenance and advancement are indispensable, underlining 

the paramountcy of water environment monitoring. Within 

this context, the method of spectral feature extraction, 

underpinned by the double inverted Gaussian model, has 

emerged as a salient approach. This method, by aptly capturing 

the contour of absorption peaks, enhances the accuracy and 

stability of spectral feature extraction. Its inherent adaptability 

permits compatibility across diverse aquatic environments and 

varying environmental conditions. Particularly in the Beijing-

Tianjin-Hebei region, distinguished by its scarce water 

resources and pressing environmental concerns, this approach 

promises robust technical support for comprehensive water 

monitoring, quality assessment, and the drafting of effectual 

protective measures. 

In recorded remote sensing imagery, it is noted that the 

spectral data from water bodies are often tainted by exogenous 

variables including atmospheric conditions, topographical 

features, and the sun's elevation angle. Concurrently, spectral 

measurement discrepancies might manifest during image 

procurement. Such perturbations necessitate normalization, 

which is recognized to attenuate the magnitude of these 

spectral discrepancies. In this context, envelope removal 

methodology has been chosen for the preprocessing of aquatic 

spectral data, facilitating the mitigation of the aforementioned 

non-water factors and thus enhancing the fidelity of spectral 

feature extraction. 

Given a discrete set of water environment spectral imagery, 

let it be denoted by e(u), where u spans the range 0,1,..., j-1. 

The correlative wavelength can be depicted as q(u), consistent 

with the range of u. The inception of the envelope node is 

discerned at e(0), q(0), while its termination is identified at u, 

with k incrementing to u+1. When u and k are connected, and 

their intersection with the spectral curve is identified, the 

ensuing observations were made: if a singular intersection 

point is discerned, and values along the connecting line 

supersede the spectral curve, then e(k), q(k) is appended to the 

envelope node. The start and end nodes of the envelope are 

subsequently redefined. In instances where this condition is 

unmet, k is incremented, perpetuating the search for 

intersections. 

Upon amalgamating all envelope nodes, the sought-after 

aquatic environmental spectral envelope is attained. The 

values encompassing the nodes on this spectral envelope are 

denoted by g(u), consistent with the range of u=0,1,..., j-1. The 

formulation of the envelope can be discerned from the ensuing 

equation, which is constructed based on the outlined 

procedural steps: 

 

( ) ( )g u e u  (5) 

 

The envelope removal normalization algorithm for water 

body spectrum can be characterized by the following equation: 

 
( ) ( ) ( ), 0,1, , 1
u

e e u g u u j = = −  (6) 

 

Given the spectral absorption peak's diagnostic significance 

for terrestrial objects and its semblance to an inverted yet 

asymmetric Gaussian shape, the conventional single inverted 

Gaussian model is observed to face challenges in adequately 

portraying such asymmetries. A superior alternative is 

presented by the double inverted Gaussian model, which 

integrates two inverted Gaussian functions, thereby offering a 

more precise representation of the asymmetric absorption peak 

shape. Such enhancement in representation inherently elevates 

the accuracy of spectral feature extraction. Consequently, 

within the purview of aquatic environment monitoring 

research in the Beijing-Tianjin-Hebei region, the double 

inverted Gaussian model has been employed to delineate 

diagnostic spectral characteristics. 

Absorption peaks within aquatic spectra are attributed to 

electronic transitions and oscillations occurring within water 

bodies. For the purposes of this research, it has been posited 

that the energy distribution within the aquatic absorption 

spectrum is of a random nature. Within this framework, the 

energy is represented by z, the amplitude by s, the mean by ω, 

and the standard deviation by δ. An ensuing equation 

delineates the Gaussian distribution simulation pertinent to a 

specific absorption band in the aquatic spectrum: 
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Given that random variables attributed to electronic 

transitions are associated with the average bond length, and the 

absorption energy follows a power-law relationship, it is 

recognized that the aquatic spectral absorption peak shape 

manifests asymmetry. Given these complexities, this 

investigation has posited that the absorption peak position is 

symbolized by O and efforts were made to pinpoint O in 

proximity to the aquatic spectral absorption peak. Subsequent 

to these steps, the double inverted Gaussian model was 

formulated. An ensuing equation elucidates the expression for 

the normalized spectrum: 
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1 2
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 = −   

  

 
(8) 

 

Satisfying ω=ω1=ω2, s=s1=s2. 

For the purpose of ascertaining the efficacy of the devised 

model in aligning with aquatic characteristic absorption peaks, 

a comparative analysis with alternative fitting techniques was 

undertaken in this research. Such a comparative stance 

facilitated an objective assessment of the merits and 

limitations inherent to the double inverted Gaussian model 

when applied to fitting vegetation characteristic absorption 

peaks, laying a foundation for ensuing investigations. The 

equation delineating the quadratic polynomial fitting is 

presented as follows: 

 
2t sz nz v= + +  (9) 

 

The cubic polynomial fitting formula is given by the 

following equation: 

 
3 2t sz nz vz f= + + +  (10) 

 

The double Gaussian function fitting formula is given by the 

following equation: 
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2 2
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1 22 2
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exp exp
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4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From Figure 5, it's evident that as the number of subregions 

increases, so does the segmentation accuracy for remote 

sensing images in the Beijing-Tianjin-Hebei water monitoring 

scenario. Yet, a saturation point appears around 200 

subregions, after which there's a diminishing return in 

accuracy improvement. This suggests that beyond this 

threshold, optimal segmentation granularity is achieved. The 

proposed method, centered on remote sensing image 

segmentation, has shown its capability in enhancing 

segmentation accuracy, underpinning the significance of this 

approach for the Beijing-Tianjin-Hebei water environment 

monitoring. 

 

 
 

Figure 5. Line chart illustrating image segmentation 

accuracy 

 

 
 

Figure 6. Spectra post envelope-removal 

 

 
(1) 

 
(2) 

 

Figure 7. The juxtaposition of turbidity attributes with 

absorption peak symmetry and depth across varied water 

samples 
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(1) 

 
(2) 

 

Figure 8. Statistical analysis of absorption peak symmetry 

and depth parameters 

 

Turning to Figure 6, which displays data across 

wavelengths and offers both original and normalized data, 

post-envelope removal spectral conditions are elucidated. The 

normalized dataset evidences a strategic mitigation of baseline 

drift in the spectrum, thereby fostering a reduction in 

analytical errors and enhancing spectral feature discernment. 

Consequent to envelope removal, the absorption and reflection 

dynamics intrinsic to aquatic spectra become accentuated, thus 

streamlining the extraction of water body spectral features. 

This culminates in furnishing pivotal insights for the inversion 

of water environment parameters within the Beijing-Tianjin-

Hebei region. The post-normalization spectral intensities 

across disparate bands uniformly align in magnitude, 

fortifying the comparison and appraisal of spectral features 

spanning multiple bands. Thus, the adopted preprocessing 

paradigm, anchored in the envelope removal approach, 

manifests its efficacy. This method appears adept at negating 

baseline drift and other spectral noise, foregrounding key 

spectral hallmarks and enhancing spectral data congruence. 

Delving into Figure 7, the interplay between turbidity traits 

and the depth of absorption peaks across a spectrum of water 

samples is portrayed. The distribution among these samples 

exhibits heterogeneity. A tentative correlation between 

absorption peak depth and turbidity becomes apparent from 

the data: samples exhibiting pronounced absorption peak 

depths tend to manifest augmented turbidity levels, whereas 

their counterparts with diminished absorption peaks display 

reduced turbidity. This can be postulated to imply that water 

samples with pronounced turbidity harbor an elevated density 

of suspended particulates. Such particulate abundance 

escalates light scattering phenomena, thereby deepening 

absorption peak depths. 

In Figure 8, a distinct correlation is discerned for Sample 4 

between absorption peak symmetry and turbidity. As 

symmetry of the absorption peak augments, a concomitant 

decline in turbidity is observed. Such findings imply that water 

bodies with elevated turbidity levels likely contain an 

increased concentration of suspended particulates, 

culminating in pronounced light scattering and a consequent 

reduction in absorption peak symmetry. Conversely, for 

Samples 1, 2, and 3, this relationship is less manifest. 

Interference from other aquatic environmental parameters 

within the Beijing-Tianjin-Hebei region, such as suspended 

matter, algae, and dissolved organic matter, could be 

speculated as the causal factors. These elements introduce 

intricate spectral feature variations, obscuring any simplistic 

correlation with turbidity alone. 

From the collated data, it can be inferred that the double 

inverted Gaussian model is adept at elucidating the 

relationship between turbidity attributes and absorption peak 

depth. Through the application of this model, a quantitative 

elucidation of the nexus between turbidity and absorption peak 

depth has been attained, enhancing the fidelity of aquatic 

spectral feature assessments. 

Upon examination of Figure 8, the distribution of 

absorption peak depths exhibits a discernible pattern. A 

significant proportion of water samples manifest absorption 

peak depths primarily within the 0.7 to 0.9 range, and a 

symmetry predominantly between 0 and 2. This distribution 

may hint at analogous aquatic environmental characteristics 

endemic to the Beijing-Tianjin-Hebei region, such as specific 

turbidity levels, suspended particulates, and algal content. It 

was further revealed that the double inverted Gaussian model 

is proficient in conforming to aquatic spectral data and 

extracting pertinent absorption and reflection peak attributes. 

Such capabilities facilitate the analysis of the statistical 

distribution of absorption peak depth parameters, thereby 

bolstering the inversion of aquatic environmental parameters 

within the Beijing-Tianjin-Hebei ambit. Additionally, by 

leveraging the double inverted Gaussian model, a comparative 

reflection of the statistical distribution of absorption peak 

depth parameters was rendered. Employing this model allows 

for a quantitative evaluation of the dispersion of absorption 

peak depths across disparate water samples. Such analyses 

amplify the precision of aquatic spectral feature assessments 

and unveil intricate correlations among aquatic environmental 

parameters within the Beijing-Tianjin-Hebei region. 

Upon examination of the data presented in Table 1, a 

statistical assessment of the reflectance at various wavelengths 

and the average reflectance across different water bodies was 

conducted. A discernible pattern in reflectance across different 

water bodies at varied wavelengths is evident. At 580nm, 

705nm, and 810nm wavelengths, heightened reflectance is 

observed, manifesting as reflection peaks, whereas at 675nm 

and 741nm wavelengths, the reflectance markedly diminishes, 

indicating absorption valleys. Such variations are postulated to 

be linked to the presence of suspended particles, algae, and 

dissolved organic matter within these aquatic environments. 

The mean reflectance across the water bodies also 

demonstrated disparities, potentially indicative of contrasting 

water quality characteristics. For instance, the apex average 

reflectance observed in water body 5 could allude to elevated 

concentrations of suspended particles or algae. Conversely, the 

nadir in average reflectance found in water body 4 might 
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signify diminished turbidity. In water bodies exhibiting 

enhanced average reflectance, higher reflectance at individual 

wavelengths was consistently observed, while in those 

demonstrating reduced average reflectance, a consistent 

decrease across wavelengths was noted. Such findings 

underscore a palpable correlation between reflectance at 

varied wavelengths and average reflectance. 

Analysis of the data in Table 2, post envelope removal, 

unveils certain coherences between water quality 

categorizations and spectral information extraction outcomes. 

For example, water bodies 1, 4, and 5, categorized under II, III, 

and III respectively, display spectral information extraction 

results consistent with their categories. Such outcomes suggest 

that spectral data effectively mirrors the water quality 

categorization. Moreover, a tangible association was detected 

between nutrient status and spectral information extraction. 

Waters deemed moderately eutrophic typically corresponded 

to heightened categories in the spectral information extraction 

results. Total phosphorus was identified as the predominant 

pollution marker for each aquatic sample. A clear relationship 

between the spectral data extraction and this key pollution 

indicator was discerned. Hence, post spectral analysis post 

envelope removal, discernible associations were noted among 

aquatic environment categories, nutrient status, and primary 

pollution indicators in the Beijing-Tianjin-Hebei region with 

their spectral information extraction outcomes. It can be 

inferred that spectral data accurately mirrors the water 

environment characteristics of the Beijing-Tianjin-Hebei 

region's water bodies. 

In summary, the spectral attributes of water bodies in the 

Beijing-Tianjin-Hebei region were evaluated using the double 

inverted Gaussian model. The subsequent extraction of 

parameters such as absorption peak depth, symmetry, and 

reflectance facilitated a robust statistical exploration of their 

distribution across diverse aquatic environments. The model's 

efficacy in spectral feature extraction reinforced its utility in 

the quantitative assessment of water environment parameters 

in the Beijing-Tianjin-Hebei region. Furthermore, the 

cohesive analysis of water quality categories, nutrient statuses, 

and primary pollution indicators, juxtaposed with spectral 

information extraction outcomes, elucidated the intrinsic 

relationship between these metrics and the spectral 

characteristics of the water bodies. Such revelations advocate 

for the employment of spectral data in gauging the aquatic 

environment in the Beijing-Tianjin-Hebei region, proffering 

invaluable insights conducive to astute water resource 

management and meticulous environmental surveillance in the 

area. 

 

Table 1. Reflectance analysis at diverse wavelengths and mean reflectance across varied water bodies 

 

Water 

Body ID 

Average 

Reflectance 

580nm 

Reflectance 

Step 

675nm 

Absorption 

Valley 

705nm 

Reflectance 

Peak 

741nm 

Absorption 

Valley 

810nm 

Reflectance 

Peak 

994nm 

1 0.065 0.093 0.082 0.096 0.073 0.093 0.011 

2 0.095 0.167 0.111 0.132 0.121 0.187 0.012 

3 0.156 0.247 0.178 0.276 0.298 0.264 0.032 

4 0.067 0.096 0.078 0.096 0.065 0.083 0.007 

5 0.187 0.388 0.243 0.238 0.183 0.274 0.023 

6 0.168 0.224 0.168 0.168 0.217 0.231 0.037 

 

Table 2. Core water quality metrics across different water bodies 

 
Water Body 

Number 

Water Quality Category 

(Surface Water) 
Nutrient Status 

Main Pollution 

Indicator 

Spectral Information Extraction 

Results 

1 Ⅱ 
Moderately 

Eutrophic 
- 

Overall Category II, partial Categories I 

and III 

2 Ⅳ 
Moderately 

Eutrophic 
Total Phosphorus Categories II and III 

3 Ⅴ 
Moderately 

Eutrophic 
Total Phosphorus 

Overall Category V, partial Categories 

VI and IV 

4 Ⅲ 
Moderately 

Eutrophic 
Total Phosphorus 

Overall Category II, partial Categories I 

and III 

5 Ⅲ / Total Phosphorus 
Overall Category III, partial Category 

IV 

6 Ⅳ / Total Phosphorus Categories III and IV 

7 Ⅴ 
Moderately 

Eutrophic 
Total Phosphorus 

Overall Category V, partial Category 

IV 

 

 

5. CONCLUSION 

 

In the context of monitoring the water environment in the 

Beijing-Tianjin-Hebei region, the efficacy of employing 

remote sensing coupled with image processing techniques was 

assessed. An approach for the extraction of spatial location 

features from water bodies, rooted in remote sensing image 

segmentation, was delineated. Furthermore, a novel spectral 

feature extraction strategy, anchored in the double inverted 

Gaussian model, was presented, demonstrating its aptitude in  

depicting the absorption peak shape and isolating the spectral 

features inherent to these water bodies. The overarching 

objective behind such methodologies was elucidated as 

furnishing both theoretical scaffolding and instrumental 

guidance for comprehending the spatial distribution and 

evolutionary trajectories of water environments. 

Empirical findings underscored the precision inherent in the 

image segmentation process, thereby affirming the efficacy of 

the delineated spatial location feature extraction approach 

grounded in remote sensing image segmentation. In spectral 
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data preprocessing, the deployment of the envelope removal 

technique was observed to be notably efficacious. Furthermore, 

an intricate examination of the nexus between turbidity 

attributes and absorption peak symmetry and depth across 

various water samples was undertaken. Such explorations 

concluded that the double inverted Gaussian model possesses 

the potential to elucidate the ties between turbidity 

characteristics and absorption peak depth. 

In a culmination of case studies, a systematic scrutiny of 

reflectance across disparate wavelengths and average 

reflectance across varied water entities was executed. 

Simultaneously, core aquatic quality metrics spanning 

different water bodies were assiduously analyzed. As a 

synthesis of the foregoing, several pivotal conclusions and 

recommendations have been delineated, which will inevitably 

pave the way for future research and practical applications in 

the realm of aquatic environment monitoring. 
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