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The efficient operation of the Smart Grid is contingent on the accurate analysis of power 

signals, which are often compromised by disturbances. These power signals, captured 

by quality monitors, generate substantial volumes of data, thereby necessitating 

effective compression strategies to facilitate manageable data transfer and collection. 

Besides mitigating the costs associated with data storage, transmission, and encryption, 

these compression techniques must ensure minimal reconstruction error to avoid 

distortion in the original signal. Moreover, it becomes imperative to eliminate noise for 

the attainment of high-quality signals, critical for disturbance detection. In this paper, a 

novel method has been developed employing lower-order wavelets (Db3, Db2, Db2, 

Db2, and Db1). This method decomposes the signal from the first to fifth level utilizing 

wavelet Packet Transform, testing the efficacy on Phasor Measurement Unit data. 

Simulation results demonstrate enhanced data compression and noise reduction 

compared to previous designs, with the signal being approximately reconstructed. This 

innovative approach offers a facile, efficient, economical, and time-saving solution for 

smart grid data management, marking a significant advancement in this field. 
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1. INTRODUCTION

Renewable energy generation, typified by solar power, has 

witnessed significant growth, spurred on by climate and 

energy challenges [1]. Conventional power sources are rapidly 

dwindling, with existing plants demonstrating inefficiency, 

obsolescence, and unsuitability. Complications such as 

blackouts, brownouts, substantial transmission losses, energy 

insufficiency, and power quality issues plague the current 

electrical grid. To overcome these challenges, a 

comprehensive overhaul of the power supply system is 

required [2]. 

Emerging as a modern electric network, the smart grid 

introduces a paradigm shift in power grid operation, 

leveraging several advanced technologies [2]. Key 

components, including measuring and automation devices in 

the generation and transmission systems, smart meters, and 

monitors in the distribution systems, are deployed to capture 

and process extensive real-time power system monitoring and 

measurement data [3]. Given the voluminous data, there is a 

critical need for effective compression techniques. A review 

of lossless and lossy data compression methods reveals that 

transform-based techniques demonstrate superior data 

compression and noise reduction compared to Parametric and 

Mixed Parametric and Transform methods [3]. Notably, 

wavelet transforms and wavelet packet transforms stand out 

for their efficacy in compressing non-periodic, transient, and 

varying frequency signals, localizing both time and frequency 

[3]. The quality of the electrical signal significantly influences 

the applicability of smart grid techniques [4]. Several studies 

have discussed various data compression techniques for 

managing the extensive data generated by smart meters and 

phase measurement units in the Smart Grid [5]. The electrical 

signal is often distorted by voltage sag and swell, transients, 

harmonics, fluctuating voltage, and notching [6]. Wavelet 

transform has been employed for segmenting disturbed signals 

[6], and for identifying system abnormalities using voltage and 

current signals, thereby reducing storage and bandwidth 

requirements [7]. Accurate measurement and monitoring of 

smart grid data are crucial for ensuring power signal quality 

[8]. Integrated Power Quality Monitoring System (IPQMS) 

amalgamates data from power quality monitors and analyzers, 

fault detectors, protective relays, and smart meters [8]. 

Advanced signal processing techniques are commonly 

employed in smart grid applications [9]. Lossless compression 

techniques have proven effective for managing the high 

sampling rate data of the smart grid [10]. Several methods for 

detecting faults in the Smart Grid have been reviewed [11]. 

Smart grid data has been subjected to run-length encoding 

for compression and encrypted using lightweight methods [12]. 

Wavelet transform has been used to divide voltage and current 

disturbance signals at various sampling rates [13]. Resumable 

load data compression has been employed to reduce 

complexity in the smart grid [14]. The Daubechies2 (db2) 

wavelet has shown superior compression of phase 

measurement unit data compared to the coiflet1 (coif1) 

wavelet [15]. Compression sensing methods have been tested 

for compression and reconstruction of low-voltage data [16]. 

Disturbances in power quality have been segmented by 

wavelet transform using an adaptive threshold [17]. Minimum 

description length criterion has been utilized to select a 

suitable wavelet for compressing the disturbance signal using 

wavelet transform [18]. Signals have been compressed by 

selecting wavelets and levels of decomposition based on the 
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frequency of oscillating data [19]. 

While singular value decomposition demonstrates better 

compression and reconstruction, it is computationally 

complex due to matrices [20-22]. Wavelet transform 

compresses and reconstructs signals more effectively than the 

discrete cosine transform [23]. Embedded Zerotree Wavelet 

Transform has been applied for compressing and denoising 

smart grid data [24]. The best basis for wavelet packet 

transform is determined by modifying the Shannon entropy 

with added weights [25]. Wavelet packet decomposition 

compresses and denoises smart grid data using Daubechies 

wavelet db2 at the sixth level of decomposition [26]. The 

optimal tree is determined by the algorithm of Coifman and 

Wickerhauser using normalized Shannon entropy [26]. The 

best basis is determined by weighted entropy from the 

complete tree obtained from wavelet packet transform using 

Symlet wavelet sym8 at the fourth level of decomposition [27]. 

The threshold is calculated from the modified minimum 

description length to reduce noise [27]. However, the methods 

mentioned in studies [26, 27] are computationally complex as 

both approximation and detail coefficients are decomposed up 

to the sixth level [26] and recently in the study [27] at the 

fourth level using a large number of filters. The discrete 

wavelet transform improves the compression ratio and reduces 

complexity [28]. Several data compression methods using 

wavelet transform have been reviewed [29]. 

Given these studies, there appears to be potential for further 

complexity reduction while improving the compression ratio, 

reconstruction error, and signal-to-noise ratio. In light of this, 

the proposed method in this paper uses wavelet packet 

transform, combining different wavelet filters with a suitable 

threshold at each level. This method aims to reduce 

complexity while bettering compression, maintaining high 

quality, and minimizing distortion at the fifth level of 

decomposition. This approach aims to address the challenges 

in the current methods, contributing to the body of knowledge 

in this field. 

The paper is structured as follows: Section 1 presents 

introduction with a detailed review of the relevant literature, 

highlighting the gaps this study seeks to fill. Section 2 

describes the proposed methodology, while Section 3 

discusses the experimental setup and results. Finally, Section 

4 concludes the paper with key findings and potential 

directions for future research. 

With the proposed method, this study seeks to make a 

significant contribution to the advancement of smart grid 

technology. By leveraging wavelet packet transform and 

combining different wavelet filters with a suitable threshold at 

each level, it is anticipated that the new method will not only 

reduce complexity but also improve compression, deliver high 

quality, and minimize distortion at the fifth level of 

decomposition. The potential implications of these 

improvements on the management and operation of the smart 

grid are profound. The main contribution of this research is the 

development and testing of a new method for data 

compression in smart grids. By implementing this new method, 

it is expected that significant improvements can be achieved 

in terms of reducing complexity, improving compression, and 

ensuring high quality and minimal distortion of data. 

Through this research, it is hoped that the challenges 

associated with the operation and management of smart grids 

can be addressed, thus facilitating the transition from 

conventional power sources to more sustainable and efficient 

energy systems.  

2. METHODOLOGY 
 

Discrete wavelet transform (DWT) sends the signal through 

a low pass filter (LPF) and high pass filter (HPF) following 

decimation by two to get approximation coefficients a1 and 

detail coefficients d1, respectively, as shown in Figure 1 using 

multi resolution Pyramid Algorithm. It decomposes only 

approximation coefficients further up to a suitable level. The 

detail coefficients d1 are high-frequency coefficients 

containing noise and hence are thresholded by setting zero the 

coefficients below the threshold, as per Eq. (1), and now 

represented by d11 .  The signal can be reconstructed using 

upsampling by inverse discrete wavelet transform (IDWT), as 

shown in Figure 2, using Pyramid Algorithm in reverse [18, 

23]. 

 
 

Figure 1. Decomposition using DWT 

 

 
 

Figure 2. Reconstruction using IDWT 

 

This section describes the proposed data compression 

design in a smart grid using wavelet packet transform. The 

discrete wavelet transform develops into a full wavelet packet 

tree. The wavelet packet transform decomposes 

approximation and detail coefficients further. The wavelet 

coefficients are thresholded for compression and denoising to 

approximate the accurate regular signal. Hard thresholding 

sets the coefficients to zero whose absolute values are below a 

threshold value. Soft-thresholding sets to zero the coefficients 

having absolute values below a threshold value, and then 

shrinks the non-zero coefficients to zero [18, 26, 27]. 

The compression retains the coefficients with disturbances 

and ignores disturbance-free coefficients which discusses in 

the results of the proposed design. It suppresses the noise and 

distorts the data. The threshold tk
m  operates for absolute 

maximum value of the original coefficients Ck
m , as shown 

below at the kth node of level m. 

 

𝑡𝑘
𝑚 = (1 − 𝑢)𝑥𝑚𝑎𝑥│𝐶𝑘

𝑚│ (1) 

 

where, 0≤u≤1 [23]. The threshold can be 100%. The data 

compression improves as the threshold increases but it distorts 

the signal and it increases the noise level, hence most care to 

be taken to select the threshold. The soft thresholding of the 

coefficients works as shown below. 

 

𝐶𝑘
𝑚𝑚 = {

𝑠𝑖𝑔𝑛(𝐶𝑘
𝑚)(│𝐶𝑘

𝑚│- 𝑡𝑘
𝑚);  if│𝐶𝑘

𝑚│ > 𝑡𝑘
𝑚

0 ;            𝑖𝑓 │𝐶𝑘
𝑚│ ≤ 𝑡𝑘

𝑚
  (2) 
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where, Ck
mm are the soft thresholded coefficients [26]. 

 

 
 

Figure 3. Proposed design of wavelet packet decomposition 

 

In the proposed design, as shown in Figure 3, noisy signal 

is denoised by using threshold as suitable percentage of the 

error between original and noisy signal. Discrete wavelet 

transform is used to decompose approximation and detail 

coefficients further to get the wavelet packet tree. The 

compression process selects Daubechies filters Db3, Db2, Db2, 

Db2 and Db1 up to level 5, respectively, and for reconstruction, 

Db1, Db2, Db2, Db2 and Db3 in reverse. DWT and IDWT 

used in Figure 3 and Figure 4 are described in Figures 1 and 2, 

respectively. It decomposes the denoised signal a0 using db3 

wavelet by discrete wavelet transform at level 1. It further 

decomposes the approximation 𝑎1
1 and detail coefficients 

d2
1 from level 1 using the db2 wavelet by discrete wavelet 

transform at level 2. It decomposes the approximation 

coefficients 𝑎3
2 , 𝑎5

2 from level 2 using Db2 wavelets by 

discrete wavelet transform at level 3. It further decomposes the 

approximation coefficients 𝑎7
3 and 𝑎11

3  from level 3 using Db2 

wavelets by discrete wavelet transform at level 4. It further 

decomposes the approximation coefficients 𝑎15
4  and 𝑎23

4  from 

level 4 using Db1 wavelets by discrete wavelet transform at 

level 5. 

 

 
 

Figure 4. Proposed design of wavelet packet reconstruction 

 

The optimal tree decides the coefficients for the 

compression, and then these coefficients reconstruct the signal. 

In the optimal tree for compression, the coefficients a31
5  are 

pure approximation coefficients and hence are not thresholded. 

The coefficients d32
5  d16

4 , d8
3, d4

2 and a47
5 , d48

5 , d24
4 , d12

3 , d6
2 are 

not a pure approximation, hence are soft thresholded into 

coefficients d32
55  d16

44,  d8
33 , d4

22 and d47
55  d48

55,  d24
44 , d12

33 , d6
22 

respectively using Eq. (1) and Eq. (2).  

In the optimal tree for reconstruction, the coefficients 

𝑎15
44 are reconstructed using inverse discrete wavelet transform 

by upsampling a31
5  and d32

55 with Db1 wavelet. Similarly, the 

coefficients 𝑎7
33 are reconstructed using inverse discrete 

wavelet transform by upsampling a15
44  and d16

44  with Db2 

wavelet. Similarly, the coefficients a3
22  are reconstructed by 

upsampling a7
33  and d8

33  with db2 wavelet. The coefficients 

a1
11  are reconstructed by upsampling a3

22 and d4
22  with Db2 

wavelet. The coefficients 𝑎23
44 are reconstructed using inverse 

discrete wavelet transform by upsampling a47
55  and d48

55  with 

Db1 wavelet. Similarly, the coefficients 𝑎11
33 are reconstructed 

using inverse discrete wavelet transform by upsampling a23
44 

and d24
44 with Db2 wavelet. Similarly, the coefficients a5

22 are 

reconstructed by upsampling a11
33  and d12

33  with db2 wavelet. 

The coefficients d2
11 are reconstructed by upsampling a5

22 and 

d6
22 with Db2 wavelet. The signal a0 is reconstructed as a00 by 

upsampling a1
11 and d2

11 by inverse discrete wavelet transform 

with Db3 wavelet. 

The non-zero coefficients after decomposition and 

thresholding, as per Eq. (1) and Eq. (2), are the addition of pure 

approximation coefficients a31
5 and detail coefficients d32

55 , 

d16
44, d8

33, 𝑑4
22, and a47

55, d48
55, d24

44, d12
33, d6

22after thresholding.  

 

 

3. RESULTS AND DISCUSSION 
 

MATLAB algorithm works on the wavelet-packet 

transform-based proposed design for compressing and 

denoising data. 

As in Figure 5, the Phasor Measurement Unit (PMU) signal 

is generated in MATLAB Simulink. It adds noise using the 

MATLAB function 'awgn' (add white Gaussian noise). The 

signal is denoised using the command ‘wthresh’ where 's' is 

soft thresholding as per Eq. (2), thr is a threshold that can be a 

suitable percentage of the difference between signals X and Xn. 

It decomposes the signal by command 'wavedec' where n is the 

decomposition level and 'wname' is the wavelet function. It 

obtains the approximation coefficients a and detail coefficients 

d by commands 'appcoef' and 'detcoef' where 'c' is the 

decomposition vector of wavelet and 'l' is the bookkeeping 

vector containing level-wise number of coefficients. The 

threshold is calculated as per Eq. (1) and Eq. (2). The signal is 

compressed. It reconstructs the signal using 'idwt'. 

 

 
 

Figure 5. MATLAB flowchart of the proposed design 

 

It operates the simulated fault current of Phasor 

Measurement Unit (PMU). The file has 8-12 seconds and 18-

22 seconds of data before and after the fault hence the total of 
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30 seconds to detect and analyze abnormal parts in steady 

signals. It selects one thousand twenty-four samples of the 

PMU fault current near the disturbance location. The new 

design measures the performance by the percentage of 

compression ratio (CR), signal-to-noise ratio (SNR) in dB, and 

reconstruction error as normalized root mean square error 

(NRMSE) as below. 

 
𝐶𝑅

=
𝑁𝑜 𝑜𝑓 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑏𝑦 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑖𝑔𝑛𝑎𝑙
𝑥100% 

(3) 

 

𝑁𝑅𝑀𝑆𝐸 = √
∑ [𝑋(𝑖) − 𝑋𝑟  (𝑖)]2𝑁−1

𝑖=0      

𝑁2
 (4) 

 

𝑆𝑁𝑅1 = (
∑  𝑋𝑛(𝑖)2𝑁−1

𝑖=0

∑   [ 𝑋𝑛(𝑖) − 𝑋(𝑖)]2𝑁−1
𝑖=0

) (5) 

 

𝑆𝑁𝑅2 = (
∑    𝑋𝑟(𝑖)2𝑁−1

𝑖=0

∑   [ 𝑋𝑟(𝑖) − 𝑋(𝑖)]2𝑁−1
𝑖=0

) (6) 

 

X(i) is original signal free from noise. Xn(i) is the noisy 

signal, Xr(i) is the reconstructed signal, and N represents 

samples in the original fault signal. SNR1 is the signal-to-

noise ratio while transmitting, and SNR2 is receiving side 

signal-to-noise ratio and decide the success of the 

reconstructed signal in reducing noise. NRMSE decides how 

accurately the signal is regenerated. 

Figure 6 demonstrates the 1,024 samples of the original 

PMU current signal. The original signal is mixed with 

different noise levels. The denoised compressed data is 

transmitted. When denoising reduces the noise, the 

compression ratio is the result of it. The signal can be 

approximately regenerated and communicates the fault 

quickly with power quality. The regeneration of the signal is 

not accurate as it ignores undisturbed high-frequency detail 

coefficients having noise, and it does not send them on 

receiving side. As it sends only a few disturbing coefficients, 

the signal is approximate.  

The threshold values for the coefficients at each level of 

decomposition are calculated as per Eq. (1) and Eq. (2) and 

specify the conditions for which it ignores the undisturbed 

coefficients and displayed in Table 1 for noisy signal of SNR 

18.927. 

Figure 7 shows the noisy PMU signal with SNR 15.89dB, 

which improves to SNR 57.81dB in the reconstructed signal 

shown in Figure 8. Figure 9 shows the noisy PMU signal with 

SNR 18.927dB, which improves to SNR 57.78dB in the 

reconstructed signal shown in Figure 10. Figure 11 shows the 

noisy PMU signal with SNR 21.821dB, which improves to 

SNR 58.06dB for the reconstructed signal shown in Figure 12. 

Figure 13 shows the noisy PMU signal with SNR 24.541dB, 

which improves to SNR 58.163dB in the reconstructed signal 

shown in Figure 14. Similarly, Figures 15-18 are noisy PMU 

signals, and Figures 19-22 are their reconstructed signals. 

Figure 18 shows the noisy PMU signal with SNR 35.349dB, 

which improves to SNR 60.049dB in the reconstructed signal 

shown in Figure 22. 

It shows improved compression and denoising by the 

proposed design in Table 2, as analyzed with studies [26, 27]. 

Figures 7, 9, 11, 13, 15-18 display different noise levels of 

PMU signal, and Figures 8, 10, 12, 14, 19-22 represent their 

respective reconstructed signals with improved SNR as per 

Table 2. The proposed design has achieved 14.94% 

compression; signal-to-noise ratio improved to 60.1dB, and 

NRMSE of 0.0250.  

Table 3 describes the proposed design having simple lower-

order filters with level 5, whereas Khan et al. [26] have utilized 

db2 up to level 6 and Khan [27] has utilized higher order 

wavelet sym8 up to level 4. The proposed design utilized few 

lower order filters due to low levels, whereas, in studies [26, 

27], they use more filters due to higher levels. Hence the 

proposed design has less complexity than studies [26, 27]. 

 

 
 

Figure 6. Original faulty PMU signal 

 

 
 

Figure 7. PMU signal of SNR 15.89 dB 

 

 
 

Figure 8. Reconstruction with SNR 57.81 dB 

 

 
 

Figure 9. PMU Signal of SNR 18.927 dB 

 

 
 

Figure 10. Reconstruction with SNR 57.78 dB 
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Figure 11. PMU signal of SNR 21.821 dB 

 

 
 

Figure 12. Reconstruction with SNR 58.06 dB 
 

 
 

Figure 13. PMU signal of SNR 24.541 dB 
 

 
 

Figure 14. Reconstruction with SNR 58.163 dB 

 

 
 

Figure 15. PMU Signal of SNR 27.82 dB 

 

 
 

Figure 16. PMU Signal of SNR 30.316 dB 

 
 

Figure 17. PMU signal of SNR 32.252 dB 

 

 
 

Figure 18. PMU signal of SNR 35.349 dB 

 

 
 

Figure 19. Reconstruction with SNR 59.672 dB 

 

 
 

Figure 20. Reconstruction with SNR 59.713 dB 
 

 
Figure 21. Reconstruction with SNR 60.1 dB 

 

 
 

Figure 22. Reconstruction with SNR 60.049 dB 
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Table 1. Threshold for ignoring undisturbed coefficients 
 

 Approximation Coefficients Detail Coefficients 

 
Threshold for Low Pass 

Coefficients 

Threshold for High Pass 

Coefficients 

Threshold for Low Pass 

Coefficients 

Threshold for High Pass 

Coefficients 

Level 2 - 3.3705 - 0.4495 

Level 3 - 3.867 - 0.5491 

Level 4 - 0.4691 - 3.1607 

Level 5 - 1.4835 1.2215 1.9338 

 

Table 2. Performance comparison of PMU data for 1024 samples 

 
 Original Signal SNR (dB) % CR SNR2 (dB) NRMSE 

Proposed design 15.89 15.04 57.81 0.0326 

[26] 15.89 15.2 52.393 0.436x10−5 

[27] 15.89 - 37.764 12.65x10−5 

Proposed design 18.927 14.94 57.78 0.0327 

[26] 18.931 15.5 54.928 0.243x10−5 

[27] 18.927 - 40.842 6.229x10−5 

Proposed design 21.821 15.23 58.06 0.0317 

[26] 21.826 15.6 56.939 0.153x10−5 

[27] 21.821 - 43.727 3.205x10−5 

Proposed design 24.541 15.23 58.163 0.0313 

[26] 24.547 15.3 58.07 0.118x10−5 

[27] 24.541 - 46.394 1.734x10−5 

Proposed design 27.82 15.33 59.672 0.0263 

[26] 27.826 15.4 59.151 0.092x10−5 

[27] 27.82 - 49.526 0.843x10−5 

Proposed design 30.316 15.33 59.713 0.0262 

[26] 30.321 15.4 59.653 0.082x10−5 

[27] 30.316 - 51.807 0.499x10−5 

Proposed design 32.252 15.5 60.1 0.0250 

[26] 33.84 15.5 60.051 0.075x10−5 

[27] 32.252 - 53.483 0.339x10−5 

Proposed design 35.349 15.5 60.049 0.0252 

[26] 35.778 15.5 60.029 0.075x10−5 

[27] 35.349 - 54.882 0.246x10−5 

 

Table 3. Discussion of complexity in proposed design 

 
 Proposed Design [26] [27] 

Method Wavelet Packet Transform 
Wavelet Packet 

Decomposition 

Wavelet packet Transform with Weighted entropy 

and modified MDL 

Level of Decomposition 5 6 4 

Wavelets db3, db2, db2, db2, db1 Db2 Sym8 

Complexity Less complex 
More 

complex 
More complex 

 

 

4. CONCLUSION  

 

The paper describes the proposed design based on the 

wavelet packet transform for compressing and denoising data. 

The proposed design achieved better computational 

complexity with a better compression and signal-to-noise ratio 

at level 5 using Db3, Db2, Db2, Db2 and Db1 wavelets. The 

noisy PMU signal with SNR 15.89dB, achieves CR 15.04%, 

SNR 57.81dB and NRMSE 0.0326 in the reconstructed signal. 

The noisy PMU signal with SNR 18.927dB, obtains CR 

14.94%, SNR 57.78dB and NRMSE 0.0327 in the 

reconstructed signal. The noisy PMU signal with SNR 

21.821dB, obtains CR 15.23%, SNR 58.06dB and NRMSE 

0.0317 for the reconstructed signal. The noisy PMU signal 

with SNR 24.541dB, improves to SNR 58.163dB and achieves 

CR 15.23% and reconstructed signal with NRMSE 0.0313. 

The noisy PMU signal with SNR 32.252dB, improves to SNR 

60.1dB and gets CR 15.5% and NRMSE 0.0250 in the 

reconstructed signal. It has achieved 14.94% compression, 

signal-to-noise ratio 60.1 dB and NRMSE 0.0250 for PMU 

data. The data compression and storage are cost-effective, and 

it transfers the data fast as it uses a smaller number of filters. 

It is possible to reduce the complexity further. It is possible to 

further improve data compression and noise reduction and 

reduce reconstruction errors. It gives a small reconstruction 

error NRMSE which has a limitation; hence there is future 

scope to reduce it further.  

 

 

REFERENCES 

 

[1] Wan, C., Zhao, J., Song, Y., Xu, Z., Lin, J., Hu, Z. (2016). 

Photovoltaic and solar power forecasting for smart grid 

energy management. CSEE Journal of Power and Energy 

Systems, 1(4): 38-46. 

https://doi.org/10.17775/cseejpes.2015.00046  

1438

https://doi.org/10.17775/cseejpes.2015.00046


 

[2] Asaad, M., Ahmad, F., Alam, M.S., Sarfraz, M. (2019). 

Smart grid and Indian experience: A review. Resources 

Policy, 74: 101499. 

https://doi.org/10.1016/j.resourpol.2019.101499 

[3] Tcheou, M.P., Lovisolo, L., Ribeiro, M.V., Da Silva, 

E.A.B., Rodrigues, M.A.M., Romano, J.M.T., Diniz, 

P.S.R. (2014). The compression of electric signal 

waveforms for smart grids: State of the art and future 

trends. IEEE Transactions on Smart Grid, 5(1): 291-302. 

https://doi.org/10.1109/TSG.2013.2293957 

[4] Bollen, M.H.J., Das, R., Djokic, S., Ciufo, P., Meyer, J., 

Rönnberg, S.K., Zavoda, F. (2017). Power quality 

concerns in implementing smart distribution-grid 

applications. IEEE Transactions on Smart Grid, 8(1): 

391-399. https://doi.org/10.1109/TSG.2016.2596788 

[5] Wen, L., Zhou, K., Yang, S., Li, L. (2018). Compression 

of smart meter big data: A survey. Renewable and 

Sustainable Energy Reviews. 91: 59-69. 

https://doi.org/10.1016/j.rser.2018.03.088 

[6] de Andrade, L.C.M., Nanjundaswamy, T., Oleskovicz, 

M., Fernandes, R.A.S., Rose, K. (2019). Advances in 

classification and compression of power quality signals. 

Journal of Control, Automation and Electrical Systems, 

30(3): 402-412. https://doi.org/10.1007/s40313-019-

00446-1 

[7] Lai, C.S. (2014). Compression of power system signals 

with wavelets. International Conference on Wavelet 

Analysis and Pattern Recognition, 2014: 109-115. 

https://doi.org/10.1109/ICWAPR.2014.6961300 

[8] Music, M., Hasanspahic, N., Bosovic, A., Aganovic, D., 

Avdakovic, S. (2016). Upgrading smart meters as key 

components of integrated power quality monitoring 

system. 2016 IEEE 16th International Conference on 

Environment and Electrical Engineering (EEEIC), 
Florence, Italy. 

https://doi.org/10.1109/EEEIC.2016.7555554 

[9] Uddin, Z., Ahmad, A., Qamar, A., Altaf, M. (2018). 

Recent advances of the signal processing techniques in 

future smart grids. Human-Centric Computing and 

Information Sciences, 8(1). 

https://doi.org/10.1186/s13673-018-0126-9 

[10] Jumar, R., Maaß, H., Hagenmeyer, V. (2018). 

Comparison of lossless compression schemes for high 

rate electrical grid time series for smart grid monitoring 

and analysis. Computers and Electrical Engineering, 71: 

465-476. 

https://doi.org/10.1016/j.compeleceng.2018.07.008 

[11] Hlalele, T.S., Sun, Y., Wang, Z. (2019). Faults 

classification and identification on smart grid: Part-a 

status review. Procedia Manufacturing, 35: 601-606. 

https://doi.org/10.1016/j.promfg.2019.05.085 

[12] Singh, S. (2019). Improving quality of service in the 

smart grid using data compression and encryption 

technique. International Journal of Advance Research, 

Ideas and Innovations in Technology, 5(3): 2172-2176. 

[13] De Andrade, L.C.M., Oleskovicz, M., Fernandes, R.A.S. 

(2014). Analysis of Wavelet Transform applied to the 

segmentation of disturbance signals with different 

sampling rates. 2014 IEEE PES General Meeting | 

Conference & Exposition, National Harbor, MD, USA. 

https://doi.org/10.1109/PESGM.2014.6939189 

[14] Unterweger, A., Engel, D. (2015). Resumable load data 

compression in smart grids. IEEE Transactions on Smart 

Grid, 6(2): 919-929. 

https://doi.org/10.1109/TSG.2014.2364686 

[15] Bhuiyan, B.A., Absar, M.W., Roy, A. (2018). 

Performance comparison of various wavelets in 

compression of PMU generated data in smart grid. 3rd 

International Conference on Electrical Information and 

Communication Technology, Khulna, Bangladesh. 

https://doi.org/10.1109/EICT.2017.8275177 

[16] Sun, Y., Cui, C., Lu, J., Wang, Q. (2016). Data 

compression and reconstruction of smart grid customers 

based on compressed sensing theory. International 

Journal of Electrical Power and Energy Systems, 83: 21-

25. https://doi.org/10.1016/j.ijepes.2016.03.051 

[17] Andrade, L.C.M., Oleskovicz, M., Fernandes, R.A.S. 

(2016). Adaptive threshold based on wavelet transform 

applied to the segmentation of single and combined 

power quality disturbances. Applied Soft Computing 

Journal, 38: 967-977. 

https://doi.org/10.1016/j.asoc.2015.10.061 

[18] Hamid, E.Y., Kawasaki, Z.I. (2002). Wavelet-based data 

compression of power system disturbances using the 

minimum description length criterion. IEEE 

Transactions on Power Delivery, 17(2): 460-466. 

https://doi.org/10.1109/61.997918 

[19] Cheng, L., Ji, X., Zhang, F., Huang, H., Gao, S. (2018). 

Wavelet-based data compression for wide-area 

measurement data of oscillations. Journal of Modern 

Power Systems and Clean Energy, 6(6): 1128-1140. 

https://doi.org/10.1007/s40565-018-0424-2 

[20] De Souza, J.C.S., Lessa Assis, T.M., Pal, B.C. (2017). 

Data compression in smart distribution systems via 

singular value decomposition. IEEE Transactions on 

Smart Grid, 8(1): 275-284. 

https://doi.org/10.1109/TSG.2015.2456979 

[21] Li, Q., Zhang, M., He, S., Li, S. (2018). Instructions data 

compression for smart grid monitoring using wavelet 

domain singular value decomposition. Proceedings of the 

30th Chinese Control and Decision Conference, 

Shenyang, China, pp. 5171-5175. 

https://doi.org/10.1109/CCDC.2018.8408029 

[22] Karthika, S., Rathika, P. (2019). An efficient data 

compression algorithm for smart distribution systems 

using singular value decomposition. IEEE International 

Conference on Intelligent Techniques in Control, 

Optimization and Signal Processing, Tamilnadu, India, 

pp. 1-7. 

https://doi.org/10.1109/INCOS45849.2019.8951340 

[23] Karthika, S., Rathika, P. (2018). Wavelet transform 

based compression of electric signal waveforms for 

smart grid applications. International Journal of 

Engineering & Technology, 7(4): 5419-5426. 

https://doi.org/10.14419/ijet.v7i4.23269 

[24] Khan, J., Bhuiyan, S., Murphy, G., Arline, M. (2015). 

Embedded zerotree wavelet based data denoising and 

compression for smart grid. IEEE Transactions on 

Industry Applications, 9994(c): 1-11. 

https://doi.org/10.1109/TIA.2015.2420613 

[25] Bhuiyan, S., Khan, J., Murphy, G. (2018). Weighted 

entropy for data compression in smart grid. 2018 IEEE 

Industry Applications Society Annual Meeting, Portland, 

OR, USA, pp. 1-6. 

https://doi.org/10.1109/IAS.2018.8544486 

[26] Khan, J., Bhuiyan, S., Murphy, G., Williams, J. (2016). 

Data denoising and compression for smart grid 

communication. IEEE Transactions on Signal and 

1439

https://doi.org/10.1016/j.resourpol.2019.101499
https://doi.org/10.1109/TSG.2016.2596788
https://doi.org/10.1016/j.rser.2018.03.088
https://doi.org/10.1109/EEEIC.2016.7555554
https://doi.org/10.1016/j.compeleceng.2018.07.008
https://doi.org/10.1109/PESGM.2014.6939189
https://doi.org/10.1109/TSG.2014.2364686
https://doi.org/10.1016/j.asoc.2015.10.061
https://doi.org/10.1007/s40565-018-0424-2
https://doi.org/10.1109/TSG.2015.2456979
https://doi.org/10.1109/CCDC.2018.8408029
https://doi.org/10.1109/INCOS45849.2019.8951340
https://doi.org/10.1109/TIA.2015.2420613
https://doi.org/10.1109/IAS.2018.8544486


 

Information Processing over Networks, 2(2): 200-214. 

https://doi.org/10.1109/TSIPN.2016.2539680 

[27] Khan, J. (2021). Weighted entropy and modified MDL 

for compression and denoising data in smart grid. 

International Journal of Electrical Power and Energy 

Systems, 133: 107089. 

https://doi.org/10.1016/j.ijepes.2021.107089 

[28] Jadhav, R.Y., Mahajan, A. (2022). Data compression and 

noise reduction in smart grid using discrete wavelet 

transform. Traitement du Signal, 39(5): 1857-1863. 

https://doi.org/10.18280/ts.390546 

[29] Jadhav, R., Mahajan, A. (2023). Review on Data 

Compression Methods of Smart Grid Power System 

Using Wavelet Transform. In: Namrata, K., Priyadarshi, 

N., Bansal, R.C., Kumar, J. (eds), Smart Energy and 

Advancement in Power Technologies. Lecture Notes in 

Electrical Engineering, vol. 926. Springer, Singapore. 

https://doi.org/10.1007/978-981-19-4971-5_18 

 

1440

https://doi.org/10.1109/TSIPN.2016.2539680
https://doi.org/10.1016/j.ijepes.2021.107089
https://doi.org/10.18280/ts.390546



