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Clustering, a pivotal technique in statistics, enables the summarisation of data sets 

through the identification of related object groups. A prevalent question in clustering 

literature pertains to the precise number of partitions present within a data set. An array 

of clustering methods and indices has been proposed to discern the optimal number of 

clusters within a data set, each following its own set of rules. However, none of these 

methods universally excel in capturing the true components across all types of data 

structures. Particularly, they tend to grapple with uniquely shaped data sets or instances 

where objects from different groups are in close proximity. In this study, the 

performance of several clustering methods (Single Linkage, Complete Linkage, 

Average Linkage, Centroid Linkage, Ward.2D Linkage, Median Linkage) is evaluated 

in conjunction with different internal validity indices (KL, CH, Sil, Gap). This 

evaluation utilises simulated data, encompassing varied models, sample sizes, and 

distance measures, and is conducted using R software 3.1. Furthermore, several external 

indices (Rand, F-M, Purity) are employed to ascertain the degree of agreement between 

the true clusters of data points and the partitions computed through the clustering 

methods. 
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1. INTRODUCTION

Clustering is a common technique in statistics, which is 

addressed in many disciplines such as image analysis [1], 

machine learning [2], bioinformatics [3], pattern recognition 

[4], and data mining [5]. There are many available algorithms 

which attempt to select the optimal number of clusters in terms 

of their own rules; however, with a high performance no one 

capture the true clusters of all types of data structure [6]. In 

other words, clustering is the process of grouping items into 

groups (clusters) such that objects in the same cluster are more 

similar than those in other clusters. One of the well-known 

clustering algorithms is called hierarchical clustering which is 

a common methodology in statistics (more details can be 

found in studies [7] and [8]. There are two different 

hierarchical clustering approaches: agglomerative and divisive 

hierarchical methods. Our main interest in this paper is the 

agglomerative hierarchical method, which starts with the 

distance matrix and each object being in a separate cluster, 

then in each agglomeration step, we merge the closest clusters. 

Our goal is to select the clustering algorithms which have the 

ability to capture the true clusters with high performance under 

different models and different sample sizes, where this 

technique could use to evaluate the performance of the new 

suggested approaches. Therefore, in this paper, different 

models and different distance measures are used to evaluate 

the performance of some clustering methods (single linkage, 

complete linkage, average linkage, centroid linkage, ward.2D 

linkage, median linkage) under different validity indices (KL, 

CH, Sil, Gap), different simulated data and different sample 

sizes using R software 3.1. Also, some external indices (Rand, 

F-M, Purity) will be used to get the rate of agreement between

the true clusters of the data points and the partitions that we 

have computed using clustering methods. The results of all 

models show that the clustering method average linkage 

results with CH index match the true clusters about more that 

90% with different distance measure and different sample 

sizes.  There are three main possible linkage procedures in 

hierarchical clustering which are: single  linkage (closest 

neighbour), complete linkage (furthest-neighbour) and 

average linkage. When  we merge two clusters, we have to 

update the distance matrix depending on the choice of linkage 

method. For example, suppose we have a data set, {x1, x2…x5}, 

and assume the distance  between the observations x2 and x4, 

d24, is the smallest. Thus, x2 and x4 are merged together  in the 

first agglomeration step, and we denote this new cluster with 

x6 [9]. The distance between x6 and x1 is 

d61 = min{d21, d41} (1) 

and in the same way distances between the new cluster and 

other data points are updated. If we use the complete linkage 

or average linkage, the distance between x6 and x1 will be 

calculated respectively as follows [10]: 

d61 = max{d21, d41} or 
2

1 (d21 + d41) (2) 

Simulated Data: For illustrative purposes, two-component 

data from N(μ, σ2) in R2 is generated and shown in Table 1, 

where each component includes three observations.  The tree 

for the simulated data is hierarchically build using Euclidean 

distances with average  linkage, where the Euclidean distance 

is given by: 
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𝑑(𝑥, 𝑦) = √∑ (𝑥𝑗 − 𝑦𝑗)2𝑑
𝑗=1 (3) 

The Euclidean distance matrix for the simulated data in 

Table 1 is computed and is shown in Table 2, and objects is 

clustered hierarchically using the stats package (R Core Team, 

2017) in R. The dendrogram corresponding to the generated 

data is given in Figure 1. Blue labels for the internal nodes 

represent the agglomeration order, and internal nodes are 

labelled starting from n + 1, where n is the number of objects 

in the data, so n = 9, and the possible clustering schemes for 

this dendrogram are given in Table 3. 

Table 1. Generated data from N(μ, σ2) in R2 

Index Component 1st Dimension 2nd Dimension 

1 1 0.356 1.637 

2 1 0.826 1.912 

3 1 0.739 0.244 

4 2 3.138 3.343 

5 2 2.049 1.721 

6 2 2.163 0.726 

7 3 3.998 5.403 

8 3 4.911 4.971 

9 3 6.320 4.213 

Table 2. Euclidean distance matrix for the generated data in 

Table 1 

1 2 3 4 5 6 7 8 

2 0.545 
3 1.444 1.670 

4 3.264 2.719 3.919 

5 1.695 1.238 1.974 1.954 
6 2.024 1.787 1.503 2.793 1.002 

7 5.239 4.717 6.102 2.232 4.166 5.024 

8 5.645 5.103 6.304 2.407 4.330 5.057 1010 
9 6.497 5.956 6.848 3.299 4.945 5.426 2.609 1.6 

Table 3. Clustering scheme for the data in Table 1 

q Dj where j ∈{1, 2, …, q} 

1 {1,2,3,4,5,6,7,8,9} 

2 {1,2,3,5,6}, {4,7,8,9} 

3 {1,2,3,5,6},{4}, {7,8,9} 

4 {1,2,3,5,6},{4}, {7,8},{9} 

5 {1,2,3},{4}, {5,6}, {7,8},{9} 

6 {1,2},{3},{4}, {5,6}, {7,8},{9} 

7 {1,2},{3},{4},{5},{6},{7},{8},{9} 

8 {1},{2},{3},{4},{5},{6},{7},{8},{9} 

Figure 1. The dendrogram of the data in Table 1 

After a dendrogram is building, it is not easy to know where 

to cut the tree in order to determine how many clusters we have. 

Thus, we need some algorithms which help us to select a 

partition represents the data better. To address this question, in 

the literature some indices which is called internal cluster 

validity indices are proposed. In the next section, we will 

discuss these indices in detail. 

2. CLUSTER VALIDITY INDICES

Cluster validity indices can be divided into two types: 

internal indices and external scores. Internal indices are used 

to choose the best partitioning after applying the clustering 

algorithm. While, the external scores can be used to measure 

the agreement between the true partition and the results of 

clustering if the true partition of the data is known [11]. In the 

following sections we will discuss these indices in detail. 

2.1 Internal indices 

In the literature, there are many internal indices, so we pick 

four different internal indices from the most commonly 

referenced indices: Calinski and Harabasz index (CH index) 

[12], Silhouette index (Sil index) [13], Krzanowski and Lai 

index (KL index) [14] and Gap index [15]. All these internal 

indices are available in the NbClust package [16] in R. Internal 

index calculations are based on two quantities which are 

between-cluster sum of squares (BSS) and within-cluster sum 

of squares (WSS). So, we have to define BSS and WSS with 

some notation which are used in the discussion of various 

indices. We define: 

• Data points, xi, i = 1, 2, ..., m, where xi ∈ Rp.

• Number of objects, m.

• Mean of all objects, x .

• Number of clusters, q.

• Number of variables, p.

• Cluster j, Cj, j = 1, 2, ..., q.

• Number of elements in cluster Cj, mj.

• The distance between xi and xi′ data points, d(xi, xi′),

i, i′ ∈ {1, 2, ..., m}.

• The centroid of the cluster Cj which is defined by
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Depending on the above notations, BSS and WSS are 

defined by the following equations: 
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• CH Index

The CH index (Calinski and Harabasz index) was proposed 

in the study [12] and this index is defined by: 

( ( ) / ( 1)
( ) , 1

( ( ) / ( )

tr BSS q q
CHI q q

tr WSS q m q

−
= 

−
(7) 
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If we cluster the similar objects together, BSS(q) will be 

high, and WSS(q) will be small and we can take the proportion 

of BSS(q) and WSS(q). Then, the optimal number of clusters 

is the value of q which maximizes CHI, because CHI will take 

the maximum value when large distances will be occur 

between clusters. 

• KL Index 

The KL index (Krzanowski and Lai index) was suggested 

in the study [15] and this index is given by: 

 

2,
)1(
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(8) 

 

where, DIFF(q) = (q − 1)2/p tr (WSS(q−1)) − q2/p tr (WSS(q)). 

The optimal number of clusters will be the value of q which 

maximizes KLI(q). 

• Silhouette Index 

Silhouette index (Sil Index) is introduced [13], this index is 

defined by: 
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where, 

 

𝑆(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥{ 𝑎(𝑖), 𝑏(𝑖)}
, 

𝑎(𝑖) =
1

𝑛𝑗 − 1
∑ 𝑑(𝑥𝑖

𝑟∈𝐶𝑗

, 𝑥𝑟) 

𝑏(𝑖) = 𝑚𝑖𝑛𝑠≠𝑟{ 𝑑(𝑥𝑖 , 𝑥𝑟)} 

 

Here, a(i) represents the average of the distance between the 

ith point and other points in the same cluster. While b(i) 

represents the average of the distance between the ith point and 

the points from the nearest cluster. The optimal number of 

clusters in the data will be equal to the maximum value of the 

index. 

• Gap Index 

The Gap index was proposed [15]. It computes using the 

following equation: 

 

))(log()))((log()( * qWSSqWSSEqGap mm −=  (10) 

 

where, 𝐸𝑚
∗ (𝑙𝑜𝑔( 𝑊𝑆𝑆(𝑞)))  is the expectation of a sample 

which is generated from the reference distribution. We can 

summarise how to compute the Gap index as follows: 

• For each clustering scheme, WSS(q) is computed, 

where q∈ {1, . . . . , (𝑛 − 1)}. 
• Generate B reference data sets. Each data set is 

clustered, then for each possible partitioning. 

𝑊𝑆𝑆𝑏
∗ is calculated where b∈{1,...,B}. After that, we can 

calculate the Gap statistic, given in Eq. (10). 

• Compute the standard deviation of 

log(𝑊𝑆𝑆𝑏
∗),b=1,…,B, which is defined by: 

 

𝑠𝑑𝑞 = [
1

𝐵
∑ [𝑙𝑜𝑔( 𝑊𝑆𝑆 ∗ (𝑞)) −𝑏∈{1,...,𝐵}

∑ 𝑙𝑜𝑔( 𝑊𝑆𝑆𝑏
∗(𝑞))𝑏∈{1,...,𝐵} ]

2
]

(1
2⁄ )

  

 

• Choose the smallest q, which represents the optimal 

number of clusters, such that 𝐺𝑎𝑝(𝑘) ≥ 𝐺𝑎𝑝(𝑘 +

1) − 𝑠𝑞+1, where, 𝑠𝑞 = 𝑠𝑑𝑞√1 + 1/𝐵 

 

2.2 External scores 

 

In order to evaluate the performance of the internal indices, 

which have been illustrated above, we pick the following 

external scores: Rand index [17] which is available in the 

mclust package, FM index, and Purity index [18] which is 

available in the IntNMF package [19]. 

• Rand Index 

The Rand measure, which is suggested [17] is a measure of 

the agreement between two partitions. Let 𝑃(1) =

{𝐶1
(1)

, . . . , 𝐶𝑢
(1)

}  and 𝑃(2) = {𝐶1
(2)

, . . . , 𝐶𝑢
(2)

}  be two partitions 

where nij represents the number of observations allocated in 

the cluster 𝐶𝑖
(1)

 in P(1) and to cluster 𝐶𝑗
(2)

 in P(2) (see Table 4), 

then the Rand index is defined by the following formula: 
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As we can see RI 2 [0; 1], the value 0 indicates that the two 

data clustering do not agree on any pair of points, while the 

value 1 indicates that the two parathions are exactly the same. 

 

Table 4. The general form of contingency table between two 

partitions 𝑃(1) = {𝐶1
(1)

, . . . , 𝐶𝑢
1} and 𝑃(2) = {𝐶1

(2)
, . . . , 𝐶𝑣

(2)
} 
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• Fowlkes and Mallows Index (FMI) 

This index was introduced [20] as an external score to check 

the similarity between two partitions of a data points, and this 

index is defined by: 
 

]1,0[, = FMI
QP

T
FMI

Kk

k
 

 

where, 

 

𝑇𝑘 = ∑ ∑ 𝑛𝑖𝑗
2𝑣

𝑗=1 − 𝑚, 𝑃𝑘 ∑ (∑ 𝑛𝑖𝑗)2𝑣
𝑗=1 − 𝑚, 𝑄𝑘 =𝑢

𝑖=1
𝑢
𝑖=1

∑ (∑ 𝑛𝑖𝑗
𝑢
𝑖=1 )2𝑣

𝑗=1 − 𝑚. 

 

• Purity Index 

The purity index [18] takes the average purity for each 

cluster Ci from the same partition, Cj, and the maximum 

number of elements clustered together will be defined as purity. 

Hence, the purity measure is defined by: 
 

(1) (2)
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1
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where, PUI  [-1, 1], if PUI is close to one, this means the

similarity between the clustering and the true clusters is high. 

3. PERFORMANCE EVALUATION

In this section, we evaluate the performance of some linkage 

clustering methods (single, complete, average, centroid, 

ward.2D, median) with different internal validity indices (KL, 

CH, Sil, Gap) using simulated data with different models, 

different sample sizes, and different distance measures 

(Euclidean and Manhattan) using R software 3.1. The purpose 

of the suggested algorithm is three folds. First, which 

clustering algorithm able to detect the true clusters. Second, 

which internal validity index is able to cut the tree correctly to 

get the true number of clusters. Third, which external validity 

measure is able to get the high agreement between the results 

of clustering methods and the true clusters. For 

this purpose, we generate groups of data from various 

models with different parameters and we measure the 

performance of clustering algorithms with the data that we 

have generated. We consider different models in which each 

of the above varies: 

1. Model 1: five groups of size 100 observations are

generated from:

( )2 , , 1,2,...,5iN i =

where, 

0.25 4.5 7 11 15 1.25 0
, , , , ,

0.25 4.5 7 11 15 0 1.25
i

            
 =            

            


2. Model 2: nine groups are generated from:

2( , ), 1,2,....,9i i
N i =

where, 

2 2 4 0 3 0 4 0 3
, , , , , , ,

0 0 2 1 2 4 2 3 3
i

 − − −                  
                  

− −                  
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3. Model 3: eight groups of size 60 observations are

generated from 𝑁2(𝜇𝑖 , ∑ ), 𝑖 = 1, . . . ,8𝑖

where, 
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4. Model 4: ten groups are generated from

𝑁2(𝜇𝑖 , ∑), 𝑖 = 1, . . . . ,10 with sizes which are 40 for

groups {𝐺𝑖 , 𝑖 = 1, . . . . ,5} and 55 for groups {𝐺𝑖 , 𝑖 =
6, . . . . ,10} , where, 𝜇𝑖 ∈

{[
2

12
] , [

12
8

] , [
6
6

] , [
13
3

] , [
4
3

] , [
7
3

] [
2
8

] , [
12
13

] , [
1
3

] , [
7

11
]}, 

and ∑ ∈ {[
0.75 0

0 0.75
]} . 

We evaluate the performance of some clustering methods 

and some validity indices using the following algorithm. 

Algorithm 1 

1. Generate data points {(x1, y1); (x2, y2), …, (xm, ym)} from

different models 𝑁2(𝜇𝑖 , ∑ )𝑖  as described above, where these

data points consist of k true clusters. 

2. Calculate the distance matrices, M1 and M2, between

these observations using Euclidean distance and Manhattan 

distance which are defined by: 

22 )()()),(),,(( jijijjii yyxxyyyxd −+−= (12) 

mjmiyyxxyyyxd jijijjii ,...,1;,...,1,)),(),,(( ==−+−= (13) 

3. Build the tree for the data points using some distance-

based clustering methods (single linkage, complete linkage, 

average linkage, centroid, ward.2D, median) with distance 

matrices M1 and M2. 

4. Use internal validity indices (KL, CH, Sil, Gap) to get the

optimal number of clusters, q. 

5. Use external validity indices (Rand, FM, Purity) to get

the agreement between the true clusters and the partitions that 

we have computer from step (4). 

The results of Algorithm 1 are presented in the next section. 

4. RESULTS

The results of the simulation are presented in Tables 5 to 12 

and Figures 2 to 5. Figure 2 shows the true clusters for the 

models (Model 1, _ve groups), (Model 2, nine groups), (Model 

3, eight groups), (Model 4, ten groups). Tables 5, 7, 9, 11 show 

the number of clusters for the simulated models by using some 

clustering methods with some indices, while Tables 6, 8, 10, 

12 illustrate the rate of agreement between the true clusters and 

the results of the clustering methods with internal similarity 

indices using some external indices (Rand, F-M, Purity). In 

these results we can see the following: 

• The results of clustering method (single linkage) with 
all internal indices (KL, CH, Sil, Gap) and different 
distance measure doesn't match the true clusters.

• The results of average linkage and ward. D2 
clustering methods with CH index match the true 
clusters under different distance measure (Euclidean 
and Manhattan) and different models.

• In Model 1, we can see that the Median clustering 
method with Euclidean distance match the true 
clusters with three indices (KL, CH, Gap).

• In Model 2, we notice that the complete linkage 
clustering method with different distance measure 
(Euclidean and Manhattan) match the true clustering 
with CH index.
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Figure 2. (a) True clusters for (Model 1, number of clusters is 5); (b) True clusters for (Model 2, number of clusters is 9); (c) 

True clusters for (Model 3, number of clusters is 8); (d) True clusters for (Model 4, number of clusters is 10) 

 

 
 

Figure 3. Clustering methods (average, ward.D2, median) with some internal indices (KL, CH) 
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Figure 4. Clustering methods (complete, average, Ward.D2) with some internal indices (KL, CH, Sil)  

 

Table 5. Number of clusters for data points (Model 1) using clustering methods with internal indices and two types of distance 

measures (Euclidean and Manhattan) 

 
 Euclidean Distance Manhattan Distance 

 KL CH Sil Gap KL CH Sil Gap 

Single 8 8 2 2 6 6 2 2 

Complete 4 4 2 2 4 4 2 2 

Average 4 5 2 2 4 5 4 2 

Centroid 2 4 2 2 8 4 2 2 

Ward.D2 4 5 2 4 4 5 2 4 

Median 5 5 3 5 7 7 4 7 

 

Table 6. The rate of agreement between the true clusters and the partitions that we have computed for (Model 1) using external 

similarity indices under Euclidean distance and Manhattan distance 
 

 Euclidean Distance Manhattan Distance 

Clustering methods Rand F-M Purity Rand F-M Purity 

Single, KL 0.759 0.646 0.608 0.529 0.527 0.416 

Single, CH 0.759 0.646 0.608 0.529 0.527 0.416 

Single, Sil 0.201 0.441 0.204 0.201 0.441 0.204 

Single, Gap 0.201 0.441 0.204 0201 0.441 0.204 

Complete, KL 0.899 0.791 0.776 0.886 0.767 0.760 

Complete, CH 0.899 0.791 0.776 0.886 0.767 0.760 

Complete, Sil 0.672 0.601 0.400 0.672 0.601 0.400 

Complete, Gap 0.672 0.601 0.400 0.672 0.601 0.400 

Average, KL 0.907 0.813 0.792 0.894 0.775 0.792 

Average, CH 0.944 0.859 0.920 0.918 0.809 0.856 

Average, Sil 0.672 0.601 0.400 0.894 0.775 0.792 

Average, Gap 0.672 0.601 0.400 0.511 0.529 0.396 
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Centroid, KL 0.672 0.601 0.400 0.917 0.800 0.864 

Centroid, CH 0.906 0.808 0.788 0.899 0.803 0.780 

Centroid, Sil 0.672 0.601 0.400 0.664 0.599 0.400 

Centroid, Gap 0.672 0.601 0.400 0.664 0.599 0.400 

Ward.D2, KL 0.910 0.819 0.796 0.910 0.819 0.796 

Ward.D2, CH 0.949 0.872 0.928 0.947 0.867 0.924 

Ward.D2, Sil 0.672 0.601 0.400 0.672 0.601 0.400 

Ward.D2, Gap 0.910 0.819 0.796 0.910 0.819 0.796 

Median, KL 0.908 0.818 0.792 0.865 0.690 0.772 

Median, CH 0.908 0.818 0.792 0.865 0.690 0.772 

Median, Sil 0.759 0.661 0.600 0.755 0.642 0.596 

Median, Gap 0.908 0.818 0.792 0.865 0.690 0.772 

 

 
 

Figure 5. Clustering methods (average, ward.D2, median) with some internal indices (CH, Sil) .These methods show an equality 

between the number of clusters and the number of true clusters 

 

Table 7. Number of clusters for data points (Model 2) using clustering methods with internal indices and two types of distance 

measures (Euclidean and Manhattan) 

 
 Euclidean Distance Manhattan Distance 

 KL CH Sil Gap KL CH Sil Gap 

Single 12 12 12 2 4 7 7 2 

Complete 12 9 9 3 9 8 8 2 

Average 10 9 9 2 10 9 9 2 

Centroid 7 10 7 2 7 8 7 2 

Ward.D2 9 9 9 2 9 9 9 2 

Median 12 12 12 12 6 7 8 6 
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Table 8. The rate of agreement between the true clusters and the partitions that we have computed for (Model 2) using external 

similarity indices under Euclidean distance and Manhattan distance 

 
 Euclidean Distance Manhattan Distance 

Clustering methods Rand F-M Purity Rand F-M Purity 

Single, KL 0.710 0.556 0.604 0.198 0.377 0.258 

Single, CH 0.710 0.556 0.604 0.598 0.498 0.516 

Single, Sil 0.710 0.556 0.604 0.598 0.498 0.516 

Single, Gap 0.138 0.367 0.226 0138 0.367 0.226 

Complete, KL 0.958 0.837 0.914 0.973 0.906 0.910 

Complete, CH 0.972 0.896 0.914 0.974 0.907 0.910 

Complete, Sil 0.972 0.896 0.914 0.974 0.907 0.910 

Complete, Gap 0.767 0.602 0.447 0.363 0.415 0.314 

Average, KL 0.981 0.932 0.959 0.979 0.922 0.955 

Average, CH 0.982 0.936 0.959 0.981 0.932 0.955 

Average, Sil 0.982 0.936 0.959 0.981 0.932 0.955 

Average, Gap 0.413 0.429 0.314 0.416 0.430 0.314 

Centroid, KL 0.952 0.856 0.822 0.951 0.850 0.817 

Centroid, CH 0.986 0.950 0.968 0.957 0.865 0.862 

Centroid, Sil 0.952 0.856 0.822 0.951 0.850 0.817 

Centroid, Gap 0.350 0.413 0.314 0.195 0.378 0.256 

Ward.D2, KL 0.980 0.928 0.955 0.982 0.935 0.957 

Ward.D2, CH 0.980 0.928 0.955 0.982 0.935 0.957 

Ward.D2, Sil 0.980 0.928 0.955 0.982 0.935 0.957 

Ward.D2, Gap 0.632 0.515 0.357 0.632 0.515 0.357 

Median, KL 0.959 0.850 0.928 0.875 0.680 0.635 

Median, CH 0.959 0.850 0.928 0.901 0.722 0.714 

Median, Sil 0.959 0.850 0.928 0.904 0.726 0.746 

Median, Gap 0.959 0.850 0.928 0.875 0.680 0.635 
 

Table 9. Number of clusters for data points (Model 3) using clustering methods with internal indices and two types of distance 

measures (Euclidean and Manhattan) 
 

 Euclidean Distance Manhattan Distance 

 KL CH Sil Gap KL CH Sil Gap 

Single 9 9 2 2 5 6 2 2 

Complete 4 8 8 2 10 8 8 2 

Average 4 8 8 2 12 8 8 2 

Centroid 5 9 9 2 4 10 10 2 

Ward.D2 8 10 8 2 8 8 8 2 

Median 2 7 7 2 3 10 10 2 
 

Table 10. The rate of agreement between the true clusters and the partitions that we have computed for (Model 3) using external 

similarity indices under Euclidean distance and Manhattan distance 
 

 Euclidean Distance Manhattan Distance 

Clustering methods Rand F-M Purity Rand F-M Purity 

Single, KL 0.150 0.350 0.158 0.136 0.352 0.150 

Single, CH 0.339 0.390 0.266 0.327 0.392 0.257 

Single, Sil 0.128 0.354 0.144 0.128 0.354 0.144 

Single, Gap 0.128 0.354 0.144 0128 0.354 0.144 

Complete, KL 0.810 0.584 0.514 0.961 0.839 0.935 

Complete, CH 0.942 0.784 0.880 0.967 0.873 0.935 

Complete, Sil 0.942 0.784 0.880 0.967 0.873 0.935 

Complete, Gap 0.583 0.452 0.286 0.613 0.475 0.285 

Average, KL 0.821 0.621 0.530 0.966 0.866 0.941 

Average, CH 0.968 0.876 0.937 0.968 0.875 0.937 

Average, Sil 0.968 0.876 0.937 0.968 0.875 0.937 

Average, Gap 0.582 0.476 0.285 0.582 0.469 0.285 

Centroid, KL 0.736 0.546 0.483 0.739 0.552 0.485 

Centroid, CH 0.960 0.844 0.921 0.936 0.854 0.926 

Centroid, Sil 0.960 0.844 0.921 0.963 0.854 0.926 

Centroid, Gap 0.128 0.354 0.144 0.305 0.386 0.242 

Ward.D2, KL 0.940 0.776 0.878 0.959 0.844 0.919 

Ward.D2, CH 0.945 0.768 0.885 0.959 0.844 0.919 

Ward.D2, Sil 0.940 0.776 0.878 0.959 0.844 0.919 

Ward.D2, Gap 0.527 0.428 0.285 0.607 0.467 0.285 

Median, KL 0.317 0.394 0.250 0.248 0.355 0.214 

Median, CH 0.860 0.610 0.648 0.835 0.551 0.676 

Median, Sil 0.860 0.610 0.648 0.853 0.551 0.676 

Median, Gap 0.317 0.394 0.250 0.248 0.355 0.214 
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Table 11. Number of clusters for data points (Model 4) using clustering methods with internal indices and two types of distance 

measures (Euclidean and Manhattan) 

 
 Euclidean Distance Manhattan Distance 

 KL CH Sil Gap KL CH Sil Gap 

Single 6 8 8 2 3 2 2 4 

Complete 4 10 8 2 4 10 8 2 

Average 4 10 10 2 4 10 11 2 

Centroid 4 12 8 2 4 8 8 3 

Ward.D2 10 10 10 2 10 10 10 2 

Median 4 11 6 4 9 7 7 9 

 

Table 12. The rate of agreement between the true clusters and the partitions that we have computed for (Model 4) using external 

similarity indices under Euclidean distance and Manhattan distance 

 
 Euclidean Distance Manhattan Distance 

Clustering Methods Rand F-M Purity Rand F-M Purity 

Single, KL 0.673 0.482 0.400 0.674 0.471 0.347 

Single, CH 0.860 0.644 0.631 0.508 0.412 0.231 

Single, Sil 0.860 0.644 0.631 0.508 0.412 0.231 

Single, Gap 0.255 0.344 0.200 0.681 0.489 0.431 

Complete, KL 0.795 0.573 0.431 0.795 0.573 0.431 

Complete, CH 0.974 0.874 0.917 0.965 0.834 0.894 

Complete, Sil 0.949 0.803 0.829 0.939 0.775 0.814 

Complete, Gap 0.581 0.440 0.231 0.601 0.448 0.231 

Average, KL 0.795 0.573 0.431 0.795 0.573 0.431 

Average, CH 0.989 0.948 0.972 0.989 0.946 0.972 

Average, Sil 0.989 0.948 0.972 0.989 0.946 0.972 

Average, Gap 0.581 0.440 0.231 0.581 0.440 0.231 

Centroid, KL 0.795 0.573 0.431 0.795 0.573 0.431 

Centroid, CH 0.989 0.944 0.972 0.949 0.802 0.814 

Centroid, Sil 0.941 0.790 0.823 0.949 0.802 0.814 

Centroid, Gap 0.255 0.344 0.200 0.634 0.464 0.315 

Ward.D2, KL 0.989 0.948 0.972 0.988 0.941 0.968 

Ward.D2, CH 0.989 0.948 0.972 0.988 0.941 0.968 

Ward.D2, Sil 0.989 0.948 0.972 0.988 0.941 0.968 

Ward.D2, Gap 0.581 0.440 0.231 0.581 0.440 0.231 

Median, KL 0.746 0.507 0.400 0.912 0.683 0.711 

Median, CH 0.955 0.798 0.848 0.913 0.696 0.711 

Median, Sil 0.812 0.565 0.600 0.913 0.696 0.711 

Median, Gap 0.746 0.507 0.400 0.912 0.683 0.711 

 

 

5. CONCLUSION AND FUTURE WORKS 

 

5.1 Conclusion 

 

Different models and different distance measures have been 

used in this paper to evaluate the performance of some 

clustering methods (single linkage, complete linkage, average 

inkage, centroid, ward.2D, median) under different validity 

indices (KL, CH, Sil, Gap), different simulated data with 

different sample sizes using R software 3.1. Also, some 

external indices (Rand, F-M, Purity) are used to get the rate of 

agreement between the true clusters of the data points and 

the partitions that we have computed using clustering methods. 

For the results we noticed the following: 

• All models show that the clustering method, average 

linkage, with CH index match the true clusters about more 

that 90% with different distance measure and different 

sample sizes. 

• Single linkage clustering results with all internal indices 

(KL, CH, Sil, Gap) and different distance measure doesn't 

match the true clusters. 

• Under different distance measure (Euclidean and 

Manhattan) and different models the results of the 

clustering methods, average linkage and ward.D2, with 

CH index match the true clusters. 

• Median clustering method with Euclidean distance match 

the true clusters with three indices (KL, CH, Gap), for 

Model 1. 

• The complete linkage clustering method with different 

distance measure (Euclidean and Manhattan) match the 

true clustering with CH index, for Model 2. As a result, we 

recommend to use the average linkage clustering method 

with CH index for clustering data points, and we can use 

them for comparing with the new clustering technique. 

 

5.2 Future works 

 

In this study, we only evaluate the performance of some 

clustering methods with some indices under linear data only, 

but it will be also interesting to explore how these clustering 

methods and indices works under circular data. Also, in the 

future we look forward to construct a novel clustering method 

and evaluate the performance of the proposed clustering 

method with the average linkage method with CH index. 
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