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Wildfires pose significant threats globally, affecting human life, wildlife, and 

ecosystems. The detrimental effects of these fires are often exacerbated by inaccuracies 

in fire positioning systems and delays in alarm response, leading to rapid and 

uncontrolled fire spread, consequently affecting emergency response times. This paper 

presents a novel, real-time wildfire localization system that employs an optimized 

trilateration technique. The technique leverages anchor node technology for the 

localization process. The Nelder-Mead (NM) optimization algorithm is utilized to 

augment the trilateration technique, thereby enhancing the accuracy of the estimated 

coordinates for unidentified nodes. The proposed localization algorithm is deployed 

using cloud computing and the Internet of Things (IoT) MQTT communication 

protocol. Simulation results demonstrate that the proposed method maintains accurate 

localization performance, with an enhancement in fire localization accuracy of up to 

83% with the optimized trilateration based on the NM algorithm. As a result, the 

proposed approach offers potential time-savings in the early detection of wildfires, thus 

contributing to more efficient emergency response measures. 
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1. INTRODUCTION

Forests play an indispensable role in sustainable 

development, primarily by mitigating the impacts of climate 

change. Offering a myriad of benefits, their significance rivals, 

if not surpasses, those of daily consumption agricultural 

products. Essential for human survival and societal 

progression, forests also maintain the planet's ecological 

equilibrium. In the European Union alone, forests absorb 

around 417 million tons of CO2 annually [1]. Despite these 

valuable contributions, the escalating frequency of forest fires, 

often instigated by human negligence or environmental shifts, 

is a major source of carbon dioxide release, posing serious 

threats to humans, animals, and the global environment [2]. 

To illustrate the catastrophic extent of wildfire disasters, the 

European Forest Fire Information System (EFFIS) reported 

nearly 1600 fires in May of 2022, burning approximately 

250,000 hectares within Europe alone [3]. The ensuing 

damages extend beyond the ecological, resulting in the loss of 

essential resources, including transportation, communication, 

power and gas utilities, water supplies, crops, and property, 

coupled with a significant decline in air quality. 

Among the primary challenges with forest fires is the speed 

of propagation, which is directly proportional to factors such 

as wind speed at the time of the disaster as shown in Figure 1. 

Research findings indicate that the forward rate of fire spread 

is approximately 10% of the average 10-m open wind speed, 

when both are represented in the same units (e.g., km/h) [4]. 

This rapid propagation necessitates prompt efforts to locate the 

fire's source shortly after ignition before it extends to 

neighboring regions, thereby underscoring the importance of 

early wildfire detection in the context of smart forest 

management. 

To exemplify the repercussions of delayed wildfire 

detection, consider a wind speed of 10 km/hr. As Figure 2 

illustrates, any delay in sounding the wildfire alarm can lead 

to a drastic increase in the fire's extent, making it increasingly 

challenging to control. 

To effectively identify and respond to critical events such 

as wildfires, precise location data is paramount. The process 

of determining the geographical coordinates of sensor nodes 

in Wireless Sensor Networks (WSNs) is known as localization 

or positioning, a fundamental aspect of contemporary 

communication systems [5]. The value of sensor data is 

inextricably linked to the knowledge of its origin. Different 

applications necessitate varied levels of positioning accuracy, 

leading to the use of a variety of localization techniques. 

However, unique scenarios, such as forest fire detection, 

present a distinct set of challenges [6]. 

This paper introduces an accurate localization system based 

on the trilateration technique, designed specifically for precise 

fire positioning in forests. The proposed system leverages the 

concept of anchor nodes and an optimized application of the 

trilateration technique. Given that trilateration can sometimes 

fail to provide an optimized location [7, 8], the Nelder-Mead 

(NM) optimization algorithm is proposed as a solution to this 

issue. To the authors' knowledge, no previous work has 

combined the NM optimization algorithm with trilateration for 

effective localization tasks. 

The primary contributions of this paper are as follows: 

1. Application of the Nelder-Mead optimization algorithm

is proposed to optimize the parameters of the trilateration
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technique, thereby enhancing the accuracy of unknown 

node location determination. 

2. Introduction of an algorithm that utilizes two sets of 

anchor nodes for the localization process. The first set is 

primarily used to ascertain the position of the unknown 

node, while the second set serves as a backup, ready for 

deployment in the event of node failure in the main set 

due to fire impact. 

3. Implementation of cloud computing as a potent 

processing environment to optimize the computational 

overhead of the proposed algorithm. 

The remainder of this paper is structured as follows: Section 

2 reviews related works. Section 3 outlines the theoretical 

underpinnings of the research components. Section 4 

delineates the WSN model. Section 5 presents the proposed 

optimized trilateration algorithm. Section 6 discusses the 

simulation results, and Section 7 concludes the paper. 

 

 
 

Figure 1. The correlation between the wind speed versus the 

fire propagation rate [4] 

 

 
 

Figure 2. Wildfire propagation versus delay time of 

extinguishers (at 10 km/hr wind speed) 

 

 

2. RELATED WORKS 

 

The endeavour to minimize positioning errors has been the 

subject of extensive investigation in the literature, and a 

selection of the most relevant studies is reviewed herein. 

Complications arise in wildfire scenarios where late 

interventions can exponentially increase damage. Such delays 

often stem from the inability of competent authorities to 

receive early information about the fire's inception, hindering 

efforts to control it before it escalates into a major 

conflagration [9]. Consequently, research into wildfire 

monitoring, detection, and localization continues to be a focal 

point for global academia. 

Initial fire detection techniques relied upon manned 

observation towers, which proved to be inefficient and largely 

unsuccessful. Subsequently, camera surveillance systems and 

satellite imaging technologies were employed to monitor the 

early stages of surface fires more effectively. While it is 

possible to position camera networks throughout forests, they 

are restricted to line-of-sight images and are vulnerable to 

environmental factors such as weather and physical barriers 

[10]. In response, the application of Wireless Sensor Network 

(WSN) technology emerged as a viable solution for early 

wildfire location and detection, given its adaptability to harsh 

environments like forests [11, 12]. 

The literature is abundant with studies on localization. This 

review, however, focuses specifically on studies that have 

implemented the trilateration technique in the process of 

localization in WSNs. Savochkin [13] advanced a modified 

trilateration method suitable for passive RFID indoor 

localization systems without necessitating continuous model 

improvements due to environmental changes. Yet, one notable 

challenge in wireless signal-based indoor localization lies in 

non-line-of-sight propagation scenarios. Abd Elgwad and 

Bassem [14] employed trilateration and fingerprinting 

localization techniques that relied on the access point's 

Received Signal Strength (RSS), utilizing a database that 

comprises path loss and shadowing parameters varying based 

on the environment. 

Crane et al. [15] proposed a filtering method, Emender, 

capable of identifying noisy Received Signal Strength 

Indication (RSSI) readings which adversely affect localization 

performance. Balaji and Chaudhry [16] utilized a modified 

trilateration system that incorporated cooperative methods and 

better positioning of beacon nodes to enhance the distance 

computation process. The trilateration process was expedited 

using distance values. Kausar and Chattaraj [17] applied the 

extended Kalman filter and the Kalman filter to filter the data 

after employing a trilateration technique to identify the closest 

access point. To reduce reliance on the position of the anchor 

node and RSSI data in RSSI-based localization, Yang et al. 

[18] proposed a least-squares curve fitting method, and the 

localization of the unknown node was determined using the 

trilateration method. 

Advanced trilateration localization algorithms were 

proposed by Yan et al. [19] and Monta et al. [20], both offering 

improvements on distance estimation. Liu and Cai [21] and 

Zhang et al. [22] also reported enhanced trilateration 

localization methods, with the latter proposing an iterative 

trilateration approach to maintain localization accuracy. A 

novel improvement for the trilateration technique using fuzzy 

logic was developed by El Samadony et al. [23], adding power 

level as an additional parameter for distance estimation 

between anchors and nodes. 

Despite these notable contributions to improving the 

accuracy of the trilateration technique, further refinements can 

be achieved through the application of suitable optimization 

algorithms to optimize its parameters. This paper considers the 
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use of the Nelder-Mead algorithm for this purpose. 

 

 

3. RESEARCH COMPONENTS 

 

In this research, three key technologies will work 

simultaneously to achieve the intended goal, which is to 

provide the position of the unknown nodes accurately. Hence, 

this section explains these components concisely, including 

the trilateration technique, the MN optimization method, and 

anchor-based localization in WSN. 

 

3.1 Trilateration positioning technique 

 

The trilateration technique considers one of the fastest and 

simple localization algorithms that can be used for estimating 

the locations of objects. It is a fundamental positioning 

technique that is frequently utilized in localization systems. 

For locating the target or the object in this algorithm, at least 

three anchor nodes are required [24]. A minimum of three non-

collinear reference points on a two-dimensional (2D) plane are 

required for the trilateration technique as shown in Figure 3. 

 

 
 

Figure 3. Trilateration positioning concept 

 

A distributed, range-based, anchor-based localization 

algorithm is trilateration. With the aid of a feature of the 

transmitting signal from the sender node to the receiving node, 

trilateration, a range-based algorithm, employs distance 

estimation to compute the position of nodes in a network. The 

reformulation of the mathematical operation of the trilateration 

technique is as follows [25]. For n anchor nodes that are 

distributed randomly in WSN, their locations are known at: 

 

(𝑥1 − 𝑦1), (𝑥2 − 𝑦2), (𝑥3 − 𝑦3) … (𝑥𝑛 − 𝑦𝑛) (1) 

 

Assume the location information of the target node is X(xc, 

yc), is determined using at least three anchor nodes in the 2D 

space. Hence, the distance from the target node to each known 

node can be determined according to Pythagoras' theorem as 

follows:  

 

𝐷𝑖 = √(𝑥𝑐 − 𝑥𝑖)2 + (𝑦𝑐 − 𝑦𝑖)2 (2) 

 

where, Di represents the estimated distance of the unknown 

node, i=1,2,3, ….  

Then, the intersection of the three circles is the coordinates 

of the target far point. The trilateration algorithm is expressed 

as follows: 

 

𝐷1
2 = (𝑥𝑐 − 𝑥1)2 + (𝑦𝑐 − 𝑦1)2 

𝐷2
2 = (𝑥𝑐 − 𝑥2)2 + (𝑦𝑐 − 𝑦2)2 

𝐷3
2 = (𝑥𝑐 − 𝑥3)2 + (𝑦𝑐 − 𝑦3)2 

(3) 

where, D1, D2 and D3 are the estimated distances between the 

anchor nodes and the unknown node. (xc, yc) represents the 

coordinate of the unknown node, which can be determined by 

solving Eq. (5), where (xi, yi) denotes the real coordinates of 

anchor nodes. Although the trilateration technique is simple 

and has low computational complexity [26], the common 

challenges of the trilateration technique are including the 

positioning inaccuracy dramatically increases as a result of 

environmental interference, noise, and errors in distance 

estimate, as well as ambiguity in the coordinates of anchor 

nodes and other unfavorable circumstances such as measuring 

received signal strength has a changing nature [7]. In addition, 

it may provide less accuracy due to no line of sight of the 

transmitted signals that propagate in multipath. 

 

3.2 Nelder-mead optimization algorithm 

 

Similar to Genetic Algorithms (GA) or Particle Swarms 

(PSO), the Nelder-Mead (NM) [27] or the downhill simplex 

method is a heuristic optimization method. The issue of 

locating point (s) in a search space with the ideal value of an 

objective function is referred to as optimization in this context. 

A maximum or minimum value could be considered optimal. 

NM is one of the most well-known methods for 

multidimensional derivative-free unconstrained optimization. 

Hence, NM can be used with nondifferentiable functions or in 

situations where the gradient is unknown due to its 

independence from the cost function's gradient or any 

approximation. The search of NM has to find a solution to the 

following problem: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑧), 𝑧 ∈ ℛ (4) 

 

where, R is a set of neighbors’ initial points. 

Four essential processes make up the NM method [28, 29], 

as shown in the shape structure (simplex) in Figure 4, 

including: 

a) Reflection, which means updating the worst point to the 

opposite direction of the coordinate. 

b) Expansion via updating to the farther coordinate. 

c) Contraction by moving the point closer to the inner 

coordinate. 

d) Shrinking, which is achieved by updating all the points 

of coordinates closer to the best point.  

The former process can be achieved as follows, first 

initializing points (n + 1) in the D-dimension search space are 

z1, z2, …, zn+1. The fitness values of these points are used to 

organize them in ascending order. Algorithm 1 shows the 

pseudocode of the NM optimization algorithm [27, 30]. The 

following formula is used to determine the centroid point x 

made up of the first n points: 

 

�̃� = ∑
𝑧𝑗

𝑛

𝑛

𝑗=1

 (5) 

 

Then the reflected point zr can be determined as follows: 

 

𝑧𝑟 = �̃� +  𝜖(�̃� − 𝑧𝑛+1) (6) 

 

where, 𝜖  represents the coefficient of reflection, and zn+1 

denotes the worst point.  

Then, to calculate the expansion point ze, the following 

expression is used. 
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𝑧𝑒 = �̃� +  𝛽(𝑧𝑟 − �̃�) (7) 

 

where, β is the coefficient of expansion at β>max(1, 𝜖). 

Now, two results are expected either the fitness of the 

refection point zr is worse than the second worse point zn, 

which requires to apply inside or outside contraction; or in 

case of the values of fitness for point zr is best than the worst 

point zn+1, the operation of outside contraction is executed as 

follows: 

 

𝑧𝐶𝑜𝑢𝑡 = �̃� +  𝜑(𝑧𝑟 − �̃�) (8) 

 

Otherwise, the operation of inside contraction is 

implemented as follows: 

 

𝑧𝐶𝑖𝑛 = �̃� +  𝜑(�̃� − 𝑧𝑛+1)  (9) 

 

where, φ refers to the coefficient of contraction at a value of 

0<φ<1. 

Last but not least, if the values of fitness for the outside 

contraction zCout is worst compared to the reflection point 𝑧𝑟, 

or when the fitness value inside the contraction zCin is also 

worse than the zn+1, then the operation of shrinking will be 

achieved as follows: 

 

𝛼𝑗 = �̃� +  𝜇(𝑧𝑗 − 𝑧1) (10) 

 

where, μ is the coefficient of shrinking at a value of 0<μ<1. 

 

Algorithm 1: Nelder-Mead optimization  

Input=Parameters to be optimized, n of input dimensions. 

Output=Optimum parameters.  

1: Sort vertices 𝑣 with 𝑓(𝑧1) ≤. . ≤ 𝑓(𝑧𝑛) ≤ 𝑓(𝑧𝑛+1)   

// Order 

2: while 𝑓(𝑧𝑛+1) − 𝑓(𝑧1) > 𝜖 

3: Compute �̃�, 𝑧𝑟, and 𝑓(𝑧𝑟) 

4: If 𝑓(𝑧1) ≤ 𝑓(𝑧𝑟) < 𝑓(𝑧𝑛)  // Reflection  

5: swap (𝑧𝑛+1 ⇄ 𝑧𝑟 ); Go to step 28 

6: Else if  𝑓(𝑧𝑟) < 𝑓(𝑧1)   // Expansion 

7: {Compute 𝑓(𝑧𝑒)  

8: If 𝑓(𝑧𝑒) < 𝑓(𝑧𝑟)   

9: swap (𝑧𝑛+1 ⇄ 𝑧𝑒 ); Go to step aa 

10: Else swap (𝑧𝑛+1 ⇄ 𝑧𝑟 ); Go to step 28  

11: Endif} 

12: Else if 𝑓(𝑧𝑛) ≤ 𝑓(𝑧𝑟) < 𝑓(𝑧𝑛+1) // External 

contraction 

13: {Compute 𝑓(𝑧𝑐) 

14: If 𝑓(𝑧𝑐) ≤ 𝑓(𝑧𝑟)    
15: swap (𝑧𝑛+1 ⇄ 𝑧𝑐 ); Go to step 28 

16: Else Go to step bb} 

17: Else if 𝑓(𝑧𝑟) ≥ 𝑓(𝑧𝑛+1) // Internal contraction 

18: {compute 𝑓(𝑧�̃�) 

19: If 𝑓(𝑧�̃�) ≤ 𝑓(𝑧𝑛+1)    
20: swap (𝑧𝑛+1 ⇄ 𝑧�̃� ); Go to step 28 

21: Else Go to step 23} 

22: Endif 

23: For j=2 to n+1      // Shrink 

24: {𝑧𝑗 = (𝑧1 + 𝑧𝑗)/2 

25: Compute 𝑓(𝑧𝑗) 

26: Sort vertices 𝑣 with 𝑓(𝑧1) ≤. . ≤ 𝑓(𝑧𝑛) ≤ 𝑓(𝑧𝑛+1) 

27: } 

28: Sort vertices 𝑣 with 𝑓(𝑧1) ≤. . ≤ 𝑓(𝑧𝑛) ≤ 𝑓(𝑧𝑛+1) 

29: End  

 
 

Figure 4. The heuristic search process of the NM algorithm 

 

3.3 Anchor-based localization in WSN 

 

To begin the monitoring task and communicate data nearby 

the area, each node in a wireless sensor network must be 

located. Randomly distributing each node in the region is one 

technique that has been applied in challenging and 

inhospitable locations. Some nodes known as anchor nodes or 

reference nodes can know their positions as they are equipped 

with GPS technology. It is worth stating that it is impractical 

to deploy the entire network nodes with the GPS. This is 

because the GPS is considered a high-power consumption 

system. In addition, in some settings, GPS may not be 

available. In other words, some harsh environments may 

prevent the use of GPS [31]. The reader is referred to some 

researchers [32-34] for more details regarding GPS challenges. 

Hence, in special circumstances, the application of the anchor 

node technique outweighs the corresponding fully GPS-based 

localization system. Hence, the rest of the nodes in WSN have 

to derive their locations according to the information of nearby 

anchor nodes' coordinates. Trilateration is one of the key 

techniques that have been used by sensor nodes to estimate 

their physical position in WSN. However, the trilateration 

technique has some challenges as shown earlier in Section 3.1. 

 

 

4. WSN SIMULATION MODEL OF THE FOREST 

 

Assume N represents the number of static anchor nodes (xi, 

yi) at i equals 1, 2, ... N and M denotes the number of unknown 

position static sensor nodes (xc, yc), that are deployed in a 

rectangular shape forest of dimensions 100 m×100 m for 

experimentation. In fact, the ideal distribution of nodes should 

be uniform to cover the entire area of the forest, and this may 

apply to small and reachable areas. However, with large-scale 

areas, the deployment of such a system is very expensive in 

terms of cost, processing, and energy. Hence, in this research, 

the random distribution is used to mimic the practical system 

in large forests. The deployed type of sensor is a dual sensor 

that can detect both smoke and heat. The proposed system is 

formulated with (N<M) nodes as shown in green color in 

Figure 5. To maintain the coverage between the unknown 

sensor nodes with the nearby anchor nodes, a hexagonal shape 

topology is used, where it is assumed that each anchor node 

can handle the unknown sensor nodes that are located within 

its hexagonal area and each anchor node can communicate 

with the neighbor anchor nodes. To determine distance, RSSI 

uses the received signal strength. It is an effective option for 

signal processing that requires less power and complexity. 

Since RSSI is based on signal attenuation, it is categorized as 
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a range-based approach. The signals traveled farther, 

attenuating more as they did so. Hence, RSSI is inversely 

proportional to the corresponding distance. To maintain a 

suitable execution environment, the proposed optimized 

localization approach is run utilizing a high-processing 

capability tool built on cloud computing, where in the era of 

IoT there is an uncountable number of applications utilizing 

capabilities of cloud computing [35]. 

 

 
 

Figure 5. The structure of the proposed localization system 

areas 

 

 

5. THE PROPOSED OPTIMIZED TRILATERATION 

ALGORITHM USING THE NELDER-MEAD METHOD 

 

Although both the NM optimization algorithm and the 

trilateration localization approach have different operation 

concepts, they are somewhat like each other in the initial 

points and in finding one objective point. Hence, the NM 

algorithm is proposed to enhance the positioning accuracy of 

the trilateration approach by finding the best location of the 

target unknown node. Figure 6 illustrates the flowchart of the 

proposed localization algorithm. 

 

 
 

Figure 6. Flowchart of the proposed algorithm  

In fact, finding the intersection of three circles with radii 

centered on each reference node that equals the distance 

achieved is the key problem of the trilateration method. To 

obtain distance information, the concept of the path loss model 

along with the RSSI is used. RSSI is an advantageous option 

for signal processing in WSN as it requires less power and low 

complexity [7]. The distance calculation [33] is as follows. 

 

𝐿 = 32.44 + 10 𝑙𝑜𝑔(𝐷) + 10𝑛 𝑙𝑜𝑔(𝜔)  (11) 

 

where, L is signal energy path loss; Di is the signal 

transmission distance (m); ω is the wireless signal frequency 

(MHz); n represents the path attenuation factor in the actual 

environment. Unlike the free space due to obstacles and other 

real environmental factors, the channel attenuation will follow 

a lognormal distribution. Hence, the path loss model will be 

expressed as follows. 

 

𝑃𝐿(𝐷) = 𝑃𝐿(𝐷0) + 10 𝑛 𝑙𝑜𝑔 (
𝐷

𝐷0
) + 𝐺  (12) 

 

where, PL(D) is the path loss of the received signal at a distance 

in meters, PL(D0) is the path loss at D0; n indicated the path 

loss index in a particular environment, where the speed of path 

loss when the distance is increased; Gα is a zero-mean, 

uniformly distributed random variable with a standard 

deviation of α (in dB). Now, to find the RSSI at nodes, the 

following expression can be used.  

 

𝑅𝑆𝑆𝐼 = 𝑃𝑡 − 𝑃𝐿(𝐷) (13) 

 

where, Pt represents the transmission power. The value of RSSI 

at D0 is as follows. 

 

𝐼 = 𝑃𝑡 − 𝑃𝐿(𝐷0) (14) 

 

From Eqs. (12), (13), and (14), the RSSI can be determined 

as follows.  

 

𝑅𝑆𝑆𝐼 = 𝐼 − 10 𝑛 𝑙𝑜𝑔 (
𝐷

𝐷0
) − 𝐺 (15) 

 

Assume the initial distance D0 is 1 m, then the value of the 

distance of RSSI at several measurement values can be 

calculated as follows. 

 

𝐷 = 10(𝐼−𝑅𝑆𝑆𝐼)/10𝑛 (16) 

 

In the case of involving more than three anchor nodes in the 

operation of calculation in the trilateration positioning 

algorithm, only three active and most correlated anchor nodes 

are chosen to form a trilateration calculation group. In 

Algorithm 2 two tasks are achieved. First, nominating three 

anchor nodes as well as in case of failure of any node, there is 

a redundant anchor that can be substituted to accomplish the 

process of the trilateration algorithm. In other words, in case 

of the shutdown of one or more essential anchor nodes from 

the fire effect, three backups had been chosen for this purpose 

as shown in Algorithm 2. 

The NM optimization algorithm is applied to enhance the 

accuracy of the localization process of the trilateration 

technique. The NM Method is employed to reduce location 

estimation error while considering the distance between three 

anchor nodes. As stated earlier, the core idea behind the MN 

algorithm is that the original triangle can be mirrored, enlarged, 
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or contracted as the iterations proceed. The function that will 

be minimized is expressed in Eq. (17). 

 

𝑓(𝑥𝑐 , 𝑦𝑐) = |(𝑥𝑐 − 𝑥1)2 + (𝑦𝑐 − 𝑦1)2 − 𝐷1
2| 

                  + |(𝑥𝑐 − 𝑥2)2 + (𝑦𝑐 − 𝑦2)2 − 𝐷2
2|    

                 + |(𝑥𝑐 − 𝑥3)2 + (𝑦𝑐 − 𝑦3)2 − 𝐷3
2| 

(17) 

 

Algorithm 2: Selecting the best two successive sets of 

correlated anchor nodes 

Input=The total number of anchor nodes in the entire 

network (N). The number of anchor nodes within the 

coverage range (K), the ID of each anchor node, and RSSI. 

Output=Group of the first three of the most related anchor 

nodes.  

1: For Z=1 to K 

2: {For ID=1 to N 

3: Measure RSSI according to Eq. (15) 

4: Measure corresponding distance (D) according to 

Eq. (16) 

5: Q[ , ]=(D, ID) } 

6: Sort ascending (Q[ , ])  

7: Anchor_main 1:(AN1=Q[D(1), ID(1)]) 

8: Anchor_main 2:(AN2=Q[D(2), ID(2)]) 

9: Anchor_main 3:(AN3=Q[D(3), ID(3)]) 

10: Anchor_backup 4:(AN4=Q[D(4), ID(4)]) 

11: Anchor_backup 5:(AN5=Q[D(5), ID(5)]) 

12: Anchor_backup 6:(AN6=Q[D(6), ID(6)]) 

13: For i=1 to 3  

14: {If (RSSI_AN(i) ≈ 0) 

15: Swap (AN(i) ↔ AN(i+3)) 

16: End if} 

17: Return (3 anchor nodes) 

18: End  
 

 

6. PERFORMANCE EVALUATION AND DISCUSSION 
 

The simulation setup is conducted using the proposed 

network scenario shown in Figure 5 of Section IV. The 

parameter settings are illustrated in Table 1. The performance 

evaluation of the proposed approach is focused on the 

localization accuracy of the unknown node. The system is first 

tested with only the conventional trilateration algorithm. Then 

to measure the enhancement and compare the obtained results 

of the proposed approach, the optimized trilateration-based 

NM algorithm is tested. 
 

Table 1. Simulation parameters settings 
 

Parameters Value 

Simulation area 100×100 m 

No. of anchor nodes 3-14 

No. of unknown nodes 20 

Height of node 1 m 

Temperature threshold ≥40° 

Types of sensors Heat and smoke detector 

Trilateration intersecting 

type 

Two dimensions (2D) with three 

circles 

Initial values of the NM 

algorithm 

Three calculated distances D1, 

D2 & D3 

 

For evaluating localization accuracy, the Mean Absolute 

Error (MAE) is used as a criterion. The MAE as illustrated in 

Eq. (18) is used to compare the estimated and the actual 

coordinates of the M unknown nodes. 

 

𝑀𝐴𝐸 = (
1

𝑀
) ∑ |(𝑥𝑖 − �̂�𝑀

𝑖=1 )2 +( 𝑦𝑖 − ŷ)2| (18) 

 

where, (xi, yi) is the actual coordinates; (�̂�, ŷ) is the estimated 

coordinates; M: is the total number of unknown nodes. The 

first test is related to exemplify the relationship between the 

RSSI and the distance of the node. Figure 7 shows that there is 

an inverse relationship between the RSSI value with the 

corresponding distance. In other words, the maximum RSSI 

refers to the nearest sensor node. Figure 8 illustrates the 

simulation test of both the conventional trilateration technique 

and the optimized trilateration-based NM algorithm. It can be 

noticed the amount of improvement with the proposed method. 

 

Table 2. The average error in the estimated distance of the 

unknown node (m) 

 
Approach 3 Anchors 7 Anchors 14 Anchors 

Traditional trilateration 19.3 13.1 8.47 

Trilateration based NM 9.08 4.2 1.4 

 

Table 2 illustrates the average estimated average error with 

the traditional trilateration algorithm and with the optimized 

traditional using the NM optimization algorithm. It can be 

noticed that the improvement in the accuracy with the 

proposed Trilateration based NM is around 53% at 3 anchor 

nodes and up to 68% at 7 anchor nodes while when the number 

of anchors is doubled, the improvement is up to 83%.  

Table 3 presents a brief comparison with the related 

literature of the same scope of the proposed work. The 

comparison is achieved to test the performance with only three 

anchor nodes in the outdoor environment.  

 

Table 3. Result in comparison with related works 
 

Reference Algorithm 
Average Percentage of 

Accuracy Improvement 

[7] 
Trilateration + 

K-Means 
18.5% 

[13] 
Trilateration + 

Fingerprinting 
49% 

[14] 
Trilateration + Signal 

Filter 
32% 

[15] 
Trilateration + 

cooperative technique 
 %10  

[18] 
Trilateration + optimized 

anchor nodes selection 
20.51% 

[20] 

Trilateration + 

weighted centroid 

localization 

16% 

[23] 
Trilateration + 

Fuzzy logic 
33% 

Proposed 

Algorithm 

Trilateration + NM 

optimization 
53% 

 

Although the applied NM algorithm works without the 

calculation of derivatives, which is an advantageous point, it 

is worth stating that the cost of improving the accuracy of the 

trilateration technique in this work comes with a relative 

increase in the computational complexity of the entire 

localization algorithm, which may be generated from the 

additional processing of the NM algorithm. Nevertheless, the 

application of a cloud-based environment can address this 

issue. 
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Figure 7. The correlation of RSSI value and the estimated 

distance 

 

 
 

Figure 8. Location error versus number of anchor nodes 
 

 

7. CONCLUSIONS 

 

Wildfires pose a significant threat to sustainability and the 

overall ecosystem, necessitating swift intervention due to their 

deleterious impacts. An effective response calls for the 

development of a localization system capable of accurately 

estimating the positions of static nodes proximate to the fire, 

thereby minimizing possible positioning errors. To enhance 

the accuracy of this localization, a modified trilateration 

localization technique predicated on the Nelder-Mead (NM) 

optimization algorithm is proposed. 

Simulation results, as depicted in Table 2, demonstrate an 

improvement in the performance of the proposed method in 

terms of accuracy. This enhancement reaches up to 1.4 m 

when 14 anchor nodes are employed, representing an 83% 

improvement compared to the conventional approach. These 

results suggest that the accuracy of the unknown node's 

location is directly proportional to the number of anchor nodes 

deployed in the network. This correlation can be attributed to 

the fact that these anchor nodes possess pre-existing positional 

information. 

Despite the additional overhead introduced by the 

optimization algorithm, this can be counterbalanced through 

the utilization of the processing power offered by cloud 

computing. Future work in this field could incorporate the use 

of Machine Learning (ML) or Deep Learning (DL) algorithms 

to predict wildfire location regions across different seasons. 

Another potential avenue for exploration involves the 

development of a drone network capable of acting as real-time 

extinguishers. These drones could receive location data from 

cloud computing systems and respond in a timely manner, 

adding an additional layer of responsiveness to wildfire 

management. 
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