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The growing demand for high-quality print output in the digital printing era underscores the 

importance of refining detection algorithms essential for print quality assessment systems. 

This study focuses on the analysis and optimization of the classical image edge detection 

algorithm, the Canny algorithm. A novel method is presented, which incorporates an 

improved adaptive median filter (AMF) for the initial processing of images, resulting in 

increased efficiency and better handling of noise points. Furthermore, the gradient 

calculation direction has been expanded, and the threshold has been fine-tuned using an 

enhanced OTSU algorithm. The optimal threshold selection relies on a preliminary 

judgement, leading to more comprehensive and accurate image edge information capture. 

Comparative analysis with the Sobel operator and the traditional Canny edge detection 

highlights the advantages of the optimized Canny algorithm. This improved approach 

succeeds in preserving a greater amount of graphical edge information and exhibits a 

superior ability to identify false edges, significantly increasing detection accuracy. The 

findings of this study contribute to the development of print quality detection, promoting a 

more automated, digital, and systematic approach.  

Keywords: 

print quality inspection, improved Canny 

algorithm, adaptive median filter, OTSU 

algorithm 

1. INTRODUCTION

Amidst the relentless progress of global economies, a 

commensurate advancement in the quality of printed material 

has become evident. Traditional single printed matter no 

longer suffices to meet consumer demands, thus necessitating 

an industry shift toward digitalisation and intelligence [1-3]. 

This transition is manifest in the rise of digital printing, now 

widely regarded as the mainstream mode in modern printing. 

Unsurprisingly, the advantages of digital printing over its 

traditional counterparts are numerous and include features 

such as personalized printing, variable data, environmental 

sustainability, and digital functionality, all of which contribute 

to an overall superior quality. 

Digital printing fundamentally represents an entirely 

digitized and networked production process, encompassing 

the identification, handling, transmission, and control of all 

digital data from the moment of input until final print [4-6]. 

This digital procedure pervades every stage of production. 

In response to the trend towards digitalisation, automation, 

and systematic printing, significant efforts have been invested 

in the exploration of quality detection technologies based on 

digital image processing. An automated print quality detection 

system, for example, captures an image of a standard printed 

matter devoid of defects via a CCD camera, establishes 

particular criteria, and stores it within a computer. 

Subsequently, the image to be examined is captured and 

compared continuously against the stored standard. Any 

disparity results in the image being deemed as subpar. Such a 

system allows for the categorization and statistical 

measurement of defect images, effectively guiding the printing 

process and meeting quality detection needs. 

The development and application of an image edge 

detection algorithm within the defect detection system is 

paramount to the operation of the printed matter quality 

detection system. As a significant constituent of digital image 

processing technology [7], edge detection has found extensive 

application across various image processing sectors such as 

target recognition, image enhancement, and robot vision. 

Notably, the image edge of a printed matter harbors copious 

amounts of vital information. Consequently, any method for 

edge detection must not only accurately detect the position of 

the edge but also effectively suppress irrelevant details and 

noise. The necessity of such measures arises from the fact that 

image data is often contaminated with noise during practical 

applications [8]. 

Historically, traditional edge detection algorithms such as 

the Sobel operator [9], Roberts operator [10], and Prewitt 

operator [11] utilized directional derivatives of mathematical 

processing methods to discern edges based on gray value 

variations in each pixel neighborhood of the original image. 

Despite their overall simplicity and relatively high image pixel 

processing speeds, these methods were found to be 

inadequately sensitive to noise reflection during processing. 

Conversely, the Canny operator, first proposed by John Canny 

[12] and further detailed in referencen [13], incorporated the

benefits of the aforementioned operators while also

demonstrating superior anti-interference capabilities and

advantages in signal-to-noise ratio and accuracy.

2. LITERATURE REVIEW

2.1 Basic principles of Canny operators 

In reviewing the existing literature on edge detection, 
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attention is drawn to the principles underlying the Canny 

operator, as proposed by Canny [14]. This operator is an edge 

detection method that is multi-step in nature and relies on three 

key indices: a low error rate, superior positioning accuracy, 

and effective suppression of false edges. 

The operator's first step involves the application of Gaussian 

filtering to images. The principle of operation is grounded on 

the fact that convolution operations can be interchanged and 

combined. Hence, a two-dimensional, zero-mean Gaussian 

function is applied initially, followed by the convolution 

operation on the image matrix. This process serves to smooth 

the image by eliminating noise. The Gaussian function 

expression is as follows: 
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The function f(x,y) pertains to the original image, while I(x,y) 

denotes the image which has been smoothed by the two-

dimensional Gaussian filter. The parameter σ represents the 

standard deviation of the Gaussian filter function. If σ is small, 

the precision of the Gaussian filter positioning is augmented, 

but the signal-to-noise ratio is lowered. Conversely, larger 

values of σ reduce positioning accuracy but enhance the 

signal-to-noise ratio. 

Following Gaussian filtering, the algorithm proceeds to 

calculate the amplitude and direction of the image gradient. 

This step employs a 2×2 template to determine the gradient of 

the gray image [15]. The gradient amplitude of the pixel is 

evaluated by obtaining the first derivative of the pixel in the X 

and Y directions. The equations given below provide the first 

partial derivatives in these directions: 
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After these equations have been convolved with the image, 

the output equations can be deduced: 
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The gradient amplitude and direction at the point (x,y) are 

defined by 𝐴(𝑥, 𝑦) and 𝜃(𝑥, 𝑦), respectively. These quantities 

are obtained by the following equations: 

 

2 2( , ) ( , ) ( , )x yA x y E x y E x y= +  (7) 

 

( , )
( , ) arctan

( , )

y

x

E x y
x y

E x y


 
=  

 
 (8) 

 

Next, the operator carries out non-maximum signal 

suppression. This step entails segmenting gradient values to 

ensure the precision of the edge. In the complete gradient 

amplitude graph, a ridge band is observed in the vicinity of the 

maximum value. In such cases, the algorithm sets the pixel 

values of these non-maximum values to zero, while only 

retaining the maximum local gradient value. This is achieved 

by computing the local maximum pixel values, which results 

in the preservation of the pixel with the maximum local 

gradient. 

The final step of the operator involves double threshold 

edge connection processing. Here, Canny connects edge pixels 

by setting two thresholds, denoted by 𝑇𝐻  and 𝑇𝐿  as the high 

and low thresholds, respectively. Any edge point with an edge 

pixel value less than 𝑇𝐿  is discarded, while those with an edge 

pixel value greater than T_H are retained. An edge pixel P is 

kept if it satisfies  𝑇𝐿 < 𝑃 < 𝑇𝐻, and discarded otherwise. The 

selection of the high and low threshold values critically 

influences the quality of the detected edge. 

This literature review seeks to encapsulate the basic 

principles and operational steps of the Canny operator, which 

underpins many edge detection algorithms currently in use. A 

comprehensive understanding of these mechanisms is integral 

to the continued development and refinement of edge 

detection methodologies. 

 

2.2 Defect analysis of Canny operator 

 

While the traditional Canny operator effectively eliminates 

Gaussian noise by employing Gaussian filtering, and discerns 

between strong and weak edges in the image [16], it exhibits 

limitations in addressing salt and pepper noise. Such noise can 

compromise the integrity of image edges through over-

smoothing [17]. To address this challenge, Farahaniard et al. 

[18] suggested a fusion of Fuzzy Neural Networks (FNN) and 

Adaptive Median Filtering (AMF). This amalgamation aimed 

to resolve issues arising from image edge detection marred by 

salt and pepper noise. 

Similarly, proposals have been made to enhance image 

denoising and edge detection. Rafsanjani et al. [19] proposed 

the utilization of double-sided filters for denoising images and 

adaptive selection of high and low thresholds for edge 

detection. A self-adaptive approach to defining high and low 

double thresholds was introduced by Truong and Kim [20] 

through the implementation of the OTSU algorithm. 

Furthermore, the adoption of a guide filter exhibiting edge 

preserving characteristics to replace the Gaussian filter was 

put forward by Gan et al. [21]. In concert with this, the big law 

method was employed to adaptively select high and low 

thresholds. 

Upon comprehensive review of the literature [16-21], the 

Canny algorithm's limitations have been identified as follows: 

(1) The removal of salt and pepper noise during the filtering 

stage results in the over-smoothing of the image edge, leading 

to the loss of key edge information. 

(2) The algorithm's reliance on a 2×2 neighborhood for 

calculations renders it vulnerable to noise. Consequently, 

critical edge information can be lost and significant 

interference information detected, compromising the accuracy 

of detection. 

(3) Subjective selection of high and low thresholds is 

typically limited by human experience and the number of 

images. Experiential judgment plays a substantial role in 

shaping the continuity of image edge information. Manual 
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adjustment of each image in the dataset is time-consuming and 

lacks adaptive effectiveness. In addition, adaptive thresholds 

often exhibit sensitivity to salt and pepper noise, warranting 

further solution for the interference point in the image. 

 

 

3. METHODOLOGY  

 

The methodology adopted in this study integrates an 

advanced AMF into the Canny operator, as a strategy for 

minimizing image noise. This departure from the conventional 

Gaussian filter showcases a noteworthy progression in the 

technology. The gradient algorithm was further refined, 

paving the way for improved precision. Alongside these 

advancements, an OTSU algorithm was harnessed to generate 

high and low thresholds automatically, an approach contingent 

on the image's grayscale. By embracing this approach, the 

improved Canny algorithm ensures an inherent adaptability 

that successfully circumvents the need for repeated threshold 

adjustments, typically associated with iterative testing 

processes. The procedure followed in the implementation of 

the improved Canny algorithm is depicted in Figure 1. 

 

 
 

Figure 1. Flow chart of improved Canny edge detection 

algorithm 

 

3.1 Improved AMF 

 

The process of edge detection necessitates the initial steps 

of image smoothing and denoising. These measures aim to 

inhibit the detection of noisy pixels as false edges, thereby 

ensuring the extraction of accurate image edges. As the 

Gaussian filter employed in the conventional Canny edge 

detection algorithm underperforms in the context of salt and 

pepper noise processing, an enhanced AMF was embraced in 

this study. This filter was found to effectively eliminate salt 

and pepper noise while preserving image details. 

A series of steps were undertaken during the application of 

the improved AMF. The initial step involved the creation of 

an initial population. Here, 𝑊𝑖𝑗  represented the moving 

window's size, initially set at 3, with W_max indicating its 

maximum size. The gray value within the moving window had 

a minimum, maximum, and median represented as 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 

and 𝑓𝑚𝑖𝑑, respectively. 

The subsequent step allowed for the output of 𝑓(𝑥, 𝑦) when 

fmax > 𝑓(𝑥, 𝑦) > fmin, implying that the current pixel was devoid 

of noise. If this condition was not met, the algorithm 

progressed to the third step. Should the current pixel be 

classified as noise, the median gray value fmid within the 

moving window was subject to further evaluation. In this case, 

the output was 𝑓(𝑥, 𝑦) when fmax > fmid > fmin; otherwise, the 

fourth step was skipped. 

In the fourth step, if the current moving window's median 

value was classified as noise, the moving window 𝑊𝑥𝑦  was 

expanded by one unit, with 𝑊𝑥𝑦  incrementing to 𝑊𝑥𝑦 + 1. If 

𝑊𝑥𝑦  was smaller than 𝑊𝑚𝑎𝑥 , the process returned to the second 

step; otherwise, it advanced to the fifth step. 

The fifth step necessitated the removal of all minimax 

points within the current window, with a weighted average 

calculation for the remaining pixel values relative to their 

distance from the center. This process is depicted in Eq. (9): 
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where, 𝑓𝑖  is the remaining pixel and 𝑛𝑖  represents the 

corresponding weight 𝑓𝑎𝑔  . The weight is inversely 

proportional to the distance from the center, implying that 

closer pixels bear greater weight. 

In comparison to the original AMF, the enhanced AMF first 

ascertains whether the current pixel is noise before proceeding 

to output it directly if it is not. Thereafter, the window expands 

to obtain the median value for additional scrutiny. This 

contrasts with the traditional AMF, where the median noise, 

rather than the current pixel, potentially enlarges the window, 

resulting in imprecise image information and blurring. The 

superior AMF's design optimizes these concerns, thus 

improving the efficiency of the algorithm. Furthermore, the 

enhanced algorithm eliminates all noise (maximum and 

minimum values) within the window, computes a weighted 

average in conjunction with the remaining pixels' distance 

from the current pixel, and ultimately acquires a weighted 

average to substitute the current pixel. This adjustment 

prevents the median value of the noise points from remaining 

as noise even after adjusting to the maximum window in the 

original algorithm. 

 

3.2 Improved method for calculating the image gradient 

amplitude 

 

To enhance the precision of edge detection and effectively 

suppress noise, an advanced methodology was proposed in this 

study. This approach extends the traditional procedure by 

incorporating calculations of the first partial derivative of the 

pixel in four directions: X, Y, 45°, and 135°. These additional 

directions, deviating from the traditional X and Y axes, allow 

for a more refined interpolation process, potentially capturing 

edge features otherwise overlooked by the original algorithm.  

The partial derivatives in the X, Y, 45°, and 135° directions 

are calculated using specified equations as follows 
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The expressions for calculating the gradient amplitude and 

direction were as follows: 
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The improved gradient algorithm suppressed the noise well 

and improved the accuracy of edge point detection. 

 

3.3 Non-maximum suppression of gradient amplitude 

 

In the Canny algorithm, the magnitude of the image gradient 

holds significance as it determines the gradient value at each 

point within the image. However, it is important to note that 

this principle is only applicable in the context of image 

enhancement and does not necessarily indicate the presence of 

an edge at that point [22]. 

The algorithm involves a process referred to as non-

maximum suppression of gradient amplitude. This procedure 

ensures that only the points with the maximum gradient values 

in their respective gradient directions are considered as 

potential edges. To achieve this, the algorithm examines each 

pixel in the image and compares its gradient value with that of 

the two neighboring pixels located in the gradient direction of 

the pixel in question. Should the gradient value of the 

examined pixel be less than that of either of its neighbors, it is 

not regarded as an edge. Consequently, the gradient value at 

these non-maximum points is reset to zero. 

This systematic approach to gradient amplitude suppression 

enables a more precise detection of edge points within an 

image, mitigating the potential for erroneously identifying 

non-edge points as edges due to their relatively high gradient 

values. The use of non-maximum suppression thus 

significantly enhances the reliability and accuracy of the 

Canny algorithm in image edge detection tasks. 

 

3.4 Improved OTSU algorithm 

 

The OTSU method, originally designated as the maximal 

inter-class variance technique, is widely renowned for its 

autonomous execution of threshold selection predicated on the 

image's grayscale histogram data [23]. To enhance the edge 

connectivity within this study, a two-dimensional Otsu 

algorithm has been implemented. This algorithm ingeniously 

integrates both the grayscale value distribution of the initial 

image and the neighborhood image's mean grayscale value 

distribution. Consequently, a two-dimensional threshold 

vector is established, facilitating the acquisition of the optimal 

threshold upon identification of the maximum value under a 

two-dimensional criterion. 

 

 
 

Figure 2. Traditional 2D OTSU method 

 

Traditional practice of the two-dimensional Otsu algorithm 

involves division of the image into four distinct regions: the 

target region (A), the background region (B), and two noise 

regions (C and D) using a two-dimensional threshold vector 

(S,F) that is dependent on both gray and neighborhood gray 

mean. An illustrative depiction of this can be found in Figure 

2. Despite its efficacy, the algorithm's accuracy is often 

compromised due to the insignificant probability of regions B 

and C being situated far from the primary diagonal during 

calculation. 

To address this shortcoming, this study presents an 

enhanced two-dimensional Otsu algorithm. An innovative 

approach of partitioning the two-dimensional histogram into 

target and background regions via the equation x+y=T has 

been adopted, as demonstrated in Figure 3. The enhanced 

algorithm, as compared to its traditional counterpart, utilizes 

all pixel points within the region, significantly augmenting its 

accuracy. 

 

 
 

Figure 3. Improved 2D OTSU method 
 

Let f(x,y) represent the pixel value at a given pixel point, 

and g(x,y) denote the average pixel value of the neighborhood 

surrounding point (x,y). Consider a grayscale image with 

dimensions M×N and L gray levels. Similarly, the 

neighborhood mean image g(x,y) has dimensions M×N and L 

gray levels. For any point within the image, a binary pair (i,j) 

can be formed, representing the gray value and the average 

gray value of the neighboring area. 

Let T be the threshold, then pixel frequency 𝑝𝐾  was denoted 

by Eq. (16) as follows: 
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where, 𝑛𝑇  is the number of satisfied pixels 𝑥 + 𝑦 = 𝑇 , and 

𝑝𝐾 =
𝑛𝐾

𝑀×𝑁
, 𝐾 = 0,1,2,⋯ ,2(𝐿 − 1)  is the total number of 

pixels. According to the threshold T, the image pixel was 

divided into two parts: greater and less than T. Let 𝑤1 and 𝑤2 

be the probabilities of being less and greater than the threshold 

T part, respectively, 𝑚1 and 𝑚2 be the gray means of the part 

less and greater than T, and 𝑚𝑇 be the gray mean of the whole 

image. According to the probability distribution of T, the 

maximum inter-class variance criterion was given as follows: 
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Then the maximum 𝜎1 of threshold T was the best threshold 

𝑇𝑏 , as shown in Eq. (23). 

 
2 2

1 1( ) max ( ),0 2( 1)bT T T L =   −  (23) 

 
The enhanced OTSU algorithm, devised in this study, 

identified the optimal high threshold through a singular 

criterion, ensuring an accurate and efficient process. This 

algorithm then determined the optimal low threshold based on 

the premise that the ratio between the high and low thresholds, 

as suggested by the Canny algorithm, should range from 2:1 

to 3:1. 

It's crucial to note that the optimal threshold defined in this 

study significantly contributed to the identification of the 

majority of edge points. Through comprehensive experimental 

analysis, we found that the relationship between the high and 

low thresholds in this improved algorithm was approximately 

2.5 times. This innovative approach helps optimize image 

processing, leading to more accurate and robust outcomes. 

 

    
    

    
(a) original graph (b) Sobel operator (c) traditional Canny algorithm (d) algorithm in this study 

 

Figure 4. Comparison of several image edge detection algorithms 

 

 

4. EXPERIMENTAL VALIDATION 

 

In the pursuit of identifying the effectiveness of the 

enhanced Canny algorithm, multiple simulations were 

conducted employing a range of algorithms - the classical 

Canny edge detection algorithm [18], Sobel operator [9], and 

the improved algorithm presented in this research. The various 

outcomes are illustrated in Figure 4. To achieve this, Adaptive 

Median Filtering (AMF) was applied to the image, followed 

by the calculation of an improved gradient. The enhanced 

OTSU threshold segmentation method was then employed to 

acquire an adaptive threshold (T) essential for the refined 

Canny edge detection and verification process. 

The results derived from the classical Canny algorithm for 

the Lena image primarily captured the broad figure outline, 

however, several edge discontinuities were observed, leading 

to instances of detection omissions. The Sobel operator 

displayed a greater efficacy in comparison to the traditional 

Canny edge detection, but a number of lines were less 

pronounced. The proposed algorithm in this research, on the 

other hand, accurately delineated the character outline, 

exhibiting robust resistance to interference. It was found to be 

superior to the previously mentioned algorithms overall, 

thereby indicating an improvement in accuracy. 

As presented in Figure 4(b), the outcomes of Sobel edge 

detection indicated satisfactory detection performance, with 

minimal impact of noise. However, the precision of edge 

positioning was compromised due to the coarseness of the 

edges obtained and the detection of false edges. In contrast, the 

traditional Canny algorithm, depicted in Figure 4(c), displayed 

a greater sensitivity to noise, culminating in the introduction 

of various interference factors within the image. This, in turn, 

adversely affected the precision of edge information, resulting 

in a less than optimal detection performance. The enhanced 

Canny edge detection algorithm implemented in this research, 

illustrated in Figure 4(d), exhibited a superior capability in 

noise reduction while preserving more edge information. This 

led to an effective mitigation of noise and a more precise 

acquisition of optimal edge information. 

A quantitative analysis was conducted to objectively 

evaluate the efficacy of image edge contour extraction 

performed in this research. The quality coefficient of edge 

detection effect evaluation index [24] was employed. The 

equation for the quality coefficient is provided as follows: 
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where, 𝐼𝐿  denotes the count of ideal edge pixels, 𝐼𝑆 represents 

the count of edge pixels actually extracted, δ is an adjustment 

coefficient with a fixed value of 1/9, and 𝑑𝑖  is the normal 

distance between the initial actual extracted edge point and the 

nearest real edge point. The value of 𝑃𝐹𝑂𝑀 ∈ (0,1) falls within 

the range of 0 to 1, and the larger the value, the better the test 

outcome. To minimize data errors, the mean value of the edge 

contour extraction results (𝑃𝐹𝑂𝑀) from several distinct edge 

detection algorithms applied to the Lena image was considered 

in this study. Figure 5 showcases a comparison of mean values 

of 𝑃𝐹𝑂𝑀  as extracted by the Sobel operator [9], the original 

Canny algorithm [18], and the enhanced Canny algorithm 

developed in this research. 
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Figure 5. Comparison of quality coefficients of different 

edge detection algorithms in Lena image 

 

 

5. CONCLUSIONS 

 

This study culminated in the enhancement of the traditional 

Canny algorithm, particularly addressing its shortcomings in 

the face of significant noise interference and inadequate 

threshold adaptability. 

(1) An enhanced version of the AMF was implemented, 

which abstained from Gaussian filtering. As a result, edge 

information was preserved while noise was reduced and 

smoothed, demonstrating an improved ability to suppress 

noise. 

(2) The advanced OTSU algorithm was applied to all pixel 

points within the region, leading to an enhanced degree of 

accuracy. 

(3) The superior high threshold was ascertained for 

threshold segmentation. This allowed for more precise 

separation between the target and background, reducing the 

loss of edge information. 

The incorporation of the improved Canny edge detection 

markedly diminished the time consumed in print image edge 

detection. This achievement underscores the expedited 

detection accuracy, thereby fostering automated and digitized 

quality assessment of printed materials. 

Future studies may build on this foundation to explore other 

avenues for improvement. The success of the enhanced 

algorithm lays the groundwork for potential applications in 

other complex imaging scenarios, where accurate edge 

detection can offer significant benefits. Future research may 

also examine the scalability of this approach, as well as the 

potential for integrating the improved Canny algorithm with 

other image processing techniques. Such integrations could 

unlock novel solutions and provide even more robust 

performance in a wide range of applications. 

These findings offer a compelling case for the effectiveness 

of the improved Canny algorithm, contributing to its broader 

adoption in the field of image edge detection and beyond. This 

study underscores the value of continually refining and 

improving existing methodologies, emphasizing that even 

established techniques such as the Canny edge detection 

algorithm can be significantly enhanced. 

In closing, this research serves as a catalyst for continued 

advancements in the field of image edge detection, 

spotlighting the potential of algorithmic improvements to 

enhance performance and accuracy. 
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