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Acute Lymphoblastic Leukemia (ALL), a rapidly progressing malignancy originating from 

hematopoietic cells, necessitates prompt and precise diagnosis due to its potential lethality 

within a short span of months. Technological advancements are therefore pivotal in aiding 

medical practitioners to reduce the probability of human error, expedite diagnosis and 

subsequently, improve patient outcomes. This study presents a novel system leveraging 

Convolutional Neural Networks (CNNs), capable of diagnosing ALL through image 

analysis of affected cells. Our proposed system employs two well-established CNN 

architectures, VGG16 and ResNet50, coupled with two optimization algorithms, Adam and 

RMSprop, to classify image data into two distinct categories. The utilized dataset, C-NMC 

Leukemia 2019, was subjected to a variety of test scenarios involving differing epoch 

variations (10, 20, 30, 40, 50, 60, 80, and 100) and a consistent learning rate of 0.0001. The 

results suggest that the proposed system exhibits superior performance when utilizing the 

VGG16 architecture in conjunction with the Adam optimizer, achieving a training accuracy 

of 93.80% and a testing accuracy of 87.00%. The findings of this study accentuate the 

potential of integrating deep learning techniques into the diagnostic process of ALL, 

thereby facilitating rapid, precise detection and ultimately contributing to the improvement 

of patient prognosis. 
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1. INTRODUCTION

Acute Lymphoblastic Leukemia (ALL) represents a 

prevalent malignancy of white blood cells among children, 

with the peak incidence noted in the age group of 1-4 years, 

accounting for approximately 80% of pediatric cases [1]. The 

rapid progression of this disease underscores the essential need 

for swift and accurate diagnostic procedures, given its 

potential fatality within a few months if left untreated [1]. 

Hence, advancements in technology are being actively 

pursued in the medical field, with the objective of reducing 

human errors in diagnosis and facilitating accurate and timely 

disease detection [2, 3]. 

The advent of digital image processing techniques has 

significantly transformed various sectors, notably in 

healthcare [4, 5]. These techniques have been particularly 

useful in early-stage detection and classification of diseases or 

cancers via blood cell image analysis, as reported in several 

studies [6-12]. In one such study, the authors employed color-

based k-means technique for lymphocyte extraction from 

segmented images for the detection and classification of ALL 

[7]. The use of combined techniques, including the Gray-Level 

Co-occurrence Matrix (GLCM) and Gray-Level Run-Length 

Matrix (GLRLM) for nuclear feature extraction, Principal 

Component Analysis (PCA) for image resizing, and Support 

Vector Machine (SVM) for classification, resulted in an 

accuracy of 96.00% and sensitivity of 92.64% [7]. 

Deep Learning, a subset of machine learning, has shown 

immense potential in processing large data volumes. Among 

the various deep learning techniques, Convolutional Neural 

Networks (CNNs) have emerged as a powerful tool for image 

recognition and processing. Inspired by the image recognition 

systems present in the visual cortex of human and animal 

brains, CNNs are specifically designed to process image data 

[13]. The potential of CNNs in the early detection and 

classification of diseases like ALL, therefore, warrants further 

investigation to enhance patient outcomes. 

In the study [8], this study explores the performance of the 

CNN, MobilenetV2 and ResNet18 architectures for datasets 

from ALLIDB1 and ALLIDB2. The results of 70% training 

and 30% testing show that the accuracy level of each dataset 

is 99.39% and 97.18%. In another study [9], the CNN transfer 

learning technique was used to improve accuracy in detecting 

ALL in a histopathology database with a limited number of 

samples. CNN classified tissue types from the 

histopathological database and then performed refinements to 

the ALL database to detect the presence of lymphoblasts 

considering a multi-label data set of a much larger number of 

samples and classes than the existing literature. Another study 

extracts features from White Blood Cell (WBC) images using 

the VGG Net architecture, which has been trained on Image 

Net combined with feature extraction using the Salp Swarm 

Algorithm (SESSA). This method can outperform other 

convolution methods with an accuracy of 96.11% in Dataset 1 

and 87.90% in Dataset 2 [10]. 

Based on previous research studies, there are still many 

opportunities to explore classification techniques in ALL 

datasets using DNN. Therefore, this study aims to optimize 

ALL classification by comparing the VGG16 and ResNet50 

architectures with improved performance using the Adam and 

RMSprop optimizers on various datasets. The classification 

results are divided into two classes: the normal cell class and 
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the cancer cell class (ALL). System performance is measured 

based on accuracy, precision, f1-score, and recall parameters. 

2. MATERIAL AND METHODS

2.1 Cancer cell datasets 

Leukemia is a disorder of human blood cells in which the 

production of leukocytes is abnormal. Based on the 

proliferation rate, these disorders can be classified as acute or 

chronic, while based on the originating cells are classified as 

myeloid or lymphoid. The predominant subtypes are acute 

myeloid leukemia (AML) and chronic myeloid leukemia 

(CML), which involve the myeloid chains and ALL, and 

chronic lymphocytic leukemia (CLL), involving the lymphoid 

chain. This study determined the classification for ALL that 

affects 80% of pediatrics. Proper treatment can improve 

survival rates [14]. 

The dataset used in this study was taken from the ALL 

Challenge dataset of ISBI 2019 (C-NMC 2019) collected by 

The Cancer Imaging Archive (TCIA) Public Access. The 

image is saved in .bmp or bitmap format with 10,661 

consisting of 7,272 cancer and 3,389 normal. An example of a 

microscopic image of Leukemia is shown in Figure 1. 

(a)  (b) 

Figure 1. Leukemia (a) Normal blood (b) 

2.2 Convolutional neural network 

Figure 2. Basic arsitektur CNN 

CNN is included in the category of deep learning because 

of the depth of the network. CNN is the most popular neural 

network method and is of great interest to many researchers in 

the pattern recognition of an object. CNN is capable of 

handling high-dimensional data such as video and images. The 

way CNN works is similar to neural networks in general. The 

only difference is that it uses a 2-dimensional or high-

dimensional kernel for each unit in the CNN layer to be 

convoluted. The kernel in CNN is used to combine spatial 

features with a spatial form that resembles the input medium. 

Then CNN uses various parameters to reduce the number to 

make learning easier [15]. The output of the convolutional 

layer is called a feature map describing the image's unique 

characteristics. The convolutional layer consists of a filter that 

performs the convolution process on the input image matrix. 

The CNN architecture consists of several layers: the 

convolution layer, activation layer function, pooling layer, and 

fully connected layer. The CNN illustration in this study can 

be seen in Figure 2.  

2.3 VGG16 architecture 

The VGG16 architecture is a CNN model first proposed by 

Simonyan and Zisserman [16]. The model was successful at 

92.7% and is the top 5 test accuracy on the ImageNet dataset, 

which consists of 14 million images from 10,000 different 

classes. Figure 3 shows the basic architecture of VGG16 used 

in this study. 

Figure 3. VGG16 architecture 

2.4 ResNet50 architecture 

A proposed shortcut connection in the CNN architecture 

aims to speed up the process while increasing the accuracy of 

the residual network. The shortcut connection concept is 

known as the ResNet architecture which is related to the 

vanishing gradient problem that arises when attempting to 

deepen the network structure. The deeper a network can lead 

to a vanishing gradient problem that can make the gradient 

very small which results in decreased performance or accuracy 

[17]. In this study, ResNet50 was used as shown in Figure 4. 
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2.5 Optimizers 

The selection of the optimizer is the main step in the deep 

learning channel. The optimization algorithm aims to find the 

optimal weight, minimize errors and maximize accuracy. 

During training, the parameters or weights of the model are 

changed to try and minimize the loss function to predict as 

accurately as possible. This optimization is done by adding 

several hyperparameters to the designed CNN architecture 

[18]. In this study, a comparison was made between the 

RMSprop optimizer and Adam. 

Figure 4. ResNet50 architecture 

RMSprop is an optimizer that utilizes the latest gradient 

magnitude to normalize the gradient, which keeps the moving 

average above the root mean square gradient; hence it is called 

RMS [19]. Adam is an optimization algorithm that can be used 

instead of the classic stochastic gradient descent procedure to 

update the network weights based on the training data 

iteratively. Adam is a popular deep-learning algorithm 

because it quickly achieves good results [20]. 

2.6 System model 

Figure 5 shows a flow chart of our proposed approach for 

ALL detection. All labelled images are uploaded to the 

database in the dataset input stage. After pre-processing, 80% 

or 8,528 of the training data were taken from the total dataset 

and 20% or 2,133 for the test data. This CNN model uses 

transfer learning with pre-trained models from VGG16 and 

ResNet50 and can then be forwarded to the dense layer (512) 

and ReLU activation. Also, for the output layer, use dense (2) 

and the softmax activation function. The design of the CNN 

model used is shown in Figure 6. 

The training was carried out using epochs 10, 20, 30, 40, 50, 

60, 80, and 100 and a learning rate of 0.0001. The batch size 

used is 32 by adding the optimizer Adam and RMSprop to 

achieve the optimal value and, in addition, using an additional 

hyperparameter with a decay step of 900 and a decay rate of 

0.95 and using a binary cross-entropy loss function.  

In the testing phase, the test is carried out on 20% of the 

total dataset. Performance testing is done by calculating the 

confusion matrix. Model evaluation is done by monitoring the 

number of True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN). From these data, 

accuracy, precision, recall and f1-score can be calculated from 

the resulting model. From these values, accuracy, precision, 

recall, and f1-score can be calculated as expressed by Eqns. 

(1), (2), (3) and (4) below [21]. 

Figure 5. Flowchart of the ALL detection process 

Figure 6. Proposed CNN architectural model 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3) 
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𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
(4) 

In the test, two scenarios were used: scenario A for the 

VGG16 architecture and scenario B for the ResNet50 

architecture. In both scenarios, training was conducted using 

an architectural model with a transfer learning system. This 

process uses different optimizers, namely Adam and RMSprop, 

as well as epochs 10, 20, 30, 40, 50, 60, 80 and 100, with a 

learning rate of 0.0001. 

3. RESULTS AND DISCUSSION

3.1 Model training results 

The results of the training model for scenario A are 

presented in Table 1. This scenario shows that the best training 

accuracy is 93.80% with 100 epochs and using the Adam 

optimizer. Meanwhile, the lower accuracy is 84.36% with an 

epoch value of 10 and the optimizer prop. Scenario A is 

superior when using the Adam optimizer compared to prop. 

The variation of epochs during training is quite influential, 

where the greater the number of epochs, the accuracy obtained 

will also be higher. However, not for models that use the 

RMSprop optimizer, at epoch 40, the accuracy decreases to 

86.83%. Table 2 shows the training resuls of scenario B. The 

best accuracy was obtained at epoch 100 on both optimizers. 

In Adam, the accuracy is 81.63%, while in RMSprop is 

81.70%. The accuracy results in scenario A using VGG16 are 

higher than in scenario B using ResNet50. 

In contrast to scenario A, scenario B has a smaller training 

accuracy than scenario A for all epochs and optimizers. In this 

model, the accuracy is obtained with a range of 80-81%, and 

the highest accuracy is 81.81%. These results were obtained at 

epoch 80 with the RMSprop optimizer. In scenario B, accuracy 

regularly increases when using the RMSprop optimizer 

compared to the Adam optimizer. 

Table 1. Scenario A training results 

Epoch Adam RMSprop 

10 84.73% 84.36% 

20 87.85% 86.49% 

30 89.74% 87.72% 

40 89.45% 86.83% 

50 91.50% 89.83% 

60 91.97% 89.69% 

80 92.33% 91.65% 

100 93.80% 92.75% 

Table 2. Scenario B training results 

Epoch Adam RMSprop 

10 80.08% 80.18% 

20 80.87% 80.96% 

30 81.07% 80.98% 

40 80.97% 80.82% 

50 81.14% 81.23% 

60 81.19 % 81.07% 

80 81.60% 81.81% 

100 81.63% 81.70% 

The training curve for scenario A for each epoch and 

optimizer is presented in Figure 7. Meanwhile, the training 

curve for scenario B is shown in Figure 8. This curve will 

make it easier to observe in detail the effect of epochs on the 

resulting accuracy. 

Figure 7. Scenario A training curve with Adam and   

RMSprop (epoch 10 - epoch 100) 

Figure 8. Scenario B training curve with Adam optimizer 

and RMSprop (epoch 10 - epoch 100) 

The training curves presented in Figure 7 and Figure 8 show 

that the Adam optimizer is faster at learning than RMSprop. 

Even though learning has high-performance results, the curve 

shows that the gap between training and validation is quite far 

compared to scenario B. Figure 7 also shows that validation 

accuracy can be more optimal. Loss validation accuracy has 

yet to reach a minimum value. In general, processes 
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experience a more stable decrease in accuracy. Whereas 

scenario B shows that the learning process is more stable with 

scenario A, and the gap between accuracy training and 

validation is small-the disadvantage, enough to reach the 

minimum value. 

3.2 Test model result 

Figure 9 shows a graph of the accuracy of the testing phase. 

This simulation shows that all model tests carried out in 

scenario A get superior results compared to scenario B. At the 

best performance, it is known that the application of the 

VGG16 transfer learning model in large dataset cases gets the 

highest accuracy results compared to the ResNet50 model. 

Test scenario A using the VGG16 model has an accuracy test 

result of around 84-87%. When using ten epochs, it has the 

same accuracy as the two optimizers, which is 84%; when 

using 20 epochs, the RMSprop optimizer has 86% accuracy, 

while Adam's optimizer is 85%. 

Furthermore, RMSprop optimizer often experiences ups 

and downs compared to Adam optimizer, which tends to be 

stable. These results are good for many data sets and the 

similarity of data sets when viewed visually. However, in 

scenario B, tested using the ResNet50 model, the test accuracy 

reached around 80-82%. The effect of epoch variation in 

scenario B is quite stable and does not decrease the accuracy 

of results. Here it can be seen that if the number of epochs 

increases, the accuracy of results will increase. The difference 

between the two scenarios is small, but in scenario A, pre-

trained VGG16 is more suitable for large dataset research 

cases than ResNet50. 

Figure 9. Results of the test model 

Table 3. Recall, precision and f1-score with VGG16 and 

Adam's Optimize 

Epoch Recall Prec. F1-Score 

10 0.76 0.86 0.79 

20 0.81 0.84 0.82 

30 0.82 0.85 0.82 

40 0.79 0.86 0.82 

50 0.82 0.84 0.83 

60 0.81 0.83 0.82 

80 0.81 0.87 0.83 

100 0.81 0.87 0.84 

Totals 0.81 0.85 0.82 

Tables 3 and 4 show the average recall value, precision and 

f1-score. It can be seen that the highest overall recall value was 

obtained when using the Adam optimizer with f1-score values 

of 0.81 and 0.82, respectively. The precision value of the two 

optimizers is the same, 0.85. 

Table 4. Recall, precision and f1-score with VGG16 and  

RMSprop's Optimizer 

Epoch Recall Prec. F1-Score 

10 0.79 0.81 0.73 

20 0.79 0.86 0.82 

30 0.82 0.84 0.83 

40 0.77 0.87 0.80 

50 0.81 0.85 0.82 

60 0.79 0.87 0.82 

80 0.80 0.85 0.82 

100 0.80 0.85 0.82 

Totals 0.80 0.85 0.81 

In the results of ResNet50, as shown in Tables 5 and 6, the 

Adam optimizer is still superior in recall and f1-score. The 

simulation results provide recall and f1-score of 0.76 and 0.77, 

respectively. As for the precision value, the difference in value 

is relatively very small. However, scenario B's simulation 

results show that the Adam optimizer's use produces the best 

performance.  

Table 5. Recall, precision dan f1-score with ResNet50 and               

Optimizer Adam 

Epoch Recall Prec. F1-Score 

10 0.77 0.77 0.77 

20 0.75 0.80 0.76 

30 0.75 0.80 0.79 

40 0.76 0.79 0.77 

50 0.76 0.79 0.77 

60 0.76 0.79 0.77 

80 0.76 0.81 0.78 

100 0.75 0.81 0.77 

Totals 0.76 0.80 0.77 

Table 6. Recall, precision dan f1-score with ResNet50 and 

Optimizer RMSprop 

Epoch Recall Prec. F1-Score 

10 0.72 0.81 0.74 

20 0.75 0.79 0.77 

30 0.74 0.80 0.76 

40 0.77 0.79 0.78 

50 0.76 0.80 0.77 

60 0.75 0.80 0.77 

80 0.75 0.80 0.77 

100 0.73 0.81 0.75 

Totals 0.75 0.80 0.76 

Performance analysis of the proposed method is also carried 

out by comparing the model's performance with relevant 

previous studies. Table 7 compares the model's performance 

with similar leukemia datasets. The highest accuracy was 

obtained [9] with a value of 88.69%. However, it uses a 

smaller number of images. Meanwhile, in comparison with 

studies which used the CMNC leukemia dataset, the proposed 

method in this study outperformed studies [10, 21, 22]. In 

addition, for the same dataset as the author, namely research 

in the study [10], namely C-MNC_Leukemia 2019 with a total 

dataset of 10,661, an accuracy of 83.3% was obtained using 

the VGGNet (SESSA) model. Meanwhile, the authors get an 

accuracy value of 87.00% for the transfer learning system with 

VGG16. These results are superior to research [10, 22]. 
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Table 7. Comparison with other studies 

Study Models 
Dataset 

Names 

Number 

of 

Images 

Accuracy 

[9] 
TL-VGG16 

ALL-IDB2 260 
88.69% 

TL-ResNet18 87.54% 

[10] 
VGGNet 

(SESSA) 

CMNC 

Leukimia 
10,661 83,30% 

[22] TL- ResNet 101
CMNC 

Leukemia 
1,867 85.11% 

[23] VGG16
CMNC 

Leukemia 
10,661 80.01% 

[24] TL-VGG16 ALL-IDB2 260 82.46% 

[25] RAN-ResNet50 Malaria Cell 27,558 78.16% 

Proposed 
TL-VGG16 CMNC 

Leukemia 
10.661 

87.00% 

TL-ResNet50 82.00% 

4. CONCLUSION

In this study, a transfer learning model for the detection of 

leukemia has been simulated based on microscopic images of 

blood cells. Based on the results of the tests that have been 

carried out, it can be concluded that the CNN method using the 

VGG16 and ResNet50 architecture with a transfer learning 

system can detect white blood cell cancer or Acute 

Lymphoblastic Leukemia. 

The best accuracy training results were obtained from all 

experiments on the VGG16 model architecture with Adam 

optimizers using 100 epochs, namely 93.80% and accuracy 

testing of 87.00%. In addition, the ResNet50 model also has 

accuracy training and accuracy testing values of 81.81% and 

82.00%, respectively, using 80 epochs and RMSprop 

optimizers. The use of the Adam optimizers in the learning 

process is faster than the RMSprop optimizers. These results 

are good for many datasets and the similarities possessed by 

these datasets. Model performance evaluation can be 

measured through precision, recall, f1-score, and accuracy. 

The best performance is obtained by using Adam's optimizers. 

The results of this study are quite good because, in each 

scenario, the model with Adam's optimizers is superior. 
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