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This paper presents a PyQt6 server-based application design for controlling a quadrotor 

multibody system in a simulated environment using the Gazebo 3D model and ROS2 on 

Linux. The combination of PyQt6 with ROS2 offers an intuitive graphical interface that 

simplifies access to control parameters and flight modes. The system incorporates a unique 

Gazebo plugin that connects to a proportional-derivative (PD) controller, providing stable 

quadrotor flight control. Notably, this plugin facilitates precise quadrotor movements and 

establishes reliable communication between the server and quadrotor, distinguishing it 

from other plugins. Moreover, simulation results demonstrate the effectiveness of the 

proposed PyQt6 server-based application in real-time quadrotor control. The results 

exemplify the system's capability to achieve stable and precise quadrotor movement by 

effectively controlling motion along the three axes (x, y, and z) along with yaw. However, 

the primary contribution of the system presented in this paper lies in the development of a 

robust PyQt6 server-based application designed to control a quadrotor multibody system. 

Furthermore, the system exhibits inherent potential for extension to encompass the control 

of a physical quadrotor, thereby substantiating its viability in real-world applications. 
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1. INTRODUCTION

Quadrotors are a type of unmanned aerial vehicle (UAV) 

with four motors, allowing them to generate force and torque. 

Although possessing six degrees of freedom, only the four 

actuators are required to control all fundamental movements. 

Despite this, there is instability and limited maneuverability 

because of the low number of actuators. Consequently, 

researchers have developed advanced control algorithms and 

feedback systems, such as linear and non-linear controllers, to 

enable precise control command adjustment by considering 

the system's input and output data. Integrating these 

controllers into the quadrotor's underactuated system can 

significantly enhance its stability and maneuverability. For 

instance, linear and non-linear controllers can utilize the 

output data from the system to determine the necessary force 

and torque before modifying the input instruction accordingly. 

Thus, this allows the quadrotor to remain stable and agile even 

in challenging flying conditions. 

Quadrotors have recently been employed in research and 

development as multibody systems, which are structures 

fabricated of several bodies or parts connected by joints. To 

investigate and model these systems, researchers frequently 

utilize software like Gazebo, which enables them to build 

virtual worlds for their quadrotors and other robots, to test and 

model these systems. Researchers may test various control 

algorithms and replicate real-world situations using Gazebo 

Without risking damage to their physical quadrotors. The 

advancement of robotic systems and the creation of quadrotors 

both depend heavily on this technology. 

Researchers use various simulation software tools to 

analyze and optimize the multibody systems' performance, 

including Webots, is a robotics simulation software is used to 

create realistic simulations of robots and virtual environments 

[1, 2]. It supports multiple robot models, such as robots and 

drones. This software used to facilitate the design and test of 

complex robotic systems. SimMechanics is multibody 

dynamics simulation software designed by Mathworks 

company, and it utilized to model and simulate mechanical 

systems. With this software, researchers can analyze and 

optimize the performance of their robots [3, 4]. ADAMS 

(Automatic Dynamic Analysis of Mechanical Systems) is a 

multibody dynamics simulation software used to model and 

analyze mechanical systems [5, 6]. It allows researchers to 

design accurate models such as robots and drones [7, 8]. 

GAZEBO is an open-source robotics simulation software is 

used to design and simulate robots in a realistic environment 

[9]. This 3D software allows researchers to program and add 

custom plugins to handle the different aspects of their robots 

[10]. It also provides advanced tools for simulating complex 

environments, including physics engines, sensors, and 

controllers. GAZEBO works with ROS to offer a complete 

solution for designing, emulating, and testing robotic systems. 

These software packages include features like physics-based 

modeling, visualization, and control design, all of which help 

the development of UAVs. Its combination enables an ample 

understanding of the quadrotor's behavior, easing the design 

for efficient and safe solutions. 

As for the controllers, researchers use different kinds of 

controllers, including PID and PD controllers are among the 
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most widely used control algorithms due to their simplicity 

and effectiveness [11, 12]. LQR and MPC are more advanced 

techniques that provide optimal control of systems with 

constraints [13]. SMC is a nonlinear control technique that 

offers robustness to disturbances and uncertainties [14]. Fuzzy 

Logic and Neural Networks are intelligent control techniques 

that allow for nonlinear mapping of inputs to outputs [15, 16]. 

Backstepping is a recursive design method for designing 

controllers for nonlinear systems [17]. The Linearized 

Controller is a technique used to approximate nonlinear 

systems by a linear one around a given operating point [18]. 

The selection of a control strategy relies on the system's 

characteristics and the particular demands of the application. 

With the integration of controllers, ROS2 has become a 

leading platform for managing complicated robotic systems 

because of its streamlined features. Even though ROS2 and its 

tools have made tremendous advancements, there is still room 

for improvement, especially on the side of quadrotors. Thus, 

this work includes designing a platform for monitoring and 

controlling a quadcopter that utilizes the recently released 

PyQt6 toolkit. Choosing this framework was due to PyQt5's 

use for developing several well-known ROS2 tools, including 

RQT and RVIZ2. This work intends to extend the capabilities 

of ROS2 by utilizing PyQt6's sophisticated features for 

controlling and monitoring a quadrotor using modern user 

interfaces. Hence, we chose this framework over PyQt5 due to 

its superior feature set, enhanced performance, ongoing 

development and support within the presence of well-

organized widgets and functions. However, integrating a 

server-client architecture will substantially contribute when 

developing a robust ROS2 control network, facilitating the 

control of the quadrotor through other devices. This network 

tool is a comprehensive and intuitive user interface that can 

provide real-time feedback on the quadrotor's performance. By 

leveraging PyQt6's networking capabilities, the server-client 

architecture could allow multiple users to monitor and control 

the quadrotor simultaneously. To summarize, this project aims 

to demonstrate the immense potential of combining ROS2 

with PyQt6 to build a platform for monitoring and controlling 

an intelligent quadrotor equipped with several sensors, such as 

a depth camera, lidar, IMU, and GPS. 

This paper is structured as follows. In section 2, the design 

aspects of the PyQt6 application are discussed. It covers the 

architecture, features, and the application, highlighting the 

development choices and considerations. Section 3 presents 

the URDF prototype of the quadrotor. It describes the design 

and modeling of the quadrotor using URDF, including its 

physical components, such as the motors and sensors. Section 

4 delves into the development of a new plugin for Gazebo. The 

plugin enhances the capabilities of Gazebo for simulating and 

interacting with the quadrotor model developed in the previous 

section. Section 5 focuses on the overall implementation of the 

system and the communication protocols involved. It covers 

the integration of the PyQt6 application, the URDF quadrotor 

model, and the Gazebo plugin. In Section 6, the results 

obtained from the system implementation are presented and 

analyzed. It includes performance metrics and simulations. 

The final section delivers a summary of the paper, highlighting 

the pivotal contributions, the accomplishments, and the 

implications of this study. 

 

 

 

 

2. PYQT6-BASED APPLICATION DESIGN 

 

Recently, drones have gained immense popularity due to 

their numerous applications across industries. However, 

controlling a quadrotor can be challenging and requires 

expertise in various domains, such as robotics, control systems, 

and software engineering. In ROS2, there are multiple 

programs available for quadrotor control, including the "rqt 

robot steering" package with a PyQt5-based GUI and the 

“teleop_twist_keyboard” package with a command-line 

interface (CLI). These interfaces enhance the flexibility and 

usability of quadrotor control. However, they have limitations 

in their effectiveness for controlling the quadrotor. Hence, a 

user-friendly PyQt6 application will be created using the 

ROS2 network to overcome this problem and make operating 

a quadrotor more practical and effective. The primary 

objective of the application is to provide an intuitive and 

robust interface for controlling the quadrotor. The app features 

will be divided into several main sections, such as the home 

section for monitoring the quadrotor status, the server section 

for making or breaking connections with other devices like 

computers or smartphones, the joystick section for controlling 

the quadrotor, the visualization section for viewing various 

data, and the settings section for further customizing the 

application. By employing this application, users can 

efficiently operate the quadrotor and leverage the benefits of 

this technology. 

 

2.1 Home screen design 

 

The designed home screen in PyQt6 features a clear and 

concise layout (Figure 1). The current time is displayed in a 

large, easy-to-read font in the time section, providing users 

with real-time updates. The quadrotor's displacement, velocity, 

and acceleration are presented in a visually appealing manner, 

offering a clear overview of its movement dynamics. IMU data, 

including orientation and rotation, is displayed in a separate 

section for comprehensive understanding the motion of the 

quadrotor. The GPS data, including location and altitude, is 

displayed to provide essential positioning information. Finally, 

lidar data and distance measurements is presented, enabling an 

accurate assessment of the quadrotor's surroundings. Overall, 

the home screen design in PyQt6 is optimized for efficient 

monitoring of vital quadrotor data while maintaining a visually 

appealing and user-friendly interface. 

 

 
 

Figure 1. Home screen for real-time monitoring and control 

of quadrotor system 
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The application home screen is designed to update in real 

time, utilizing the spin function in the ROS2 node and the 

threading protocol. By employing the spin function, the node 

can remain active and continuously processes incoming 

messages and events from the ROS2 network. It allows for 

immediate updates on the home screen, ensuring that every 

change or new data are promptly displayed to the user. The 

threading protocol further enhances this capability by running 

the spin function on a separate thread, enabling concurrent 

execution and preventing potential delays or freezes in the user 

interface. Consequently, the home screen maintains a dynamic 

and up-to-date representation of the quadrotor's status, 

providing users with real-time information and facilitating 

efficient control and monitor of the system. 

 

2.2 Server screen design 

 

To create a server using the socket package in Python, we 

can start by specifying a host and port number, which the 

server will use to connect clients. The server then can be 

written to include two buttons: a "start" button and a "stop" 

button, created using the PyQt6 library widgets. Clicking the 

"start" button initiates the server and begins listening for 

incoming connections. Meanwhile, clicking the "stop" button 

shuts down the server and disconnects the active clients. 

Additionally, to Secure reliable and ordered data transmission, 

the server can utilize the TCP (Transmission Control Protocol) 

protocol instead of UDP. TCP provides reliable, connection-

oriented communication, guaranteeing delivery and in-order 

arrival of data packets. By combining the socket package, 

PyQt6 library, and TCP protocol, a robust and user-friendly 

server that facilitates secure and reliable communication and 

data transfer between multiple devices can be designed (Figure 

2). 

To ensure real-time control addressing potential latency 

issues and implementing appropriate measures is crucial. The 

system may encounter challenges like data overlapping and 

connectivity issues. Thus, to address these concerns, the 

application utilizes the try function in Python. By employing 

this function, the application can effectively handle and 

disregard any latency problems that may arise, allowing the 

system to maintain smooth functionality despite intermittent 

delays or disruptions. As a result, the application provides a 

seamless and uninterrupted real-time control experience, 

significantly enhancing the system's reliability and 

responsiveness. 

 

 
 

Figure 2. Server screen to start and stop the server 

2.3 Joystick screen design 

 

To create a new PyQt6 application featuring two joysticks, 

the essential first step is to import the necessary libraries, 

including PyQt6 and math. Two joysticks can then be created 

using QPainter and paintEvent, with the drawEllipse method 

to draw the circles required for the joysticks. Then, the two 

joysticks should be placed in a single widget using 

QHBoxLayout and included in a new QWidget class. Three 

interactive functions, mousePressEvent, mouseMoveEvent, 

and mouseReleaseEvent, can then be added to detect mouse 

clicks, movements, and releases to enhance the app's 

functionality. Finally, to restrict the motion of the joysticks to 

within the circle's boundaries, the application of the distance 

formula is necessary (Figure 3). This technique effectively 

constrains the joysticks' movement within the prescribed circle. 

Following these steps helps us to design an interactive PyQt6 

application with two joysticks to control the quadrotor. 

Once the joystick for quadcopter control is created, the 

joystick data needs to be scaled to manage the quadcopter's 

four fundamental movements. These movements include yaw, 

forward and backward, left and right, up, and down. Mapping 

the input values from the joystick to the required output range 

for each movement includes scaling the joystick data. It 

ensures that the quadrotor flies in a predictable and regulated 

manner, precisely translating the operator's motion to the 

quadrotor's actions. It is possible to control the quadrotor's 

movements precisely and quickly by sending the scaled 

joystick data to the quadrotor control system. 

 
 

 
(a) the program that controls how the joystick moves 

 

 
(b) Joystick screen design 

 
Figure 3. The joystick screen on which the quadrotor is 

controlled 
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In order to achieve smooth control, the joystick's sensitivity 

has been fine-tuned to strike a balance between being too 

sensitive or less sensitive. This optimization ensures that the 

quadrotor responds accurately to even subtle movements of 

the joystick, enabling precise control over its motion. The 

sensitivity is adjusted based on the quadrotor's linear velocity 

along the three axes and its angular velocity around the z-axis. 

The linear velocity is constrained within the range of -8 to 

8m/s, while the angular velocity is confined to -0.4 to 0.4rad/s. 

As for the responsiveness, the joystick's responsiveness is 

significantly improved by utilizing the DDS (Data 

Distribution Service) protocol. DDS facilitates efficient real-

time data exchange, ensures reliable and secure 

communication, reduces latency, and maximizes the joystick's 

responsiveness for accurate on-screen actions. 

However, the quadrotor system receives joystick data 

through the integration of two ROS2 nodes. The first node, 

integrated with the PyQt6 application, receives and publishes 

joystick data via topics. The second node which is integrated 

with the Gazebo plugin, actively spins and receives real-time 

data through subscriptions. This data is subsequently utilized 

to control and execute actions on the motors. 

 

 

3. DEVELOPING GAZEBO 3D MODEL 

 

Gazebo, with its realistic physics, sensor simulation, control 

integration, and flexibility, plays a crucial role in developing 

3D quadrotors using URDF and SDF. As an open-source tool, 

it has demonstrated its value in creating and evaluating robotic 

systems, driving advancements in robotics. Its precise 

quadrotor dynamics simulation and seamless URDF and SDF 

integration empower developers to design, test, and enhance 

3D quadrotor systems in a simulated environment. 

Creating a multi-body quadrotor using URDF and xacro 

involves several steps. First, the basic structure of the 

quadrotor, such as the body shape, the length of arms, and the 

number of rotors, need to be defined in the URDF file. Next, 

the joints that connect the different components of the 

quadrotor, such as the rotors and the body, need to be specified. 

These joints enable the quadrotor to move and articulate 

realistically. After defining the basic structure and joints, 

sensors can be added to the quadrotor model. Four commonly 

used sensors are the LIDAR, depth camera, IMU, and GPS. 

Each sensor in Gazebo is connected to the quadrotor through 

specific joints and associated links. For instance, the camera 

utilizes the camera_link as its reference frame. The IMU relies 

on the IMU_link. The GPS is connected through the 

GPS_joint and references the GPS_link, while the LIDAR 

sensor uses the lidar_link as its reference frame and is 

connected via the lidar_joint. This well-defined linkage 

enables accurate positioning and interaction between the 

quadrotor and its various sensors within the simulation. 

The LIDAR sensor creates a 3D point cloud of the 

surroundings by measuring the distances to objects in the 

environment using lasers. Similarly, the depth camera 

produces a detailed depth map of the quadrotor's surroundings 

by employing infrared sensors to measure distance. 

Autonomous systems often rely on these sensors for accurate, 

reliable navigation and obstacle avoidance. The quadrotor's 

acceleration, angular velocity, and orientation are all measured 

using the inertial measurement unit or IMU. When there are 

outside disturbances present, this sensor is crucial for 

maintaining the quadrotor's orientation and stabilization. 

Finally, location and velocity data are provided by the GPS 

sensor. In outdoor conditions, this sensor is helpful with its 

ability to provide real-time location information. The GPS 

sensor is a valuable tool for navigation, localization, and 

mapping applications. Thus, integrating these sensors into a 

multi-body quadrotor URDF model can improve its 

functionality and let it fly by itself in a wide range of settings. 

The combination of these sensors may introduce potential 

obstacles, including simulation limitations, computational 

performance considerations, and challenges related to data 

integration and synchronization. These factors need to be 

carefully addressed to ensure accurate and reliable sensor 

fusion within the system. 

 

 
 

Figure 4. Graphical representation of the hierarchical quadrotor system including the sensors 
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Figure 4 illustrates the design of a quadrotor model in 

URDF format, which includes the four rotors and the main 

body of the quadrotor. The sensors: LIDAR, depth camera, 

IMU, and GPS, have been linked to the quadrotor design using 

visual tags in URDF. Through these tags, the sensors can be 

positioned and oriented precisely within the quadrotor's frame 

of reference, enabling them to provide critical data to the 

quadrotor's control systems. The depth camera is positioned at 

the front of the quadrotor to improve obstacle detection and 

3D mapping capabilities, aided by the centrally located lidar. 

Meanwhile, the IMU and GPS at the center measure the 

quadrotor's acceleration, velocity, and position. By integrating 

these sensors into the quadrotor's design in URDF, the 

quadrotor can accurately perceive its environment and 

navigate through it with precision and stability. In addition, the 

URDF quadrotor system must be built on TF2, a potent tool 

that enables us to track coordinate frames in a ROS2 network. 

TF2 (Transform Library 2) is a software library that provides 

a mechanism for managing coordinate frame transformations. 

It allows for the conversion and alignment of coordinate 

frames between different sensors, robots, or platforms within 

a distributed system. TF2 also enables the utilization of sensor 

data to detect a robot's limits through coordinate frame 

transformations. Sensor data, acquired from LIDAR, cameras, 

or proximity sensors, undergoes transformation to the robot's 

base frame using TF2. Collision detection algorithms assess 

whether the robot approaches or surpasses limits by checking 

for obstacles, proximity to objects, or joint angles. Feedback 

from sensed limits aids in adjusting trajectory and actions 

through motion planning algorithms, ensuring real-time limit 

awareness within the ROS2 network. 

In order to ensure successful operation of the quadrotor 

system, it is crucial to establish accurate coordination and 

linkage among multiple connections and joints. With the aid 

of TF2, we can create a hierarchy between these elements and 

precisely determine their locations and orientations 

concerning one another. It is essential for maintaining the 

quadrotor's stability, predictability, and control of its 

movements. The quadrotor system can connect and cooperate 

with other nodes in the network thanks to TF2's smooth 

integration into a broader ROS2 network. 

 

 

4. DEVELOPING GAZEBO PLUGIN 

 

The design process of a new C++ based plugin involves 

specifying the quadrotor's behavior and implementing it using 

GAZEBO's API. Importing GAZEBO libraries, ROS2 

functions, ROS2 interfaces, and the PD function is necessary 

for controlling the quadrotor's movement. The main file code 

must include constants for maximum height, speed, and 

battery duration, as well as variables for the quadrotor's state, 

position, velocity, thrust, time, and torque. Functions for 

controlling linear and angular velocities and adding linear 

force are also essential. Accurate definitions of links and joints 

are crucial as they define the quadrotor's physical structure, 

including position, orientation, base frame, motors, propellers, 

and sensors. Matching the link and joint names with the URDF 

files ensures realistic movements and appropriate responses to 

external forces, maintaining the integrity of the quadrotor's 

components. 

The plugin is based on the fundamental principles of 

physics, specifically Newton's second law of motion, which is 

instrumental in governing the dynamics of the quadrotor 

multibody system. In addition, different flight conditions are 

considered, such as hovering, ascending, descending, taking 

off, and landing, and adjusts the control inputs accordingly. 

The plugin also includes a Proportional-Derivative (PD) 

controller, which enables precise control over the quadrotor's 

movements. The PD gains are meticulously and precisely 

tuned using a dedicated PyQt6 interface, significantly 

enhancing the quadrotor's prompt response to commands. 

As a ROS2 node, the plugin is equipped with subscriptions 

and publishers, thus enabling communication with other nodes 

within the ROS2 network. Moreover, the plugin presents 

interfaces for various data types, including AccelerationData, 

DroneState, DroneTime, VelocityData, ForceTorqueData, 

OnOffState, and PositionData. Each of these interfaces 

encompasses essential data types, including float32, int32, and 

string, to fulfill the requirement of the quadrotor. These 

interfaces are transmitted between the nodes using topics, 

enabling seamless access and data manipulation by other 

nodes in the network. These topics includes: 

/dh_drone/drone_state, /dh_drone/force_torque_data, 

/dh_drone/velocity_data, /dh_drone/acceleration_data, 

/dh_drone/command_velocity, /dh_drone/time_data, 

/dh_drone/on_off_state, /dh_drone/position_data. 

However, the communication between nodes using topics 

and interfaces enhances the plugin’s importance as a powerful 

tool for effectively controlling the quadrotor system. 

In order to integrate the GAZEBO plugin with the URDF 

quadrotor model, we must include a new section to the main 

URDF file. This section defines the movable links and joints 

of the quadrotor, and contains the necessary plugin to control 

the system (Figure 5). The plugin will then apply forces and 

torques to the links that can be moved, allowing for precise 

control over the quadrotor's movements. This process is 

essential to ensure the proper functioning of the plugin with 

the quadrotor model, providing accurate and reliable 

communication throughout the simulation. 

The main URDF file serves as the central definition for the 

quadrotor multibody system, encompassing various 

components through the utilization of the xacro macro 

language. This facilitates the inclusion of quadrotor parts such 

as drone, drone constants, inertial macros, lidar, GPS, camera, 

and imu. In conjunction with the Gazebo plugin, these 

individual xacro files collectively define the structure and 

characteristics of the quadrotor within the URDF specification. 

 

 
 

Figure 5. Integration of Gazebo plugin into the main URDF 

file 
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Figure 6. A graphical representation of the ROS2 network and communication model, demonstrating server-client 

communication and TCP/IP protocols with ROS2 nodes 

5. IMPLEMENTATION AND COMMUNICATION

The process of constructing the system involves creating 

three packages within the source directory of the workspace: 

quadrotor_pkg, msgs_pkg, and gazebo_plugin_pkg. Each of 

the packages encompasses different dependencies necessary 

for the system's functionality. The quadrotor_pkg contains the 

essential components such as URDF files, launch files, and 

Python scripts responsible for node creation and the PyQt6 

application. The msgs_pkg is dedicated to housing the 

required interfaces for seamless system operation. The 

gazebo_plugin_pkg incorporates the Gazebo plugin, which, 

after project building, will be exported to ensure optimal 

integration with the system. 

The implementation of the system will be done after 

finishing the main programs, including the gazebo plugin, 

quadrotor URDF design, and PyQt6 application, and 

initializing a ROS2 project. It is essential to create the 

necessary packages for the network. This step involves 

creating a new package, defining the dependencies and 

message types, and setting up the nodes for communication. 

Thorough testing of the quadrotor system is required following 

the launch of the ROS2 project. This process includes 

verifying that the gazebo plugin can control the quadrotor in 

different flight conditions, that the PyQt6 application can 

interface with the plugin to provide user control, and that the 

ROS2 network is correctly working, allowing nodes to 

communicate and exchange data. Thorough testing is 

imperative to ascertain the quadrotor system's reliability, 

accuracy, and suitability for real-time applications, instilling 

confidence in its performance. 

The communication between ROS2 nodes in the quadrotor 

system is essential. The server node, responsible for receiving 

clients input and sending commands to the quadrotor node, 

communicates with the quadrotor node via a series of topic 

subscriptions and publishers (Figure 6). The quadrotor node 

provides the server node with data related to the drone's state, 

force and torque information, velocity data, acceleration data, 

time data, on-off state, and position data. Thus, this data is then 

utilized by the server node to generate commands, which are 

subsequently sent back to the quadrotor node for precise 

control over its movements. 

Moreover, the server node, which was programmed using 

Python with the help of the socket and struct libraries, uses the 

TCP/IP protocol to communicate with clients. Data about the 

quadrotor status, force and torque data, velocity and 

acceleration data, time data, on-off state, and location data are 

all transmitted via the server node. The quadrotor may then be 

moved and updated in its status for clients. This protocol 

enables multiple applications for the quadrotor system by 

offering adaptable and dependable communication between 

the server node and clients. Thus, the quadrotor system may 

work effectively and correctly thanks to the TCP/IP protocol 

and excellent communication between nodes using DDS (Data 

Distribution Service), making it a precious tool for many real-

time applications. 

The quadrotor with LiDAR simulation was conducted in a 

controlled testing environment within Gazebo and ROS2. The 

specific setup involves placing various obstacles, such as static 

objects, within the simulated environment (Figure 7). The 

testing procedures consisted of executing predefined flight 

paths and maneuvers while collecting LiDAR sensor data. 

(a) Quadrotor model on gazebo with the lidar sensor
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(b) Lidar sensor data on RViz2

Figure 7. Visualization of LiDAR sensor data using RViz2: a 

graphical representation of point cloud data captured by the 

sensor 

Throughout the simulation, the quadrotor's LiDAR sensor 

accurately detected and calculated the distances between the 

quadrotor and the objects in its surroundings, providing 

measurements in meters. This distance measurement is a 

critical metric for evaluating the system's effectiveness. The 

assessment of performance criteria encompassed analyzing the 

accuracy of distance calculations, the speed of obstacle 

detection, and the system responsiveness. 

The simulation results were highly encouraging, with the 

system effectively detecting and calculating distances to 

obstacles. These findings underscore the potential for 

developing an advanced obstacle avoidance algorithm, 

enabling the quadrotor to navigate complex environments 

while prioritizing safety. 

6. RESULTS AND DISCUSSION

To obtain the results that confirm the system's effectiveness, 

the Plotjuggler tool, an open-source tool renowned for 

visualizing real-time data in ROS2 applications, is employed. 

This tool enables quickly and easily plotting data from 

different topics and nodes in a ROS2 system. Plotjuggler 

works by subscribing to ROS2 topics and receiving data in 

real-time. It then uses customizable plots to display this data 

intuitively and interactively. With Plotjuggler, users can easily 

monitor and debug their ROS2 applications. They also can 

gain insights into the behavior of the system. It can also help 

them to improve the performance and reliability of systems. 

However, Plotjuggler listens to the integrated node within 

the Gazebo plugin, along with the node that publishes velocity 

commands. It acquires data from the following topics: 

/dh_drone/force_torque_data, /dh_drone/velocity_data, 

/dh_drone/acceleration_data, /dh_drone/command_velocity, 

/dh_drone/time_data, and /dh_drone/position_data. These 

topics transmit interfaces containing data types such as int32 

and float32, which describe quadrotor parameters, including 

velocity, acceleration, position, torque, and force. 

Moreover, the comprehensive analysis of the quadrotor 

system encompassed an evaluation of key performance 

metrics and criteria, including velocity, acceleration, force, 

and motion control, along the x, y, and z axes, as well as yaw 

motion. The illustrated results in Figures 8, 9, 10, and 11 

highlight the quadrotor's exceptional maneuverability and 

control achieved through the developed control system. 

Notably, the quadrotor demonstrates precise movements along 

the x, y, and z axes, ensuring high control levels and stability 

during flight. Furthermore, its yaw motion, enabling rotation 

around the vertical axis, exhibits remarkable responsiveness 

and accuracy. These outcomes can be attributed to the 

meticulous control of the four rotors, facilitating precise 

adjustments to the quadrotor's thrust and orientation. The 

evaluation process considered various factors, including 

response time, stability, and control accuracy, which play a 

role to the system's outstanding performance. 

(a) Results of altitude: velocity command and response

(b) Results of altitude: generated force response

(c) Results of altitude: acceleration response

Figure 8. Results of optimized altitude control of quadrotor 

achieved: precise control commands enhance velocity, force, 

and acceleration 

Quantitative analysis of the quadrotor's performance 

unveils promised statistics. During the evaluation process, the 

quadrotor exhibited outstanding capabilities in various 

domains. Along the z-axis, according to the given velocity of 

1m/s. The quadrotor demonstrated swift acceleration, reaching 

an average of 1.8m/s². In terms of force, it exerted an average 

thrust of 22.3 N. Moving on to the motion along the x and y 

axes, the evaluation velocity stood at 2m/s. The quadrotor 

showcased rapid acceleration, averaging at 4m/s², while 
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exerting an average force of 7.5 N. As for the yaw motion, the 

evaluation velocity measured 0.2rad/s. Remarkably, the 

quadrotor demonstrated swift acceleration, reaching an 

average of 0.33rad/s², complemented by an average torque of 

0.72 N.m. 

Despite the satisfactory results, it is crucial to acknowledge 

that the quadrotor system still possesses certain limitations that 

present opportunities for further development from various 

aspects. Firstly, in terms of velocity, although the quadrotor 

reached a maximum speed of 8m/s, exploring methods to 

enhance its velocity and stability performance would open 

doors to applications that demand higher velocities and swift 

maneuverability. Additionally, while the quadrotor 

demonstrated rapid acceleration, improvements can be made 

to improve its agility and responsiveness, enhancing its ability 

to navigate seamlessly through complex environments replete 

with dynamic obstacles. Moreover, increasing the force and 

thrust capabilities of the quadrotor would enable it to handle 

more demanding tasks and payloads, expanding its range of 

potential applications. Furthermore, refining the control 

algorithms and mechanisms associated with the yaw motion 

can contribute to better stability and precision during 

rotational maneuvers; and ensure the quadrotor's adaptability 

in scenarios requiring intricate movements. It is through 

addressing these limitations and pursuing further 

advancements that the quadrotor system can continue to 

evolve and achieve new heights of performance and versatility. 

In summary, the impressive obtained statistics suggest that 

the quadrotor system exhibits minimal deviation in control. 

The consistent values for velocity, acceleration, force, and 

torque highlight its reliability and precision, ensuring stable 

and accurate flight maneuvers. Thus, the analysis confirms the 

quadrotor system's exceptional attributes and establishes its 

suitability for multiple applications such as Aerial 

Surveillance and Monitoring, Search and Rescue Operations, 

Industrial Inspections, and Agriculture and Crop Monitoring. 

(a) Results of x motion: velocity command and response

(b) Results of x motion: generated force response

(c) Results of x motion: acceleration response

Figure 9. Results of optimized x motion control of quadrotor 

achieved: precise control commands enhance velocity, force, 

and acceleration 

(a) Results of y motion: velocity command and response

(b) Results of y motion: generated force response

(c) Results of y motion: acceleration response

Figure 10. Results of optimized y motion control of 

quadrotor achieved: precise control commands enhance 

velocity, force, and acceleration 
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(a) Results of yaw motion: velocity command and

response 

(b) Results of yaw motion: generated torque response

(c) Results of yaw motion: acceleration response

Figure 11. Results of optimized yaw motion control of 

quadrotor achieved: precise control commands enhance 

velocity, force, and acceleration 

7. CONCLUSION

In this work, the PyQt6 application played a crucial role in 

conveniently managing the quadrotor's movements, 

demonstrating advancements in robotics and control systems. 

It enabled effective control of the quadrotor's motions, 

contributing to project success and enhancing maneuverability 

in quadrotor multibody systems. The findings collected in this 

study affirm the system's efficacy in governing the quadrotor's 

motions, including motion along the three axes (x, y, and z), 

in addition to the yaw motion. Moreover, this project 

significantly contributes to the field of quadrotor multibody 

systems, paving the way for further advancements in the 

control and monitoring of complex systems. While this work 

highlights several achievements, it is essential to acknowledge 

its limitations. Scalability, robustness, and adaptability to 

different environments are some of the challenges that future 

researchers should consider. By addressing these aspects, the 

system has the potential for further enhancement to cater to the 

requirements of diverse applications. By setting sights on the 

future, many projects can leverage advanced technologies like 

SLAM and yolov8 to enhance the quadrotor's intelligence in 

obstacle avoidance, mapping, and object detection. The 

integration of machine learning techniques holds the potential 

for achieving autonomous quadrotor operation, thereby 

driving notable progress in the sector of quadrotor multibody 

systems. Overall, this project has successfully contributed to 

the control systems of quadrotors, with implications extending 

beyond this specific domain. The potential impact 

encompasses the development of autonomous aerial vehicles, 

enhancing search and rescue operations, and enabling remote 

sensing applications. 
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