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The ongoing COVID-19 pandemic has significantly affected global public health, 

necessitating protective measures such as wearing face masks to reduce the spread of the 

disease. Recent advances in deep learning-based object detection have shown promise in 

accurately recognizing objects within images and videos. In this study, the state-of-the-art 

You Only Look Once (YOLO) V5 object detection model was employed to classify 

individuals based on their mask-wearing status into three categories: none, poor, and 

adequate. YOLO V5 is known for its high efficiency and precision in object recognition 

tasks. Two datasets, the Face Mask Dataset (FMD) and the Medical Mask Dataset (MMD), 

were combined for simultaneous evaluation. The performance of the models was assessed 

based on crucial metrics such as Giga-Floating Point Operations (GFLOPS), workspace 

area, detection time, and mean average precision (mAP). Results indicated that the YOLO 

V5m model achieved the highest mAP (97.2%) for the "adequate" class, demonstrating its 

effectiveness in detecting proper mask usage for COVID-19 mitigation. 
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1. INTRODUCTION

Since the identification of the first case of coronavirus 

disease 2019 (COVID-19), the outbreak has rapidly escalated, 

leading to a global pandemic in 2020. On January 30, 2020, 

the World Health Organization (WHO) declared the situation 

a Public Health Emergency of International Concern (PHEIC), 

and the pandemic status was confirmed on March 11, 2020 [1]. 

The COVID-19 pandemic has posed a substantial challenge to 

the world, necessitating the deployment of various strategies 

to combat the virus, including the application of artificial 

intelligence (AI). 

AI techniques have been employed in numerous capacities 

to aid in the fight against the virus, such as detecting 

individuals wearing face masks [2], identifying COVID-19 

patients [3], and enhancing lesion segmentation in chest 

computed tomography (CT) scans of COVID-19 patients [4]. 

The integration of AI in these domains underscores its 

potential for mitigating the impact of the pandemic and 

facilitating informed decision-making processes. 

Besides, WHO has provided guidance on the usage of face 

masks, and the studies [5, 6] have all supported the idea that 

wearing masks can prevent the spread of possible pathogens 

during a pandemic. One line of evidence suggests that wearing 

masks in public could be interpreted as a sign of social unity 

among those responding to the global pandemic. In order to 

combat COVID-19, Javid et al. suggest that we adopt a united 

strategy of wearing masks in public as our primary form of 

defense [7]. The face masks can be used twice, three times, or 

even four or five times provided they are kept in an atmosphere 

that is relatively safe and are well maintained, which is normal 

and usual, especially under the scenario when there is a 

shortage of face masks [8, 9]. 

Automated face mask detection plays a crucial role in 

enforcing public health measures and mitigating the spread of 

COVID-19. Here are some reasons why it is important: (1) 

Compliance with mask mandates: Wearing masks is a 

fundamental preventive measure recommended by health 

authorities to reduce the transmission of COVID-19. 

Automated face mask detection systems help enforce mask 

mandates in public spaces by identifying individuals who are 

not wearing masks or are wearing them incorrectly. By quickly 

identifying non-compliance, these systems can facilitate 

timely intervention and encourage adherence to mask-wearing 

guidelines. (2) Real-time monitoring: Automated face mask 

detection allows for real-time monitoring of mask usage in 

various settings, such as airports, public transportation, 

workplaces, and retail stores. This technology can provide 

continuous surveillance and alert authorities or personnel 

when individuals are not wearing masks. By identifying and 

addressing non-compliance promptly, potential outbreaks can 

be prevented or minimized [10]. (3) Efficient and consistent 

enforcement: Human monitoring of mask compliance can be 

challenging, especially in crowded areas or for extended 

periods. Automated systems provide a consistent and reliable 

means of enforcing mask-wearing policies without the need 

for constant human intervention. This enables authorities to 

allocate their resources more effectively and focus on other 

critical tasks related to public health and safety. (4) Public 

awareness and education: Face mask detection systems can 

serve as educational tools by raising awareness about the 

importance of mask-wearing. When people see the system in 

action, it reminds them to follow public health guidelines and 

encourages them to wear masks correctly. Over time, this 

increased visibility can help normalize mask usage and 

improve overall compliance rates [11]. (5) Data collection and 
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analysis: Automated face mask detection systems can generate 

valuable data on mask compliance rates, hotspots of non-

compliance, and trends over time. This data can be analysed to 

identify patterns and make informed decisions regarding 

public health interventions. By understanding where and when 

mask usage is low, authorities can implement targeted 

educational campaigns, allocate resources, and adjust their 

strategies accordingly [12]. 

Furthermore, urgent research into the duration of protection 

provided by face masks [13], measures to extend the life of 

disposable masks, and the development of reusable masks 

should be encouraged. To combat and win the battle against 

the COVID-19 pandemic, the government must provide 

instructions and surveillance to individuals in public places, 

particularly in highly populated areas, according to the WHO. 

A component of this is making sure that the laws regarding 

face masks are followed. For instance, the combination of 

artificial intelligence models and surveillance technologies 

might be useful in this scenario [14, 15]. 

Artificial Intelligence (AI) has been applied in various areas, 

including mask detection, patient identification, and lesion 

segmentation, to improve efficiency and accuracy in 

healthcare settings. Some examples of AI applications are as 

follows: (1) Mask detection: AI-based computer vision 

algorithms can analyse images or video streams to detect 

whether individuals are wearing masks correctly or not. By 

using techniques like object detection and facial recognition, 

AI models can identify faces and determine if a mask is present 

and properly worn. This technology has been employed in 

public spaces, airports, hospitals, and other settings to enforce 

mask mandates and ensure compliance with public health 

guidelines [16, 17]. (2) Patient identification: AI has been used 

to improve patient identification processes in healthcare 

facilities. By analysing unique biometric identifiers such as 

facial features, fingerprints, or iris patterns, AI systems can 

accurately match patients to their electronic health records 

(EHRs) and prevent identification errors. This helps reduce 

medical errors, streamline administrative workflows, and 

enhance patient safety [18, 19]. (3) Lesion segmentation: In 

medical imaging, AI algorithms have been developed to 

automatically segment and analyse lesions in various 

modalities such as MRI, CT scans, and dermatological images 

[20]. These algorithms use deep learning techniques to identify 

and delineate the boundaries of lesions, assisting radiologists 

and dermatologists in diagnosing and monitoring conditions 

such as tumors, skin cancers, or abnormalities in organs. AI-

based lesion segmentation can save time, improve accuracy, 

and aid in early detection and treatment planning [21]. (4) 

Medical image analysis: AI has revolutionized medical image 

analysis by enabling automated interpretation and diagnosis. 

Deep learning models trained on vast amounts of medical 

image data can detect and classify abnormalities, assist in 

radiological diagnoses, and provide quantitative 

measurements. AI algorithms have been applied to a wide 

range of medical imaging techniques, including X-rays, 

mammograms, ultrasounds, and pathology slides, improving 

efficiency and aiding clinicians in making more accurate 

diagnoses [22, 23]. 

In this article, a mask face detection model was developed 

with the assistance of deep transfer learning, and it is presented 

here in this study. Because the suggested model can 

differentiate between people who are and are not wearing 

masks, it is possible that this model might be combined with 

security cameras to prevent the transmission of COVID-19 

and, as a result, prevent the transmission of COVID-19. The 

major contributions of this paper are as follows. First, a unique 

deep learning detection model that can automatically identify 

and localize facial medical masks on images has been created 

and presented. Second, evaluation of the advantages and 

disadvantages of using YOLO V5m and YOLO V5s to 

identify medical face masks were both included in this study. 

Next, we analyse our proposed method to the combination 

FMD and MMD dataset. 

The organizational framework of this research is as follows: 

Section 2 contains the relevant work. Our recommended 

strategies are outlined in Section 3. In Section 4, we discuss 

experimental results and how they work. In the fifth and final 

part of this paper, conclusions are drawn and suggestions for 

additional research are offered. 

 

 

2. RELATED WORK 

 

2.1 Medical face mask recognition 

 

Over the past few years, deep learning recognition has made 

significant breakthroughs in the majority of object recognition 

algorithms [24]. Identifying objects is easy for individuals, but 

it is incredibly challenging for computers to differentiate 

between two things that are virtually indistinguishable from 

one another in terms of their look and their functions. When 

people are obliged to wear face masks, a substantial amount of 

attention is typically focused on the formation of their faces as 

well as the identification of their genuine identities. This is the 

case in most situations in which people are required to wear 

face masks. In the study [25], the investigators are looking for 

those who are not using face masks in order to assist in the 

prevention and reduction of the transmission of the COVID-

19 virus as well as other infections. A comparison of masked 

and non-masked face recognition datasets is provided in the 

study [26] along with a presentation of Principal Component 

Analysis (PCA). As part of their research, they have found 

statistical procedures that have the potential to be utilized in 

techniques for maskless face identification as well as masked 

face recognition. PCA is a frequently used statistical analysis 

technique that is more effective and efficient than other 

methods. 

Researcher [27] are concentrating on the unmasking of a 

masked face since it is a really thoughtful young with 

significant practical implications. In their study, they 

employed a GAN-based network [16, 17] with two 

discriminators. Initially, one discriminator assisted in learning 

the overall structure of the face, and then another discriminator 

was inserted to concentrate learning on the deep missing 

region. GAN stands for Generative Adversarial Network. 

GAN-based networks are a type of neural network architecture 

that consists of two main components: a generator network and 

a discriminator network. The concept of GANs was introduced 

by Ian Goodfellow and his colleagues in 2014 [28, 29]. 

The generator network in a GAN generates new data 

samples, such as images or text, by learning from existing data. 

It takes random input, often called noise, and transforms it into 

synthetic data that resembles the training data. The goal of the 

generator is to create samples that are realistic and 

indistinguishable from the real data. 

The discriminator network, on the other hand, acts as a 

binary classifier. It receives both real data samples from the 

training set and generated samples from the generator. The 
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discriminator's objective is to distinguish between real and 

fake data. It learns to assign high probabilities to real samples 

and low probabilities to generated samples [30]. 

Researchers [31] presented a method for identifying a 

person with a masked face in an image or video stream. These 

two technologies were employed in this study. The project is 

being carried out in two parts. In the first phase, a deep 

learning model is trained, and then, in the second phase, the 

mask detector is applied to an image or video stream that is 

being streamed live. To do real-time face detection from a 

webcam live feed, OpenCV is used. On a dataset, the COVID-

19 face mask detector was constructed with the help of 

computer vision and Python. 

Another research [32] has published one work in which the 

proposed system focuses on recognizing masks, and faces are 

represented using the more advanced YOLOV3 architecture. 

YOLO, which stands for "You Only Look Once," uses a 

learning process known as the Convolution Neural Network 

(CNN) [33]. A Convolutional Neural Network (CNN) is a type 

of deep learning neural network that is particularly effective in 

processing and analyzing data with a grid-like structure, such 

as images and videos. CNNs have revolutionized computer 

vision tasks by demonstrating superior performance in tasks 

like image classification, object detection, and image 

segmentation. The key component of a CNN is the 

convolutional layer. This layer applies a series of filters or 

kernels to the input data, extracting features by performing 

convolution operations. Each filter detects specific patterns or 

features in the input, such as edges, textures, or shapes. The 

convolution operation involves sliding the filter across the 

input, computing dot products at each position, and producing 

a feature map that highlights the presence of that specific 

feature. YOLO is capable of detecting and finding all kinds of 

images and has a relationship with CNN that has been built 

through hidden layers, research, and easy search algorithms 

[34, 35]. After combining the results to provide action-level 

predictions, the execution phase begins with incorporating 

thirty different images from the data set into the model. In 

addition to providing great image results, it is also capable of 

detecting objects. Using this model, we can see how the model 

performs with masked and unmasked layers, and how fast the 

frame rate is when incorporated in a video stream [36, 37].  

RetinaFaceMask is the name of the face mask detector that 

was proposed by Mingijie Jiang and his colleagues [38]. Their 

approach involved the utilization of an innovative object-

removal technique to get rid of forecasts that had a low level 

of confidence. They were able to get results that were 5.9 

percent and 11.0 percent more accurate recall, as well as 1.5 

percent and 2.3 percent greater precision, compared to the 

most recent state-of-the-art results for face mask and face 

detection, respectively. On the other hand, they also 

investigated how well the suggested strategy performed on 

lightweight neural networks like MobileNet [39]. 

2.2 YOLO V5 

YOLO V5 is an evolution of the YOLO algorithm and 

introduces architectural changes and improvements over 

previous versions. It is not specifically designed for medical 

face mask recognition, but it can be utilized for this task with 

appropriate training on a labeled dataset of masked and 

unmasked faces. 

To adapt YOLOv5 for medical face mask recognition, the 

following steps can be taken: (1) Dataset collection and 

annotation: Collect a diverse dataset of images containing 

faces with and without masks. Annotate the images with 

bounding boxes around the faces and label them accordingly 

as masked or unmasked. (2) Model configuration: Modify the 

YOLOv5 architecture to suit the specific requirements of 

medical face mask recognition. Adjust the input size, number 

of classes (masked and unmasked), and anchor box sizes 

according to your dataset. (3) Training: Train the YOLOv5 

model on the annotated dataset using the modified 

configuration. This involves optimizing the model's weights to 

learn to accurately detect and classify faces with and without 

masks. (4) Evaluation and fine-tuning: Evaluate the trained 

model's performance on a validation dataset to measure its 

accuracy and adjust the hyperparameters if needed. Fine-

tuning can be performed to improve the model's performance 

further [40]. (5) Testing and deployment: Test the trained 

YOLOv5 model on a separate test dataset to assess its real-

world performance. Once satisfied with the results, deploy the 

model to perform medical face mask recognition tasks. It's 

important to note that developing a robust and accurate 

medical face mask recognition system requires a diverse and 

representative dataset, careful model configuration, and 

thorough training and evaluation. Additionally, considering 

ethical and privacy aspects is crucial when working with 

medical data or deploying such systems in healthcare settings 

[41]. 

There are five unique designs for the YOLO V5's 

architecture, and they are the YOLO V5s, YOLO V5m, YOLO 

V5n, and YOLO V5l designs [42, 43]. he primary difference 

between the two is the number of scattered feature extraction 

modules and convolution kernels across the network at various 

nodes. Figure 1 provides a schematic representation of the 

internal network that YOLO V5 possesses and may be found 

in this paper. The YOLOV5 design makes use of a wide 

variety of technologies, such as autonomous learning 

bounding box anchoring, mosaic data enhancement, and cross-

stage partial networking, amongst others. An initial image 

with dimensions of 608x608x3 is inserted into the Focus 

structure, as illustrated in Figure 1. This is done with reference 

to the YOLO V5 structure, which serves as an example. After 

this step, the image is transformed into a feature map that has 

dimensions of 304 x 304 x 12, then continues with the kernel 

convolution operation 32, resulting in a final feature map 

having dimensions of 304 x 304 x 32. This architecture makes 

advantage of some of the most powerful algorithm 

optimization methods that have been created for convolutional 

neural networks in the most recent handful of years. It utilizes 

the YOLO detection architecture as its foundation. In our 

experiment, we only employ YOLO V5s and YOLO V5m and 

compare with YOLO V3 and YOLO V3 SPP [44, 45]. 

YOLO V5 has four main components: input, backbone, 

neck, and output [46]. The major responsibility of the 

Backbone Model is to identify significant pieces for analysis 

from inside the input image. Cross Stage Partial Networks 

(CSP) and Spatial Pyramid Pooling (SPP) [47] are the primary 

building blocks that YOLO V5 uses when it comes to 

extracting rich and important characteristics from input 

photographs. This is accomplished with the help of YOLO V5. 

When it comes to the accurate generalization of a model for 

object scaling, it is vital to correctly identify the same item in 

many sizes and scales. SPP is helpful in this regard because it 

can recognize the same thing in different sizes and scales. The 

feature pyramid architectures of Feature Pyramid Network 

(FPN) [48] and Path Aggregation Network (PANet) [49] are 
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utilized in the construction of the neck network. The FPN 

structure has significant semantic features that are scattered 

across its entirety, starting at the top feature maps and working 

their way down to the lower feature maps. These features 

begin their journey at the top feature maps. During this time, 

it is the role of the PAN structure to ensure that trustworthy 

localization features are transmitted from lower feature maps 

to higher feature maps. Feature maps have a hierarchical 

structure. PANet is utilized by YOLO V5 in the capacity of a 

neck, which makes the development of a feature pyramid 

possible. 

 

 
 

Figure 1. YOLOV5 architecture 

 

Important advances were made in YOLO version 5, 

including the following: Because YOLO V5 is based on 

PyTorch and not a derivative of the original Darknet code, it 

differs from all previous editions of the software. YOLO V5, 

in the same way as YOLO V4, has a CSP backbone and a 

PANET neck [49]. The most significant improvements include 

improved mosaic data and automatic learning of bounding box 

anchors. 

Yolo loss function based on Eq. (1) [50]. 

 

𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
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2] 𝐵
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𝟐
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(𝐶𝑖 − �̂�𝑖)
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𝑐𝜖𝑐𝑙𝑎𝑠𝑠𝑒𝑠
𝑠2

𝑖=0   

(1) 

 

 

3. METHODOLOGY 

 

3.1 The combination of Face Mask Dataset (FMD) and 

Medical Masks Dataset (MMD) 

 

The studies described in this work were carried out utilizing 

two datasets of medical face masks that were made available 

to the public. To begin, the Face Mask Dataset (FMD) [51] is 

the masked face dataset that is freely accessible to the public. 

The FMD dataset is comprised of 853 images, all of which are 

in the PASCALVOC format and are included in this collection. 

In addition, FMD datasets are separated into three categories: 

(1) with mask, (2) without mask and (3) mask worn incorrectly. 

These images contain a total of 4072 faces, 3232 of which are 

identified as with masks, 717 as without masks, and 123 as 

mask worn incorrectly. Figure 2(a) illustrates various FMD 

example images. The next resource is the Medical Masks 

Dataset (MMD), which may be found on Kaggle [52].  

In addition, there are a total of 9067 labeled faces in the 

MMD dataset, including 6758 faces with masks, 2085 faces 

without masks, and 224 faces with improperly worn masks; 
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these labels are useful for researching issues related to face-

mask recognition as shown in Table 1. Examples of images 

that can be created with MMD are displayed in Figure 2(b). 

The YOLO format requires that a text file with the same name 

as the associated image file be created and saved in the same 

directory as the image file, but with the extension changed 

to.txt. Include the object number as well as the object 

coordinates on this image within the txt file. Place the 

following information for each item in a new line: <object-

class><x><y><width><height>. Before beginning the 

training on the dataset, we convert the labels from the 

PASCAL VOC format to the YOLO format. 

 

 
(a) FMD 

 
(b) MMD 

 

Figure 2. Sample image of FMD and MMD dataset 
 

Table 1. FMD and MMD dataset information 

 

Dataset Type Mask Type Image Faces 
Available Labels 

Mask No Mask Incorrect Worn 

FMD [51] Image Dataset Real-world 853 4072 3232 717 123 

MMD [52] Image Dataset Real-world 6024 9067 6758 2085 224 

 

 
 

Figure 3. The combination of MMD and FMD Dataset 

 

In our experiment, MMD and FMD were merged into a 

single data set to produce a distinctive result. After removing 

images of poor quality and duplicates from the source dataset, 

a total of 6877 photographs were merged from the one that was 

provided. This was achieved by combining the photographs. 

The combination of MMD and FMD is depicted in Figure 3, 

which may be found in our publications. The MMD dataset is 

comprised of three classes, referred to as terrible, good, and 

none respectively. However, the FMD dataset distinguishes 

between three groups: "mask wear incorrect," "with mask," 

and "without mask." Our investigation led us to classify people 

into three groups: those who wore their masks improperly 

("bad"), those who did not ("good"), and those who did not 

("none"). 

 
 

Figure 4. Labels of the FMD and MMD dataset 
 

The labels of the MMD and FMD datasets are shown in 

Figure 4 and these datasets have three classes: bad, good, and 

none. The bad class consist of around 500 instances, class 

good more than 4000 instances, and class none with 400 

instances. Furthermore, the width of the dataset ranges from 

0.0 to 0.6, and the height ranges from 0.0 to 0.8. 

 

3.2 Training result 

 

The training environment for the face mask model featured 

an AMD Ryzen 7 3700X Central Processing Unit (CPU) with 
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an 8-core processor, an Nvidia GTX2070 Super GPU 

accelerator, and 32GB of DDR4-3200 memory. An AMD 

Ryzen 7 3700X computer served as a home for each of these 

individual components. During the training phase, we divided 

our dataset into two parts: 70 percent for training and 30 

percent for testing. Whenever a training batch is processed, 

YOLO V5 sends the accumulated training data to a data loader. 

The data loader then augments the data online, which is 

displayed to the user. The data loader is responsible for 

performing the following types of augmentations: scaling 

adjustments, updates to the color space, and mosaic 

augmentation. The mosaic data enhancement approach is by 

far the most original, as it mixes four pictures into four tiles 

with a random aspect ratio. This makes the mosaic method the 

clear winner. In contrast to Darknet's use of a.cfg files, YOLO 

V5 creates its model configurations using the a.yaml file 

format. The most significant distinction between these two 

formats is that the a.yaml file is a simplified version that only 

specifies the various layers in the network and then multiplies 

those by the total number of layers in the block [53, 54]. 

Figure 5 exhibits the training and testing graph with (a) 

YOLO V3 and (b) YOLO V5s. The training for each of the 

models used in the experiment consisted of a total of 40 epochs. 

The training for the YOLO V3 SPP was finished in a total of 

14,515 hours, the YOLO V3 was accomplished in a total of 

14,473 hours, the YOLO V5s was done in a total of 2,969 

hours, and the YOLO V5m was completed in a total of 6,569 

hours. The last step in the training process is termed fine-

tuning, and participation in it is totally voluntary. The learning 

rate is a hyperparameter that indicates how significant of a 

modification should be made to the model in order to account 

for the projected error each time the weights of the model are 

updated. In this phase, we will disassemble the entire model 

that we obtained in the previous stage, and then we will retrain 

it on our data while setting the learning rate to a very low value. 

By gradually adjusting previously trained features to take into 

account newly acquired data, it has the potential to bring about 

significant gains in performance.  

 

 
(a) 

 
(b) 

 

Figure 5. Training and testing graph with the combination of FMD and MMD dataset. (a) YOLO V3 and (b) YOLO V5s 
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Table 2. Training performance results for all models with FMD and MMD dataset 

 
Model Class Images Labels P R mAP@.5 mAP@.5:.95 

YOLO V3 SPP all 507 2661 0.643 0.85 0.652 0.465 

 bad 507 260 0.517 0.835 0.534 0.352 

 good 507 2123 0.927 0.956 0.961 0.701 

 none 507 278 0.484 0.76 0.519 0.343 

YOLO V3 all 507 2661 0.643 0.872 0.651 0.479 

 bad 507 260 0.503 0.861 0.531 0.357 

 good 507 2123 0.941 0.953 0.962 0.723 

 none 507 278 0.484 0.801 0.517 0.358 

YOLO V5s all 507 2661 0.639 0.832 0.662 0.448 

 bad 507 260 0.508 0.815 0.492 0.317 

 good 507 2123 0.933 0.945 0.963 0.697 

 none 507 278 0.476 0.736 0.496 0.329 

YOLO V5m all 507 2661 0.639 0.832 0.672 0.448 

 bad 507 260 0.508 0.815 0.492 0.317 

 good 507 2123 0.933 0.945 0.964 0.697 

 none 507 278 0.476 0.736 0.496 0.329 

 

The hyperparameters-configurations file is where you will 

make any necessary adjustments to the learning rate settings 

to meet your requirements. Our work makes advantage of the 

hyperparameters described in the built-in hyp.finetune.yaml 

file so that the tutorial can better demonstrate their application. 

This hyperparameter has a significantly reduced learning rate 

compared to the one that is defaulted. The initial value of the 

weight will be determined by the value that was saved in the 

stage before this one. In addition, the results of our training 

performance with FMD and MMD datasets are described in 

Table 2, which may be found here. According to the findings 

in Table 2, the YOLO V5m has the highest average mAP, 

which comes in at 67.2%, while the YOLO V5s shows 66.2% 

mAP. 

Figure 6 depicts the training technique that was taken for 

both batch 0 and batch 1, respectively. Anchor boxes were 

created by YOLO V5 using a genetic algorithm as their basis. 

An automatic anchoring process is what they name this 

method, which recalculates the anchor boxes to better fit the 

data if the default ones are insufficient. The K-means method 

is paired with this information to generate a k-means evolved 

anchor box. This is one of the reasons why YOLO V5 

performs so well even when applied to a wide variety of 

datasets. 

The process of generating anchor boxes in YOLOv5 are as 

follows: (1) Dataset preparation: The first step is to prepare a 

labeled dataset containing bounding box annotations for the 

objects of interest. The dataset should cover a diverse range of 

object sizes and aspect ratios. (2) Extracting anchor box 

dimensions: From the dataset, the width and height of the 

ground truth bounding boxes are extracted. These dimensions 

are usually normalized by the image width and height to 

ensure consistency across different images. (3) Running k-

means clustering: The k-means clustering algorithm is applied 

to the extracted bounding box dimensions. The aim is to group 

similar-sized objects together and determine representative 

anchor box dimensions for each group. The number of clusters 

(k) corresponds to the desired number of anchor boxes. (3) 

Computing anchor box dimensions: After clustering, the 

centroid of each cluster represents an anchor box. The 

centroid's width and height values are converted back to the 

original scale (pixel values) by multiplying them with the 

image width and height. (4) Finalizing anchor box sizes: 

Depending on the specific implementation of YOLOv5, 

additional adjustments might be made to the anchor box sizes 

to better match the distribution of objects in the dataset or to 

achieve specific performance goals [55]. 

Moreover, mAP is calculated employing Intersection over 

Union (IoU). Specifies the degree of overlap between the 

expected and ground truth bounding boxes. A value of 0 for 

the IoU indicates that there is no overlap between the boxes. 

An IoU of 1 indicates that the union of the boxes is equal to 

their overlap, suggesting that they overlap entirely. IoU 

describes in the Eq. (2) [56]. 

 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑑 ∩ 𝐴𝑟𝑒𝑎𝑔𝑡

𝐴𝑟𝑒𝑎𝑝𝑟𝑒𝑑 ∪ 𝐴𝑟𝑒𝑎𝑔𝑡
  (2) 

 

 
(a) 

 
(b) 

 

Figure 6. Training Process (a) batch 0 and (b) batch 1 
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Additionally, the output samples have the possibility to be 

separated into three different categories according to their 

characteristics. A result is a true positive (TP) when the model 

correctly predicts the presence of the positive class. A result is 

a true negative if it indicates that the model successfully 

predicted the negative class. A result is said to have a false 

positive (FP) classification when the model incorrectly 

predicts the presence of the positive class. A false negative 

(often abbreviated as FN) is an outcome that occurs when the 

model incorrectly forecasts the negative class. The number of 

samples for which a positive result was wrongly assigned is 

referred to as the "true negative" (TN) count. Precision and 

recall are represented by [57, 58] in Eqs. (3)-(4). Further, F1 

[59] is shown in Eq. (5) [50]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (4) 

 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
  (5) 

 

Figure 7 provides detailed information regarding the 

detection performance and amount of complexity of several 

different models, which are broken down into categories such 

as layers, parameters, and GFLOPS respectively. After that, 

the YOLO V3 SPP has 269 layers, and the YOLO V3 load has 

the same 261 layers. The YOLO V5s and YOLO V5m contain 

the most layers, around 290 layers, according to our 

experiment. YOLO V3 SPP loads the most 62557288 

parameters, followed by YOLO V3 with 61508200 parameters, 

YOLO V5s and YOLOV5m contain the same parameters 

20861016. The YOLO V5s and YOLO V5m require a 

workspace size of 41.2 MB. In addition, YOLO V3 SPP 

produces a total of 155.6 GFLOPS, allocates an additional 

125.5 MB of workspace space, and YOLO V3 provides a big 

123.4 MB workspace space while producing a total of 154.7 

GFLOPS. Together, the YOLO V5s and YOLO V5m are only 

capable of producing a paltry 48 GFLOPS. 

When compared to competing object detection frameworks, 

YOLO V5's ease of use for developers integrating computer 

vision technology into applications is outstanding. The 

following is a list of some of the facilities offered by YOLO 

V5: (1) Simple Setup – YOLO V5 only requires a torch and 

some lightweight python libraries to be installed on your 

computer to work. (2) Fast Learning: The YOLO V5 model 

learns very quickly, which allows us to reduce the amount of 

money spent on experiments as we build our model. (3) Ports 

for inference that work, and we can use YOLO V5 to infer 

individual photos, image sets, video feeds, or webcam ports. 

(4) Easy to Traverse Layout The file folder layout is easy to 

understand and navigate as you develop. (5) Simple Portability 

to Mobile Devices - We were able to quickly port YOLO V5 

from PyTorch weights to ONXX weights to CoreML to IOS. 

The smaller YOLO V5 model has approximately 2.5 times 

faster run time while achieving higher performance in 

recognizing small objects. Also, very little to no overlapping 

squares due to this result, making it much cleaner. Ultralytics 

has done an excellent job on their open-source YOLO V5 

model, which makes it easy to inference and train the model. 

 

 

4. RESULT AND DISCUSSIONS  

 

The effectiveness of three types of facemask identification 

is summarized in Table 3. We employ YOLO V3, YOLO V3 

SPP, YOLO V5s and YOLO V5m in this experiment. 

The results of our evaluation of the YOLO V5 series are 

detailed in Table 3. Our model is now ready to move on to the 

inference phase now that it has successfully completed the 

training phase and achieved the desired results. The final 

forecast is an ensemble of all the augmented images (obtained 

by flipping the images horizontally and choosing one of three 

resolutions). We implement mosaic data augmentation, and 

the steps are as follows: (1). Resize the images to be the same 

dimensions. (2). Sample from the Beta distribution to get the 

λ value. (3). Multiply all values in image 1 by λ. (4). Multiply 

ass values in image 2 by 1-λ. (5). Add the two images together 

to get the final image. (6). Combine the annotations to get the 

final annotations for the image. 

 

 

 
 

Figure 7. The comparison of layers, size, parameter and GFLOPS 
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Table 3. Testing accuracy results performance for all models with FMD and MMD dataset 

 
Model Class Images Labels P R mAP@.5 mAP@.5:.95 

YOLO V3 SPP all 507 2661 0.624 0.882 0.652 0.453  
bad 507 260 0.495 0.842 0.501 0.322  

good 507 2123 0.903 0.961 0.96 0.702  
none 507 278 0.475 0.842 0.526 0.334 

YOLO V3 all 507 2661 0.647 0.87 0.651 0.471  
bad 507 260 0.522 0.819 0.516 0.333  

good 507 2123 0.936 0.958 0.961 0.724  
none 507 278 0.484 0.833 0.525 0.357 

YOLO V5s all 507 2661 0.615 0.837 0.662 0.436  
bad 507 260 0.475 0.777 0.48 0.296  

good 507 2123 0.932 0.958 0.97 0.728  
none 507 278 0.471 0.791 0.522 0.336 

YOLO V5m all 507 2661 0.626 0.886  0.671 0.46  
bad 507 260 0.481 0.858 0.523 0.336  

good 507 2123 0.931 0.957 0.972 0.713  
none 507 278 0.465 0.845 0.509 0.332 

 

 
 

Figure 8. Validation test batch 2 with YOLO V5m 

 

    
(a) YOLOV3 (b) YOLOV3 SPP (c) YOLOV5s (d) YOLOV5m 

 

Figure 9. Recognition result class none for all models 

 

Inclusion of test-time augmentations (TTA), which comes 

after inference, enables us to further improve the accuracy of 

the predictions. If we want to maintain a high frames-per-

second (FPS) rate, we will have to forego the use of the TTA 

because the inference it generates is two to three times as long 

as it would be otherwise. TTA is a technique used to improve 

the accuracy of object detection models by applying data 

augmentation during the inference stage. It involves 

augmenting test images multiple times with various 

transformations and aggregating the predictions from these 

augmented images. While TTA can enhance the model's 

accuracy, it comes with trade-offs in terms of inference time 

and FPS. When applying TTA, the inference time increases 

because the model needs to make predictions for each 

augmented version of the test image. The additional 

computations for each augmentation can significantly slow 

down the inference process, resulting in a lower FPS rate. The 

relationship between TTA and FPS can be inversely 

proportional: as the number of augmentations increases, the 

FPS rate decreases. The trade-offs between using TTA for 

improved accuracy and maintaining a high FPS rate depend on 

the specific application and its requirements. 
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Figure 10. Face mask recognition result with YOLOV5m 

 

Based on our experiment result on Table 2, YOLO V5m 

achieve the highest average mAP of 67.1% for all classes. 

Followed by YOLO V5s with a mAP of 66.2%, YOLO V3 SPP 

with a mAP of 65.2%, and YOLO V3 with a mAP of 65.1%. 

Class good achieves the highest mAP for all models, ranging 

from 96% to 97.2%. When deep learning is being carried out, 

some parameters, known as hyperparameters, are set before 

the formal training begins. It is possible that the performance 

of the model can be improved by making use of the relevant 

hyperparameters. There is a total of 23 hyperparameters in the 

YOLO V5 algorithm, the vast majority of which are involved 

in customizing aspects like learning velocity, loss function, 

and data improvement settings. 

The validation procedure for YOLO V5m batch 2 is shown 

in Figure 8. During the training phase of YOLO V5, four 

separate images were mixed to produce one larger image. 

During the splicing phase, each of the four independent images 

goes through a random processing step. This causes each 

image to have a distinct difference in size and configuration. 

Nevertheless, the recognition result class “Good” and “None” 

for all models shown in Figure 9. Most of the model in the 

experiment can recognize the class “Good” and “None” very 

well. In addition, Figure 10 illustrates the various recognition 

result with YOLO V5m. 

 

 

5. CONCLUSIONS 

 

The purpose of this research is to present a clear and concise 

summary of CNN-based object recognition methods, with an 

emphasis on the SPP algorithms of YOLO V5s, YOLO V5m, 

YOLO V3, and YOLO V3. During our experimental research, 

we put several current object detectors through their paces and 

evaluated how well they perform. Some of the detectors we 

saw included, for example, those meant to recognize facemask. 

The scoring criteria included measurements for a variety of 

important features, including mean acquisition time (mAP), 

detection time, IoU, and number of GFLOPS.  

Based on our experiment result, YOLO V5m achieved the 

highest average mAP of 67.1% for all classes during training 

and testing stage. Next, Class “Good” achieves the highest 

mAP for all models, ranging from 96% to 97.2%. We focus on 

Class “Good” that means our algorithm can detect people 

wearing masks precisely. Facemask identification technology 

has significant real-world implications for enforcing mask-

wearing policies in public spaces and improving public health 

during a pandemic. It is important to implement facemask 

identification technology in a manner that respects privacy and 

addresses ethical considerations. Transparency, consent, and 

data protection measures should be in place to ensure the 

responsible use of this technology while balancing public 

health needs and individual rights. Additionally, combining 

facemask identification technology with other preventive 

measures, such as vaccination, testing, and social distancing, 

is essential for comprehensive public health strategies during 

a pandemic. 

The dataset that uses in our research is imbalanced, so it 

needs to add more dataset in the future to solve the imbalanced 

data problem. Moreover, in the future we will enlarge the 

dataset, add not ideal image or noise, and combine it with 

explainable artificial intelligence (XAI). 
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