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In order to study fluid film bearing systematically, the determination of optimal parameters 

is vital. A theoretical analysis of lubrication of asymmetric roller bearings with rolling and 

sliding motion lubricated by a non-Newtonian incompressible Bingham plastic fluid is 

presented with cavitation boundary conditions for heavily loaded rigid system. The 

Roeland lubricant viscosity is considered to vary with pressure and mean film temperature. 

The fluid flow governing equations such as equation of motion with continuity and 

momentum energy equations are first reduced to ordinary differential equations applying 

appropriate approximation and then solved numerically using MATLAB. This article 

discusses and elaborates on the various important characteristics of bearings including 

velocity, pressure, viscosity, mean temperature, load and traction. Graphs and table are 

introduced for Newtonian and non-Newtonian fluids to make clarity of this work. The 

results are found qualitatively in good agreement with those obtained by prior researchers. 
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1. INTRODUCTION

The study of the dynamics of industrial non-Newtonian 

fluids and their behavior has become more and more popular 

as many fluids in engineering today exhibit non-Newtonian 

behavior [1]. Further, the non-Newtonian Bingham plastic 

fluid flow characteristics are used to show the passage of fluids, 

specifically fluids for a long time, as well as the development 

of melts and slurries in moulds [2]. Examining grease 

speculatively using the Bingham model and returning to Milne 

[3], he investigated the fundamental 1-D journal and slider 

bearings and concluded that either surface may have had rigid 

"cores" added to it. Additionally, a model of the behaviour of 

Bingham-like fluids that exhibits a yield stress was presented 

by Dorier and Tichy [2]. 

Hydrodynamic lubrication is a technique used to reduce 

friction and wear on fluid-scouring surfaces. Adding the right 

fluid with the intention that it penetrates the contact area 

between the scouring surfaces and forms a fluid thin layer is 

the typical purpose of hydrodynamic lubrication. The majority 

of the time, this coating reduces friction and wear by keeping 

the surfaces from coming into contact [4]. 

Bearings are constantly dependent on incredibly high loads, 

peak speeds, and severe slip situations. The high load on the 

treatment in the concentrated contact causes high pressure 

ageing in the fluid film. For instance, the viscosity of oil varies 

continuously with pressure and temperature in the high 

pressure area [5]. 

In addition, in most of the classical problems lubricant is 

assumed to be Newtonian. However, since the lubricant is 

subject to extremely high pressure and shear stresses, as in the 

case of gear – meshes, heavily loaded rolling element bearings, 

which only act for a very short time, the Newtonian behaviour 

of the lubricant ceases to exist [6]. Besides, many lubricants 

contain high molecular weight polymers that also make them 

strongly non-Newtonian [7]. Hence, the effect of non-

Newtonian lubricant is to be incorporated along with the 

effects of pressure and temperature on the lubricants. 

On the line of non-Newtonian fluid model, Power law 

lubricant model has got attention in the recent years because 

of its simplicity and potential [8]. However, the Bingham 

plastic model characterizes the flow phenomena of various 

types of mud and is widely used because of its simplicity, and 

its capability to determine the loss of pressure in turbulent flow. 

Also, the Bingham plastic model is the most common 

rheological model used in the drilling industry. Drilling fluids 

initially resists flowing. In the Bingham plastic model, the 

shear stress should exceed a certain value to break the gelation 

bonding of the drilling fluid and allow it to flow [9]. 

In the same direction, Kim and Seireg [10] demonstrated the 

create use of a bi-viscous materials model enforced during a 

new CFD model to simulate the behavior within the Bingham 

plastic material in the lubricating film. Jang and Khonsari [11] 

provided 3-dimensional solutions for the slider bearing lubes 

with Bingham grease exploitation full thermo-fluid mechanics 

idea. Prasad et al. [12] analysed thermo-hydrodynamic 

lubrication options involving uneven rollers lubricated by 

incompressible power-law fluids supposed for extremely 

packed rigid line contact system assumptive the fluid 

consistency to be modified with pressure and mean film 

temperature. Further, it had been ended with extended increase 

of mean temperature with flow behaviour index and rolling 

ratio. Jang and Khonsari [13] presented overall review on 

various types of lubrication theory for different Newtonian and 

International Journal of Heat and Technology 
Vol. 41, No. 3, June, 2023, pp. 701-708 

Journal homepage: http://iieta.org/journals/ijht 

701

https://orcid.org/0000-0001-5542-9486
https://orcid.org/0000-0003-3926-7426
https://orcid.org/0000-0002-9427-9625
https://crossmark.crossref.org/dialog/?doi=10.18280/ijht.410324&domain=pdf


 

non-Newtonian fluids and their viscosities along with their 

characteristics. It provided an overall emphasis on the various 

important characterises of lubrication theory. 

Another hydrodynamic issue involving a rigid system of 

roller bearings greased with a flimsy compressible fluid for 

typical squeezing movement was investigated by Prasad et al. 

[14]. This study concentrated on anticipating that the fluid's 

consistency and density would vary according to the 

temperature and pressure. According to Sajja and Prasad's [15] 

investigation into the role of temperature in the hydrodynamic 

lubrication of non-Newtonian power-law fluids that are 

incompressible and intended for highly filled rigid systems, 

there was a noticeable change in the mean film temperature 

with flow index and rolling ratio. 

Östensen et al. [16] presented a theoretical study on 

determination of Roelands viscosity and pressure in an 

elastohydrodynamic rolling contact by using optical 

interferometry without thermal effects. In the presence of an 

externally induced magnetic field, Misra and Adhikary [17] 

examined the steady flow as well as the pulsatile flow of a 

Bingham plastic fluid. The finite difference method was used 

to solve the governing equations. On the velocity, volumetric 

flow rate, and wall shear stress, the impacts of porosity, 

magnetic field, and yield stress were investigated. In a highly 

loaded rigid system, Revathi et al. [18] studied non-Newtonian 

lubrication of asymmetric rollers with incompressible 

Bingham plastic fluid in rolling/sliding line contact taking into 

account fluid viscosity variations only with hydrodynamic 

pressure. The trends in fluid velocity were elaborated, and the 

results—in particular, the pressure, load, and traction forces—

were discovered to be consistent with previous findings. 

Gadamsetty et al. [19] extended this work and looked into a 

related issue involving the incompressible Bingham plastic 

fluid and the lubrication characteristics of anti-symmetric 

rollers. Results were in good accord with previous findings, 

especially with regard to temperatures, pressure, traction, and 

load. A more effective computational lubrication theory for a 

Bingham plastic fluid was presented by Lampaert and van 

Ostayen [20]. Since no extra approximations are needed 

beyond those employed in the generalised Reynolds equation's 

derivation, the theory is regarded to be precise in this sense. 

Gadamsetty et al. [21] investigated how an incompressible 

non-Newtonian Bingham plastic fluid could lubricate a line 

contact problem for fluid pressure and velocity including 

temperature. 

Not much work has been carried out by the researchers from 

this field taking into account the asymmetric roller bearings 

with viscosity as a function of pressure and temperature. 

Hence in the present work, the attention has been focussed on 

to analyse such characteristics of bearings lubricated by an 

incompressible Bingham plastic fluid under cavitation 

boundary conditions. Roelands viscosity is here considered 

which is assumed to be a function of pressure and the mean 

film temperature.  

 

 

2. THEORETICAL MODEL 

 

The system in this study is taken into account in a way that 

both surfaces have the same radius but are moving at various 

speeds. Additionally, it is evident that the upper surface is 

made to move quicker than that of the lower surface. Figure 1 

depicts the entire flow configuration. 

 

 
 

Figure 1. Lubrication of asymmetric rollers 

 

2.1 Mathematical formulation 

 

Under common presumptions, the following equations, 

which regulate the flow of incompressible fluid, are taken into 

account [19]: 
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where, "p" and "" stand for the fluid's hydrodynamic pressure 

and shear stress, respectively. Sasaki et al. [22] provide the 

constitutive equation for Bingham plastic fluid. 
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where, ‘μ’ is the Roelands viscosity of the fluid [23] taken by 
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where, t0=1380, the equation for thickness of the film is to be  
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‘R’ represents ‘radius of the equivalent cylinder’. 

 

2.2 The boundary conditions 

 

The boundary conditions for this problem at both upper and 

lowers surfaces are taken as  
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20)(0 xxatxpandp ===  (9) 

 

where, U1 and U2 are the velocities of cylindrical rollers from 

Figure 1. By utilising the boundary conditions indicated above 

and solving Eq. (2) as shown below, it is possible to derive the 

fluid's velocity expression: 
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And the ‘volume flux’ at the point of maximum pressure is  

 

( ) ( ) 1211 hUUxQ +=−  (12) 

 

where, the film thickness h1 at x=-x1 is regarded to be 

 
2

11 1 xh +=  (13) 

 

2.3 Reynolds equation 

 

The pressure Reynolds equation is shown below when Eq. 

(2) is integrated under the boundary conditions (Eqs. (6)-(8)). 
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2.4 Dimensionless scheme 

 

In this paper, the following dimensionless approach for 

roller bearings is used. 
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Using the aforementioned dimensionless technique, the 

velocity expression and pressure Reynolds equation are 

presented in dimensionless form.  

 

( ) ( ) ( )( )2 2
3 1 1

32 4

y h U h hh y U h y
u

h h

   
− + −    − + +

    = +
   
    

  

 
(15) 

 

( )( )1

3

3 1

2

U h hd p

d x h

 + −
=  (16) 

 

2.5 Heat equation 

 

To solve the line contact lubrication problem, let's assume 

the following heat equation [24] 
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The Eq. (3) is used to derive the shear stress ‘’ for the 

Bingham plastic fluid. 

The following describe the boundary conditions for the heat 

equation. 
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The following temperature of the lubricant is obtained by 

solving for the integral of Eq. (17): 
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As a result, the explicit functions of x and y for the 

temperature, T, are known analytically. The mean temperature 

is now provided by 
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and can be written as: 
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Now, the dimensionless temperature and mean 

temperatures are obtained as follows: 
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2.6 Load and traction 
 

One of the crucial aspects of loaded bearings is their load 

capacity, which offers a general idea of the bearings' 

effectiveness. Therefore, its computation is crucial. The x-

component of the load per unit length of the cylinder is given 

by Sajja and Prasad [15], which is obtained by integrating the 

pressure throughout the film thickness. 
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Similarly, the y-component Wy of the load is obtained as 
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The non-dimensional load 𝑊𝑦 is given by 
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Further, the load components W is determined by  
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Now, the traction force ‘TF’ at the surfaces can be acquired 

by solving the shear stress ‘τ’ for the whole length as 
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3. RESULTS AND DISCUSSION 

 

Numerical computations are performed with the following 

values in this problem: 
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3.1 Velocity profile 

 

Figures 2-4 calculate and display the fluid's velocity for the 

regions before, after, and at the point of maximum pressure, 

respectively. The profiles in the first two graphs have vertices 

pointing upward and downward in the areas before and after 

the point of maximum pressure, resembling parabolas. 

 

 
 

Figure 2. Velocity profile 

 

As seen in Figure 2, the vertices below the 𝑦 line indicate 

that there is a reverse flow close to the entrance. Prasad and 

Subrahmanyam [25] also demonstrated reverse flow. The back 

flow is eliminated as the fluid moves forward [19, 25]. 

However, the velocity profile, which can be seen in Figure 4, 

appears to be increasing linearly at the point of greatest 

pressure [18].  

 

3.2 Pressure profile 

 

For various values of Ū and s0, the pressure distributions 𝑝 

are numerically estimated and shown in Figures 5-6. From 

Figure 5, it is clear that the hydrodynamic pressure 𝑝 rises with 

the rolling-sliding parameter. This suggests that, when 

compared to a pure rolling example, hydrodynamic pressure is 

higher for sliding cases. Observations of this type of behaviour 

were made in [5, 15, 24, 26, 27]. In Figure 6, the lubricating 

pressure for various values of s0 the sliding case is shown, and 
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it is clear that the pressure drops as the value of 0s  increases. 

Additionally, the cavitation points for various values of Ū 

are estimated numerically and displayed in Table 1. The table 

shows that as Ū grows, the cavitation points move further 

away from the centre line of contact. Physically the pressure 

region is extended because of high pressure [15]. Same trend 

is followed in case of points of maximum pressure as 𝑥1 = 𝑥2. 

 

 
 

Figure 3. Velocity profile 

  

 
 

Figure 4. Velocity profile at point of maximum pressure 

 

Table 1. Cavitation points 

 
U 𝒙𝟐 

1.0 0.48982987 

1.1 0.48983869 

1.2 0.48985873 

1.3 0.49026789 

1.4 0.49105893 

1.5 0.49210927 

 

3.3 Viscosity (𝝁) profile 

 

Figures 7-8 show the results for the numerical computation 

of the lubricant viscosity 𝜇  for various values of Ū and s0. 

Figure 7 shows the lubricant viscosity for various values of the 

rolling-sliding parameter Ū, and it can be seen that the 

viscosity reduces as Ū increases. Additionally, Figure 8 

displays the viscosity curve for various values of s0 and also 

shows that viscosity reduces with increasing value of s0.  

 

 
 

Figure 5. Pressure profile for different Ū 

 

 
 

Figure 6. Pressure profile for different Ū 

 

 
 

Figure 7. Viscosity profile 
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3.4 Mean temperature profiles 

 

Figures 9-12 elaborate on the dimensionless mean 

temperature 𝑇𝑚 of the lubricant for various values of 𝑈, s0, 𝑝𝑒. 

In Figure 9, which shows the dimensionless mean temperature 

profile for various values of 𝑈 and z=0.5, s0=1, it can be shown 

that the mean temperature for the sliding case is larger than 

that of pure rolling. Lampaert and van Ostayen [20] also noted 

this type of behaviour. Additionally, it should be noted that the 

subjective behaviours of 𝑇𝑚  versus 𝑥 are nearly identical to 

the temperature profiles found for Power-law fluids by Misra, 

and Adhikary [17] and Prasad and Sajja [25]. 

 

 

 
 

Figure 8. Viscosity profile 

 

 
 

Figure 9. Mean temperature profile 

 

The mean film temperature 𝑇𝑚  for different values of s0, 

z=0.5 and 𝑝
𝑒
= 0.1 is presented in Figures 10-11 for sliding 

and pure rolling cases respectively. The decrease of mean 

temperature as s0 increases in both sliding and pure rolling 

cases can be observed in both the Figures The mean 

temperature 𝑇𝑚 for different values of 𝑝
𝑒 

presented in Figure 

12 for fixed values of sliding parameter U =1.2, z=0.5 and s0=1. 

One can see from this Figure 12 that mean temperature 

decreases with increase of ep . Further, in all the temperature 

profiles, 𝑇𝑚  increases throughout the inlet region up to the 

point of maximum pressure 𝑥 = −𝑥1, then it decreases up to 

the origin and thereafter increases after origin and decreases 

up to the cavitation point 𝑥 = 𝑥2. 

 

 
 

Figure 10. Mean temperature profile 

 

 
 

Figure 11. Mean temperature profile 

 

 
 

Figure 12. Mean temperature profile 
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curves in the Figures 9-12 is that, the temperature goes up in 

inlet region because of dominance of conduction as flow 

proceeds. 

 

3.4 Load and traction 

 

For various rolling ratio Ū values, the dimensionless load 

component 𝑊 is numerically calculated and shown in Table 2. 

The table demonstrates how load raises rolling ratio. The 

results obtained by Gadamsetty et al. [19], Gadamsetty et al. 

[21], and Prasad et al. [27], Prasad et al. [28], and Sajja [24] 

for the power-law fluid case all agree with the qualitative 

behaviour of load that was obtained here. 

The traction forces 𝑇𝐹ℎ have been computed numerically at 

both the lower and upper surfaces and presented in Table 3 and 

Table 4 for distinct values of 0  
and Ū. Here 00 =  represents 

Newtonian case and 00   represents non-Newtonian case. 

The traction forces increase with 0  
for fixed value of Ū at both 

the lower and upper surfaces. Further, the increase of traction 

forces with Ū at upper surface can be observed from Table 4 

and indicates that the surface moving with more velocity will 

have more traction force. These findings are very similar to the 

results published in Gadamsetty et al. [4], Gadamsetty et al. 

[21], Prasad et al. [27], Prasad et al. [28], Lubricant Viscosity 

[23]. Both the surfaces experience the same traction force 

when they are moving with same velocity.  

 

Table 2. Load values  

 

𝑼 𝑾
 

1.0 0.00040544 

1.1 0.00041855 

1.2 0.00043099 

1.3 0.00044261 

1.4 0.00045347 

1.5 0.00046360 

 

Table 3. Traction values at lower surface 

 

U  00 =  5.00 =  10 =  

1.0 0.00060246 2.27728985 4.55395651 

1.1 0.00058766 2.27727462 4.55394129 

1.2 0.00057326 2.27725983 4.55392649 

1.3 0.00055880 2.26057845 4.52057845 

1.4 0.00054499 2.26056437 4.52056437 

1.5 0.00053181 2.26055095 4.52055095 

 

Table 4. Traction values at upper surface 

 

U  00 =  5.00 =  10 =  

1.0 0.00060246 2.27728985 4.55395651 

1.1 0.00065904 2.27734683 4.55401350 

1.2 0.00071375 2.27740171 4.55406838 

1.3 0.00076640 2.26078774 4.52078774 

1.4 0.00081648 2.26083763 4.52083763 

1.5 0.00086417 2.26088497 4.52088497 

 

 

4. CONCLUSION 

 

With the behaviour of line contact lubricated by an 

incompressible non-Newtonian Bingham plastic fluid whose 

viscosity follows the Roelands model; an attempt is made to 

examine the fluid film lubrication features of rolling and 

sliding problem. For various values of 0 and the sliding 

parameter Ū, the pressure and fluid velocity, continuity and 

momentum equations are solved. The outcomes of this work 

can be drawn as follows: 

• The velocity of the lubricant is independent of 0  

• Velocity of the lubricant at point of maximum 

pressure increases linearly with y . 

• The lubricant pressure increases as rolling ratio 

increases. 

• The load component increases with rolling ratio Ū. 

• The traction forces at both the surfaces increase with 

0 . 

• The traction at the upper surface is higher than that of 

the lower surface due to more speed of upper surface. 

 

Suggestions: It can be improved by considering the rollers 

to be complete asymmetric. That is both surfaces may have 

different dimentions and moving with different velcocities. 
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NOMENCLATURE 

 

tE  Eckert number 

h Film thickness 

h0 Minimum film thickness 

p Hydrodynamic pressure 

ep  Peclect number 

Rp  Prandtl number 

TFh Traction force 

u Fluid velocity in x-direction 

v Fluid velocity in y-direction 

1x  Point of maximum pressure 

2x  Point of cavitation 

U1, U2 Velocities of the surfaces 

 

Greek symbols 

 

µ Viscosity of the lubricant 

µ0 Coefficient of viscosity 

 Shear stress 

0 Yield stress 

 Density of the lubricant 
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