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This article examines the performance of squeeze film properties in various finite plates 

lubricated with couple-stress fluid and subjected to a transverse magnetic field and surface 

roughness. On the basis of Stokes couple-stress fluid theory and Christensen's stochastic 

model are used to derive a modified Reynolds equation. The squeeze film pressure and 

workload were calculated using the resultant equation with boundary conditions. The study 

found that the bearing systems with surface roughness performed better than those with a 

smooth surface when a magnetic field was present. Additionally, the presence of viscosity 

variation resulted in a significant increase in the workload of finite plates compared to non-

viscosity variation cases. The study also revealed that the load was reduced in the presence 

of porosity compared to the non-porous case. 
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1. INTRODUCTION

The use of a non-Newtonian fluid as a lubricant has piqued 

the curiosity of many researchers due to the increased use of 

non-Newtonian fluids in contemporary technology. Ariman et 

al. [1, 2] and Stokes [3] developed several microcontinuum 

models to describe the flow behaviour of various types of non-

Newtonian lubricants. The performance of different bearing 

systems has been widely studied using Stokes’ 

microcontinuum theory. Couple-stresses have an impact on 

this performance. The use of couple-stresses leads to a greater 

workload and a longer response time, as shown by Lin [4], 

Naduvinamani et al. [5], Naduvinamani and Patil [6], 

Ramanaiah [7] and Bujurke and Jayaraman [8], among others. 

Magnetohydrodynamics (MHD) is a field of study that 

explores the interaction between conducting fluids and 

electromagnetic phenomena. The existence of a magnetic 

field plays a significant role in influencing and controlling 

tribological properties. Bearings that utilize conducting fluids 

in MHD exhibit exceptional properties such as high thermal 

conductivity and electrical conductivity, which outperform 

traditional bearings. 

Surface roughness has typically had a direct impact on solid 

thin film electrical, optical, and mechanical devices. Any solid 

material’s surface roughness will have a significant impact on 

the analysis of the macroscopic contact angle on its flat 

surface, which is crucial for many processes including 

lubricating, spreading, and wetting. Many techniques have 

been used to examine the effects of rough surfaces, Tzeng and 

Saibel [9] and Christensen [10] both used stochastic 

approaches and stochastic theories to slider bearing. 

Christensen and Tonder [11-13] examined the effects of 

roughness on slider and journal bearings, whereas 

Naduvinamani et al. [14] investigated a sphere and flat plate, 

and Rajani et al. [15] employed conical bearings. Based on 

their study, it has been concluded that surface roughness 

increases squeeze film pressure, squeeze film load capacity, 

and squeeze film approach time. 

In practice, assuming a constant viscosity for the lubricant 

under consideration is a generalization. In this problem the 

viscosity of lubricants is not constant throughout their entire 

height, and it can vary with the operating temperature. 

Therefore, to account for the change in viscosity with 

temperature, an empirical relation of the form is used [16]. 

𝜇 = 𝜇1 (
ℎ

ℎ0

)
𝑄

The parameter 𝜇1  represents the known viscosity at the

minimum film thickness ℎ = ℎ0. The variable 𝑄, which takes

on values between 0 and 1 depending on the lubricant 

properties, is used in the equation; 𝑄  equals 0 for perfect 

Newtonian fluids and 1 for perfect gases. The situation being 

analyzed assumes the presence of thermal equilibrium. 

In the current work, the effects of surface roughness and 

hydro-magnetic interactions on the couple-stress fluid 

squeeze film between different finite plates are investigated. 

Non-Newtonian hydro-magnetic Reynolds equation is 

produced by using the stochastic model of Christensen and 

Stokes microcontinuum theory and the hydro-magnetic flow 

theory, considering the lubricant to be of the form of a very 

thin film. The impacts of surface roughness, hydromagnetic 

aspect and couple-stress fluids with viscosity variation are 

studied via the variation of the Hartmann parameter 𝑀 , 

couple-stress parameter 𝑙⋆ , viscosity variation parameter 𝑄
and permeability parameter 𝛹. 

2. MATHEMATICAL FORMULATION

Figure 1 displays the configuration of distinct finite plates. 
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The lubricant that is taken into account within the film area is 

a couple-stress fluid. The upper plate moves towards the 

lower plate at a uniform velocity, represented by 𝑣 =
𝑑ℎ

𝑑𝑡
. The 

lower surface is considered to be both porous and rough, with 

asperities contributing to the roughness of the surface. This 

roughness can be expressed mathematically as follows, 

 

𝐻 = ℎ(𝑡) + ℎ𝑠(𝑥, 𝑦, 𝜁) 

 

where, the first half of the above expression represents the 

deterministic part of the film thickness and the second half 

stands for the random part of the film thickness. 𝜁 is the index 

parameter which determines exact roughness pattern. 

 

 
Figure 1. Different geometries (a) Annular, (b) Circular, (c) 

Elliptic, (d) Triangular, (e) Rectangular 

 

The expression defines the expectancy operator, denoted by 

𝐸(⋆)  

 

𝐸(⋆) = ∫
∞

−∞
(⋆)𝑓(ℎ𝑠)𝑑𝑠  

 

The equation expresses the probability density function 

𝑓(ℎ𝑠)  of the stochastic variable ℎ𝑠 , which is used in the 

calculation of the expectancy operator.  

 

𝑓(ℎ𝑠) = {
35

32𝑐7  (𝑐2 − ℎ𝑠
2)3  − 𝑐 ≤ ℎ𝑠 ≤ 𝑐

           0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

The Stokes equations for continuity and momentum for the 

couple-stress fluid may be formulated as follows, assuming 

the fundamental hypotheses of hydrodynamic lubrication of 

thin films as stated in Fathima [17], 

 

𝜇
𝜕2𝑢

𝜕𝑦2 − 𝜂
𝜕4𝑢

𝜕𝑦4 −
𝜎𝐵0

2

𝜇
𝑢 −

𝜕𝑝

𝜕𝑥
= 0  (1) 

 

𝜇
𝜕2𝑤

𝜕𝑦2 − 𝜂
𝜕4𝑤

𝜕𝑦4 −
𝜎𝐵0

2

𝜇
𝑤 −

𝜕𝑝

𝜕𝑧
= 0  (2) 

 

𝜕𝑝

𝜕𝑦
= 0  (3) 

  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0  (4) 

 

The following equation describe the boundary conditions 

for the problem being considered. 

(i) At the lower plate (y=0) 

 

𝑢 = 𝑤 = 0,
𝜕2𝑢

𝜕𝑦2 =
𝜕2𝑤

𝜕𝑦2 = 0, 𝑣 = −𝑣⋆  (5) 

 

(ii) At the upper plate (y=h) 

 

𝑢 = 𝑤 = 0,
𝜕2𝑢

𝜕𝑦2 =
𝜕2𝑤

𝜕𝑦2 = 0, 𝑣 =
𝑑ℎ

𝑑𝑡
  (6) 

 

Within the porous matrix, the velocity component in the 𝑦-

direction, denoted by 𝑣⋆, is subject to a modified Darcy’s law 

and is given by: 

 

𝑣⋆ =
−𝑘

𝜇(1−𝛽)

𝜕𝑝⋆

𝜕𝑦
  

 

where, 𝑝⋆ represents the pressure in the porous medium, k is 

the permeability of porous matrix and 𝛽 denotes the ratio of 

micro-structure size to the pore size. 

The Laplace equation is satisfied by the pressure with in 

porous material, 𝑝⋆. 

 
𝜕2𝑝⋆

𝜕𝑥2 +
𝜕2𝑝⋆

𝜕𝑦2 +
𝜕2𝑝⋆

𝜕𝑧2 = 0  (7) 

 

Eqs. (1) and (2) are integrated with respect to (5), (6) 

boundary conditions. 

 

𝑢 =

−
ℎ0

2

𝜇1(
ℎ

ℎ0
)

𝑄
𝑀2

𝜕𝑝

𝜕𝑥
{

1

𝑅1
2−𝑅2

2 (
𝑅2

2𝑐𝑜𝑠ℎ
𝑅1(2𝑦−ℎ)

2𝑙

𝑐𝑜𝑠ℎ
𝑅1ℎ

2𝑙

𝑅1
2𝑐𝑜𝑠ℎ

𝑅2(2𝑦−ℎ)

2𝑙

𝑐𝑜𝑠ℎ
𝑅2ℎ

2𝑙

) +

1}  

(8) 

 

𝑤 = −
ℎ0

2

𝜇1(
ℎ

ℎ0
)

𝑄
𝑀2

𝜕𝑝

𝜕𝑧
{

1

𝑅1
2−𝑅2

2 (
𝑅2

2𝑐𝑜𝑠ℎ
𝑅1(2𝑦−ℎ)

2𝑙

𝑐𝑜𝑠ℎ
𝑅1ℎ

2𝑙

−

𝑅1
2𝑐𝑜𝑠ℎ

𝑅2(2𝑦−ℎ)

2𝑙

𝑐𝑜𝑠ℎ
𝑅2ℎ

2𝑙

) + 1}  

(9) 

 

where, 𝑀 = 𝐵0ℎ0 (
𝜎

𝜇
)

(
1

2
)

 is the Hartmann number. 

 

𝑅1 = (
1+√1−4𝑙2𝑀2/ℎ0

2

2
)

(1/2)

, 𝑅2 = (
1−√1−4𝑙2𝑀2/ℎ0

2

2
)

(1/2)

 

 

Solving the Eq. (8) and (9) by applying the boundary 

condition (5), (6) and integrating throughout the film 

thickness ℎ gives: 

 

𝜕2𝑝

𝜕𝑥2 +
𝜕2𝑝

𝜕𝑧2 =
𝜇1(

ℎ

ℎ0
)

𝑄
𝑀2𝑑ℎ

𝑑𝑡

ℎ0
2(𝑔(ℎ,𝑙,𝑀)+(

12𝛿𝑘

1−𝛽
))

  (10) 
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where,  

 

𝑔(ℎ, 𝑙, 𝑀) =
2𝑙

𝑅1
2−𝑅2

2 (
𝑅2

2

𝑅1
𝑡𝑎𝑛ℎ

𝑅1ℎ

2𝑙
−

𝑅1
2

𝑅2
𝑡𝑎𝑛ℎ

𝑅2ℎ

2𝑙
) + ℎ  

 

The stochastic average of Eq. (10) is obtained by applying 

expectation operation on both sides with respect to f(hs), 

which takes the form.  

 

𝜕2𝐸(𝑝)

𝜕𝑥2 +
𝜕2𝐸(𝑝)

𝜕𝑧2 =
𝜇1(

ℎ

ℎ0
)

𝑄
𝑀2𝑑ℎ

𝑑𝑡

ℎ0
2(𝐸(𝑔(ℎ,𝑙,𝑀))+(

12𝛿𝑘

1−𝛽
))

  (11) 

 

Eq. (11) represents the average modified Reynolds 

equation for radial roughness pattern.  

 

𝜕2𝐸(𝑝)

𝜕𝑥2 +
𝜕2𝐸(𝑝)

𝜕𝑧2 =
𝜇1(

ℎ

ℎ0
)

𝑄
𝑀2𝑑ℎ

𝑑𝑡

[
1

ℎ0
2(𝐸(𝑔(ℎ,𝑙,𝑀))+(

12𝛿𝑘
1−𝛽

))

]

  
(12) 

 

Eq. (12) represents the average modified Reynolds 

equation for azimuthal roughness pattern. 

Combining the above equations gives  

 

𝜕2𝑝

𝜕𝑥2 +
𝜕2𝑝

𝜕𝑧2 =
𝜇1(

ℎ

ℎ0
)

𝑄
𝑀2𝑑ℎ

𝑑𝑡

ℎ0
2(𝐺(ℎ,𝑙,𝑀,𝑐)+(

12𝛿𝑘

1−𝛽
))

  (13) 

 

where, 

 

𝐺(ℎ, 𝑙, 𝑀, 𝑐) = {
𝐸(𝑔(ℎ, 𝑙, 𝑀)) Radialroughness

[
1

𝐸(𝑔(ℎ,𝑙,𝑀))
]

−1

Azimuthalroughness
  

 

2.1 Annular plates 

 

The flow is axisymmetric and the Eq. (13) reduces to:  

 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑝

𝜕𝑟
) =

𝜇1(
ℎ

ℎ0
)𝑄𝑀2𝑑ℎ

𝑑𝑡

ℎ0
2(𝐺(ℎ,𝑙,𝑀,𝑐)+(

12𝑘𝛿

(1−𝛽)
))

  (14) 

 

Solving (14) with the boundary conditions  

 

𝑃(𝑎) = 𝑃(𝑏) = 0 

 

the non-dimensional equation for annular plates pressure is 

obtained by: 

 

𝑃⋆ = −
ℎ0

3𝑝

𝜇1(
𝑑ℎ

𝑑𝑡
)(𝑎2−𝑏2)𝜋

=

(
ℎ

ℎ0
)𝑄𝑀2

4𝜋𝐺⋆(𝐻⋆,𝑙⋆,𝑀,𝑐)(
12Ψ

(1−𝛽)
)

(
𝑙𝑜𝑔𝑟⋆

𝑙𝑜𝑔𝑎⋆ −
𝑟∗2

𝑎∗2)  

(15) 

 

The expression for work load in non-dimensional form for 

annular plates is given by,  

 

𝑊⋆ = −
𝑊ℎ0

3

𝜇1(
𝑑ℎ

𝑑𝑡
)(𝑎2−𝑏2)2𝜋2

=

(
ℎ

ℎ0
)𝑄𝑀2

8𝜋𝐺⋆(𝐻⋆,𝑙⋆,𝑀,𝑐)(
12Ψ

(1−𝛽)
)

(
𝑟∗2+1

𝑎∗2+1
−

1

𝑙𝑜𝑔𝑎∗)  

(16) 

where, 
 

𝐺⋆(𝐻⋆, 𝑙⋆, 𝑀, 𝑐) = ℎ0
2(𝐺(ℎ, 𝑙, 𝑀, 𝑐)) 

ℎ⋆ =
ℎ

ℎ0
= 𝐻∗ = ℎ∗ + ℎ𝑠,  

𝑎⋆ =
𝑎

𝑏
, Ψ =

𝑘𝛿

ℎ0
3 , 𝑙⋆ = (

2𝑙

ℎ0
) , 𝑟⋆ =

𝑟

𝑏
 

 

2.2 Circular plates 

 

The Eq. (13) is solved using the boundary conditions 

specific to circular plates, which are as follows: 

 

𝑃(𝑎) = 0 𝑎𝑛𝑑 (
𝜕𝑝

𝜕𝑟
)

𝑟=0
= 0  

 

The following equation provides the dimensionless 

expression for pressure.  

 

𝑃⋆ = −
ℎ0

3𝑝

𝜇1(
𝑑ℎ

𝑑𝑡
)𝑎2𝜋

=
(

ℎ

ℎ0
)𝑄𝑀2[1−𝑟2]

4𝜋𝐺⋆(𝐻⋆,𝑙⋆,𝑀,𝑐)+(
12Ψ

(1−𝛽)
)
  (17) 

 

The non-dimensional expression for work load for circular 

plates is given by: 

 

𝑊⋆ = −
𝑊ℎ0

3

𝜇1(
𝑑ℎ

𝑑𝑡
)𝑎4𝜋2

=
(

ℎ

ℎ0
)𝑄𝑀2

8𝜋𝐺⋆(𝐻⋆,𝑙⋆,𝑀,𝑐)+(
12Ψ

(1−𝛽)
)
  (18) 

 

the radius of plates is represented by the parameter 𝑎. 

 

2.3 Elliptic plates 

 

The Eq. (13) is solved by using boundary conditions 

specific to elliptic plates as given in Eq. (19).  

 

𝑝(𝑥1, 𝑧1) = 0 (19) 

 

where, 

 
𝑥1

2

𝑎2 +
𝑧1

2

𝑏2 = 1  

 

The following equation represents the non-dimensional 

expression for the pressure distribution for elliptic plates.  

 

𝑃⋆ = −
ℎ0

3𝑝

𝜇1(
𝑑ℎ

𝑑𝑡
)𝑎𝑏𝜋

=
(

ℎ

ℎ0
)𝑄𝑀2𝑎⋆

2𝜋(𝑎2+1)𝐺⋆(𝐻⋆,𝑙⋆,𝑀,𝑐)+(
12Ψ

(1−𝛽)
)
  (20) 

 

the following equation provides the non-dimensional 

expression for the workload associated with elliptic plates.  

 

𝑊⋆ = −
𝑊ℎ0

3

𝜇1(
𝑑ℎ

𝑑𝑡
)𝑎2𝑏2𝜋2

=
(

ℎ

ℎ0
)𝑄𝑀2𝑎⋆

4𝜋(𝑎2+1)𝐺⋆(𝐻⋆,𝑙⋆,𝑀,𝑐)+(
12Ψ

(1−𝛽)
)
  (21) 

 

2.4 Triangular plates 

 

Solving Eq. (13) with the boundary conditions 

 

𝑝(�̅�, 𝑧)̅ = 0 

(�̅� − 𝑎)(�̅� − √3𝑧̅ + 2𝑎)(�̅� − √3𝑧̅ + 2𝑎) = 0 

 

In the above equation, the parameter 2√3𝑎  denotes the 

length of the equilateral triangle. 
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The following equation provides the equation for pressure 

in non-dimensional form is given by: 

  

𝑃⋆ = −
ℎ0

3𝑝

𝜇1(
𝑑ℎ

𝑑𝑡
)3√3𝑎2

=
(

ℎ

ℎ0
)𝑄𝑀2

9√3𝐺⋆(𝐻⋆,𝑙⋆,𝑀,𝑐)+(
12Ψ

(1−𝛽)
)

× (1 −

𝑥

𝑎
) (1 +

√3𝑧

2𝑎
+

𝑥

2𝑎
) (1 −

√3𝑧

2𝑎
+

𝑥

2𝑎
)  

(22) 

 

the following equation provides the expression for workload 

in non-dimensional form.  

 

𝑊⋆ = −
𝑊ℎ0

3

27𝜇1(
𝑑ℎ

𝑑𝑡
)𝑎4

=
√3(

ℎ

ℎ0
)𝑄𝑀2𝑎⋆

60𝐺⋆(𝐻⋆,𝑙⋆,𝑀,𝑐)+(
12Ψ

(1−𝛽)
)
  (23) 

 

2.5 Rectangular plates 

 

When the Eq. (13) is solved with boundary condition: 

 

𝑝 (±
𝑎

2
, 𝑧) = 0  

𝑝 (𝑥, ±
𝑏

2
) = 0  

 

the following equation provides the expression for pressure 

distribution in rectangular plates in non-dimensional form,  

 

𝑃⋆ = −
ℎ0

3𝑝

𝜇1(
𝑑ℎ

𝑑𝑡
)𝑎𝑏

 =
(

ℎ

ℎ0
)𝑄𝑀2

2𝑎⋆𝐺⋆(𝐻⋆,𝑙⋆,𝑀,𝑐)+(
12Ψ

(1−𝛽)
)

×

{
1

4
−

𝑧2

𝑏2 −
8

𝜋3
∑∞

𝑛=1

(−1)𝑛𝑐𝑜𝑠ℎ
(2𝑛+1)𝜋𝑥

𝑏
𝑐𝑜𝑠ℎ

(2𝑛+1)𝜋𝑧

𝑏

(2𝑛+1)3𝑐𝑜𝑠ℎ
(2𝑛+1𝜋𝑎⋆)

2

} 

(24) 

 

The work load in non-dimensional form is given by:  

 

𝑊⋆ = −
𝑊ℎ0

3

𝜇1(
𝑑ℎ

𝑑𝑡
)𝑎2𝑏2

=
(

ℎ

ℎ0
)𝑄𝑀2

𝜋4𝑎∗2𝐺⋆(𝐻⋆,𝑙⋆,𝑀,𝑐)+(
12Ψ

(1−𝛽)
)

×

[
𝜋4𝑎⋆

12
−

16

𝜋
∑∞

𝑛=1

𝑡𝑎𝑛ℎ(
2𝑛+1

2
)𝜋𝑎⋆

(2𝑛+1)5 ]  

(25) 

 

In the above equation, 𝑎  and b denote the sides of the 

rectangular plate. The values of the series solution in Eqs. (24) 

and (25) are computed up to n=100. 

 

 

3. RESULTS AND DISCUSSIONS 

 

This study delves into the exploration of squeeze film 

properties across different shapes under the influence of rough 

surface, magnetic field, and couple-stress. The analysis 

focuses on the effect of three dimensionless parameters (c, M, 

and 𝑙⋆) on the squeeze film, with c representing the roughness 

parameter, M is the Hartmann number and the existence of 

polar additives in the lubricant leads to the emergence of the 

parameter 𝑙⋆, which can be thought of as the chain length of 

the polar additives within the fluid. 𝑙⋆ influences the way in 

which the fluid interacts with the bearing geometry. 

For all the shapes analyzed, the general equation for the 

load is as follows:  

 

𝑊⋆ =
𝑊ℎ0

3

𝜇(
𝑑ℎ
𝑑𝑡

)�̅�2
= 𝑆𝑓𝐾 

 

with 𝑆𝑓 representing the shape-factor provided by Table 1, �̅� 

symbolizing the key area of the plate, and 𝐾 =
𝑀2

𝐺⋆(𝐻⋆,𝑙⋆,𝑀,𝑐)+(
12Ψ

(1−𝛽)
)
 a parameter that considers the impacts of 

couple-stresses, hydro-magnetic effects, and surface 

roughness.  

Table 2 displays the changes in the non-dimensional 

workload, 𝑊⋆, as a result of the variation in the couple-stress 

parameter 𝑙⋆ , roughness parameter c, and magnetic 

parameterM. It can be observed that the use of couple-stress 

fluid in conjunction with magnetic field and surface 

roughness significantly improves the workload compared to a 

smooth surface Fathima et al. [8] and traditional non-

conducting Newtonian fluids. The reason for this is that the 

externally applied magnetic field, which is perpendicular to 

the flow, causes a reduction in the velocity of the fluid in the 

film region. Additionally, surface roughness minimizes 

sideways fluid leakage and slows down the fluid velocity, 

thereby retaining a large amount of fluid in the fluid film 

region, resulting in a substantial pressure distribution.  

Table 3 showcases the variation of non-dimensional 

workload with variation in viscosity with porous and non-

porous cases. The data suggests that, for both non-porous and 

porous cases, the workload increases as the viscosity variation 

parameter Q increases. However, it is observed that the 

workload of the non-porous case is higher than that of the 

porous case.  

The impact of plate shape on the workload is displayed in 

Figure 2. From the graph it is observed that workload 

increases as Hartmann number increases with surface 

roughness c. The variation of workload with changes in 

viscosity is shown in Figure 4, it is noted that load increasing 

as Q increases. The results of the study show that circular 

plates, when lubricated with couple-stress fluid and subjected 

to surface roughness in the presence of a transverse magnetic 

field, perform better in terms of squeeze film performance 

compared to the conventional scenario of using a non-

conducting Newtonian fluid and a smooth surface. The impact 

of plate shape with porosity on the workload is displayed in 

Figure 3 and the variation of workload with viscosity variation 

and porosity are shown in Figure 5. Among all geometries, 

lubricated with couple-stress fluid with surface roughness in 

the presence of a transverse magnetic field exhibit lower 

squeeze film performance compared to the non-porous case. 

 

 
 

Figure 2. Plot of non-dimensional workload 𝑊⋆ and 𝐻⋆ for 

various geometries with c=0.3, 𝑙⋆ = 0.3, M=3, 𝑎⋆ = 2 
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Table 1. Shape-factor of various plates 

 

Different Geometry  Characteristics Area �̅� Shape-factor 𝑺𝒇 𝑺𝒇 at 𝒂⋆ = 𝟐  

Annular  (𝑎2 − 𝑏2)𝜋 
1

8𝜋
(

𝑎∗2 + 1

𝑎∗2 − 1
−

1

𝑙𝑜𝑔𝑎∗) 0.0089116  

Circular  𝜋𝑎2 
1

8𝜋
 0.0397880  

Elliptic  𝜋𝑎𝑏 
1

4𝜋
(

𝑎⋆

𝑎⋆2 + 1
) 0.0318310  

Triangular  3√3𝑎2 
√3

60
 0.0288680  

Rectangular  ab 
1

𝜋4𝑎⋆2 (
𝜋4𝑎⋆

12
−

16

𝜋
∑

∞

𝑛=1

𝑡𝑎𝑛ℎ(
2𝑛 + 1

2
)𝜋𝑎⋆

(2𝑛 + 1)5 ) 0.0285850  

 

Table 2. Non-dimensional 𝑊⋆ work load for diverse values of M with roughness c and 𝑙⋆ at 𝑎⋆ = 2 and 𝐻⋆ = 0.3 

 

Different Geometries Work Load M 
𝚿=0, 𝑸 =0, C=0.3 C=0.0 [17] 

Azimuthal Radial M 

Circular 

0 78.1304 15.5817 62.0957 

1 78.2699 15.7651 62.2591 

2 78.6886 16.31 62.7481 

3 79.3864 17.2014 63.563 

Elliptic 

0 62.5043 12.4653 49.6765 

1 62.6159 12.6121 49.8073 

2 62.9509 13.048 50.1985 

3 63.5091 13.7611 50.8504 

Triangular 

0 56.6851 11.3048 45.0516 

1 56.7864 11.4379 45.1702 

2 57.0901 11.8332 45.525 

3 57.5964 12.4799 46.1162 

Rectangular 

0 56.1304 11.1942 44.6111 

1 56.2306 11.326 44.7285 

2 56.5314 11.7174 45.0798 

3 57.0327 12.3578 45.6652 

Annular 

0 17.4989 3.4898 13.9077 

1 17.5302 3.5309 13.9443 

2 17.624 3.65298 14.0538 

3 17.7803 3.8526 14.2363 
 

Table 3. The non-dimensional workload variation with height is shown for distinct values of the viscosity variation parameter 

Q, with M=3, c=0.3, 𝑙⋆ = 0.3, and 𝐻⋆ = 0.5 at 𝑎⋆ = 2 
 

Different Plates   C=0.3, 𝚿=0.0 C=0.3, 𝚿 =0.001 

Circular 

Q Azimuthal Radial Azimuthal Radial 

0 6.5521 3.5499 3.3663 2.6494 

0.1 9.3040 4.7899 4.5420 3.5748 

0.2 13.2117 6.4629 6.1285 4.8235 

0.3 18.7606 8.7203 8.2691 6.5082 

Elliptic 

0 5.2417 2.8400 2.6930 2.1196 

0.1 7.0725 3.8319 3.6336 2.8599 

0.2 9.5429 13.0480 4.9028 3.8588 

0.3 12.8760 6.9762 6.6153 5.2066 

Triangular 

0 4.7537 2.5756 2.4423 1.9222 

0.1 6.4141 3.4752 3.2953 2.5936 

0.2 8.6544 4.6890 4.4463 3.4995 

0.3 11.6772 6.3267 5.9994 4.7219 

Rectangular 

0 4.7072 2.5504 2.4184 1.9034 

0.1 6.3513 3.4411 3.2631 2.5682 

0.2 8.5697 4.6431 4.4028 3.4653 

0.3 11.5630 6.2648 5.9407 4.6756 

Annular 

0 1.4675 0.7951 0.7539 0.5934 

0.1 1.9801 1.0728 1.0173 0.8007 

0.2 2.6717 1.4475 1.3726 1.0803 

0.3 3.6048 1.9531 1.8520 1.4577 
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Figure 3. Variation in non-dimensional workload 𝑊⋆ and 

𝐻⋆ for various geometries with c=0.3, Ψ = 0.001, 𝑙⋆ = 0.3, 

M=3, 𝑎⋆ = 2 

 

 
 

Figure 4. Plot of non-dimensional workload 𝑊⋆ and 𝐻⋆ for 

various geometries with Q=0.3, 𝑙⋆ = 0.3, c=0.3, M=3, 𝑎⋆ =
2 

 
 

Figure 5. Plot of non-dimensional workload 𝑊⋆ and 𝐻⋆ for 

various geometries with Ψ = 0.001, Q=0.3, c=0.3, 𝑙⋆ = 0.3, 

M=3, 𝑎⋆ = 2 

 

4. CONCLUSION 

 

This article delves into the analysis of the performance of 

various geometries under the effect of surface roughness, 

MHD and couple-stress fluid. The results show that the 

workload, with its sensitivity to surface roughness and 

viscosity variation, increases as the magnetic parameter M, 

roughness parameter c, and couple-stress parameter 𝑙⋆ 

increase. It’s noteworthy that the non-dimensional workload 

depends solely on the shape-factor 𝑆𝑓 . Therefore, circular 

plates demonstrate the greatest work load compared to other 

plate shapes, as indicated in Table 2. Furthermore, Table 3 

shows that the work load decreases in the presence of porosity 

for all plate geometries. 
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NOMENCLATURE 
 

𝑎, 𝑏 Dimensions of the bearing (m) 

𝐵0 Applied magnetic field 

Q Viscosity variation parameter 

𝑀 Hartmann number 

𝐻⋆ Dimensionless film thickness 

ℎ Film thickness (𝑚) 

ℎ0 Minimum film thickness (𝑚) 

ℎ𝑠 Stochastic variable 

𝑙 
= √

𝜂

𝜇
 Couple stress parameter 

𝑙⋆ = (
2𝑙

ℎ0
)  Non-dimensional couple-stress 

parameter 

 

Greek symbols 

 

𝛽 percolation parameter 

𝜂 Material constant characterizing couple stress 

𝜎 Electrical conductivity (S/m) 

𝜇 dynamic viscosity (Ns/m2) 

𝜇1 known viscosity at minimum film thickness. 
Ψ permeability parameter 
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