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The prediction of student academic performance with high accuracy is of paramount 

importance in improving educational outcomes and developing tailored learning 

methodologies. It also serves as a preventative measure against student dropouts. This study 

is centered on enhancing the precision of such predictions by optimizing hyperparameters 

in machine learning techniques. In pursuit of optimal performance, a range of machine 

learning techniques is compared, and the most accurate one selected for hyperparameter 

optimization. The adopted method for this optimization is the Grid Search (GS) technique. 

It is found that hyperparameter optimization in the Gradient Boosting Regression Tree 

(GBRT) using the GS method bolsters the accuracy of predictions pertaining to student 

academic performance. The results obtained in this study are validated using a five-fold 

cross-validation method. This rigorous validation ensures the robustness of our findings. 

Thus, the study presents a critical contribution to the effective prediction of student 

academic performance, potentially informing the development of more efficient and 

personalized educational strategies. 
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1. INTRODUCTION 

1.1 Research background 

A critical aspect of higher education is the achievement of 

satisfactory academic performance, as institutions are under 

the expectation to cultivate competent graduates [1]. The 

prediction of student academic performance offers 

opportunities for monitoring academic progress [2], 

identifying at-risk students for intervention [3], and refining 

educational strategies, all while optimising resource allocation. 

Early prediction also enables timely action and the design of 

learning approaches to boost student success rates [4]. 

The relevance of predicting student academic performance 

effectively has been underscored in prior research. For 

instance, Ragab et al. [2] introduced a model that aids 

educators in understanding their students better, pinpointing 

areas of improvement, crafting learning styles, and curtailing 

dropout rates. This ensemble model, which leverages learning 

system data, reportedly yields superior accuracy in 

comparison to traditional models and offers insights to 

administrators for refining teaching methodologies and 

student outcomes [2]. Musaddiq et al. [5] proposed a machine 

learning model that uses historical student data to forecast final 

grades, enhance passing rates, and establish an early warning 

system to mitigate dropout rates. They found that the LSTM 

deep learning model surpassed other machine learning 

algorithms in accuracy [5]. 

For decision-making and reducing the risk of prediction 

failure, it is imperative to have a sophisticated, highly accurate 

machine [6]. Typically, several methods are evaluated to 

obtain optimal prediction accuracy [7], and it is crucial to 

compare multiple algorithms to determine the most effective 

one for predicting academic performance [8]. 

Previous studies have employed various techniques to 

predict student performance. Hellas et al. [9] used a 

classification model that drew on student enrollment data and 

activity data from the university's learning management 

system (LMS). The model used four algorithms: Nive-Bayes, 

J48, SMO, and JRip. The study concluded that no single 

method demonstrates superior performance across all aspects 

of predicting student performance, but the combination of J48 

and JRip showed significant promise [9]. 

Several studies have compared the effectiveness of different 

algorithms. Aluko et al. [10] found that the support vector 

machine (SVM) outperformed logistic regression (LR) in 

accuracy, while Kumar and Salal [11] reported that the 

decision tree (DT) algorithm was the best with an accuracy of 

98.86% compared to neural network (NN), naive bayes (NB), 

k-nearest neighbor (K-NN), and SVM. Other researchers, such

as Mengash [12] and Yaacob et al. [13], found that the

artificial neural network (ANN) and the NB algorithm,

respectively, were superior. Miguéis et al. [14] concluded that

the random forests (RF) were superior to other classification

techniques after comparing them using a dataset of 2459

students. In regression models, Yağcı [15] achieved an

accuracy of 70-75% when using several machine learning

methods to predict the final exam scores of 1854 Turkish

language students. Suleiman and Anane [16] found that the

support vector regression (SVR) algorithm performed the best

when predicting CGPA at the end of the year in Nigerian

universities. Meanwhile, Arifin et al. [8] reported that the

gradient boosting regression tree (GBRT) algorithm showed

the best performance with an RMSE value of 1.443. Hussain
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et al. [17] also found that deep learning (DL) outperformed 

linear regression with an MAE value of 1.61. 

Despite numerous methods used to enhance prediction 

accuracy or reduce errors, the optimization of the algorithm 

method has not been utilized extensively in predicting 

students' academic performance. Hooda et al. [18] pointed out 

the potential of optimizing methods to improve prediction 

accuracy. This research seeks to enhance the accuracy of 

predicting student academic performance by integrating 

hyperparameter optimization into machine learning 

algorithms to reduce prediction errors. We anticipate 

comparing multiple prediction methods, and selecting the one 

with the highest accuracy for hyperparameter optimization 

using the GS algorithm.  

1.2 Conceptual review 

1.2.1 Method for predicting student academic performance 

The method or model for predicting student academic 

performance can be approached in two ways. The first 

approach is through classification, which involves grouping 

the target feature (GPA) into certain categories. Examples of 

such categories include good and bad classifications [1, 10], 

pass and fail [19], as well as excellent, very good, good, 

average, and poor [12]. The second approach to predicting 

student academic performance involves using a regression 

model, in which the target variable is in numerical form, or the 

original value of the GPA/CGPA without being grouped into 

certain classes. Various methods that are often employed in 

this model approach include GLM, DL, DT, SVR, RF, GBRT, 

NB, k-NN, and so on. In this study, we employ the second 

approach, which uses the target feature in the form of a 

numeric value, specifically the original value of the GPA 

feature. We are aware that many methods have been used to 

predict student academic performance, but we will restrict our 

comparison to the six prediction methods frequently used in 

prior research: GLM, DL, DT, SVR, RF, and GBRT. 

Subsequently, the prediction method with the smallest error 

will be selected for hyperparameter tuning. 

1.2.2 Hyperparameters 

Machine learning algorithms pick up new information 

independently and change their internal parameters based on 

what they've learned. These are called "model parameters" or 

"parameters" for short. However, some arrangements must be 

made before the learning process can begin. Such parameters 

are frequently referred to as "hyperparameters." The model 

parameters show how the input data are transformed into the 

intended output. Meanwhile, the hyperparameters show how 

the model is organized. Machine learning models are subject 

to hyperparameter choices and values that can significantly 

impact their performance. 

The model obtains parameter values during training by 

learning from the provided data. This value cannot be set 

manually. Model parameters include the model coefficients in 

a linear regression model [20]. On the other hand, 

hyperparameter models do not derive their values from the 

data. Therefore, researchers must manually set it. At a 

particular model build, the researcher always sets values to the 

hyperparameters (for example, before the training process) 

[20]. The model parameters are subject to control by the model 

hyperparameters. In other words, model performance can be 

impacted by model hyperparameters. Therefore, the model 

hyperparameter values must be modified to produce the 

optimal or best model output. Even simple models frequently 

have two or more hyperparameters. Thus, all these values must 

be seen to get the ideal value for each hyperparameter. 

Hyperparameter optimization is determining the perfect set of 

model hyperparameters (tuning). Due to many 

hyperparameters and their wide range of values, it is 

impossible to do this manually. Hyperparameter search space 

is crucial to the process of tweaking the hyperparameters. All 

possible combinations of the user-defined hyperparameter 

values can be found in the search space. An example of a 2-

dimensional search space for two separate hyperparameters, 

max_depth and min_samples_split, is shown in Figure 1.  

Figure 1. Two-dimensional hyperparameters space 

The Figure 1 indicates that the max_depth parameter has a 

range of 1 to 10, while the min_samples_split parameter has a 

range of 10 to 50. To determine the correct parameter values 

manually, researchers would need to test each one individually, 

starting with a max_depth of 1 and a min_samples_split of 10, 

and then gradually increasing the min_samples_split value 

until the max_depth value reaches 10 and the 

min_samples_split value reaches 50. In other words, the 

researcher would have to conduct 50 experiments. However, 

manual experiments are considered ineffective, and therefore, 

automatic experiments can be carried out using the grid search 

method to determine the best parameters for a machine 

learning model. 

The search space is three-dimensional if there are three 

different hyperparameters. Likewise, when the number of 

hyperparameters rises, the search space may become high-

dimensional. In general, it should be realized that the number 

of hyperparameters depends on the number of dimensions in 

the search space (for example, two dimensions and two 

hyperparameters). A specific point in the search space defines 

each combination of hyperparameter values. Points (30, 7) 

describe a max_depth value of 7 and a min_samples_split 

value of 30. 

1.2.3 Hyperparameters tuning technique 

We recognize many hyperparameter tuning techniques but 

chose GS. GS is a simple and easy method [21]. This method 

is most often used by researchers to perform optimization and 

is proven to improve accuracy [22-33]. GS is a technique for 

searching the search space for all possible combinations of the 

hyperparameters given by the user. When the search space is 

high-dimensional and has many value combinations, it will 

generally require a lot of processing resources and a long 

execution time. This approach works best when there are few 

hyperparameters and a finite (fixed) number of values for each. 

GS is a method that has traditionally been used by looking 

through all of the potential parameter combinations. The entire 

576



parameter space is considered and partitioned into squares 

when conducting a grid search. The grid's points are then each 

assessed as hyper-parameters. The technique is simple and 

easy to use [21]. 

1.2.4 Validation and evaluation 

K-fold cross-validation is a standard method for assessing

the performance of prediction algorithms. Some studies 

suggest multiple k-fold cross-validations because a reliable 

accuracy estimate will have low variance. The K-fold cross-

validation method involves dividing the initial random sample 

into K sub-samples. K sub-samples are used as training data, 

while one sub-sample is used as validation data to evaluate the 

model. Each K sub-sample is used once as validation data, 

carried out K times. After that, make a single estimate by 

averaging (or combining) the K results from the folds [34]. 

Cross-validation validation [35]. The correlation between the 

estimated accuracy of multiple k-fold cross-validation 

replications is their factual accuracy often remarkably high. 

Evaluate the performance of prediction algorithms using K-

fold cross-validation with many folds, and few replications 

should be used [36]. Generally, researchers use ten-fold or 

five-fold [20, 37]. This study uses five-fold.  

One must determine how well the predictions match the 

actual data to evaluate a model's performance on a data set. 

mean absolute error (MAE) and mean squared error (MSE) are 

widely used metrics for model evaluation [38]. This metric has 

also been used to predict student performance [8, 16, 39, 40]. 

One popular method of doing this is finding the MSE [41, 42]. 

MSE is a metric that measures the difference between the 

value that is predicted and the actual value. Another method is 

the Root mean squared error (RMSE). RMSE is a test to 

measure the performance of a model by measuring the 

magnitude of the estimation error between the observed value 

and the prediction value. The lower the RMSE value, the more 

accurate the model [43]. RMSE is also referred to as the 

accuracy of a recommendation system. RMSE provides results 

that have a more significant penalty for a more considerable 

difference between the actual result and the prediction [44], 

The lower value of MAE, MSE, and RMSE implies higher 

accuracy of a regression model [39]. 

Prediction model validation using K-fold cross-validation, 

which works as follows: 

1. Randomly divide a dataset into k nearly equal "folds."

2. Select the fold that will act as the holdout set. Fit the

model to the remaining k-1 folds. Calculate the test MSE

based on the observations in the held-out fold.

3. Repeat this process k times with each holdout set to

change.

4. Calculate the overall test MSE and the average of the k-

test Mses.

Cross-validation with k=5 is used to validate the chosen 

algorithm. 

2. MATERIAL AND METHOD 

2.1 Dataset 

Predicting student academic performance using data related 

to education. A university in Indonesia is the place for this 

research. The first stage in data preparation is data collection, 

data obtained from an online learning system or learning 

management system (LMS), namely the Modular object-

oriented dynamic learning environment (Moodle), and 

academic data for one semester. 

Moodle data consists of 20,231,298 records from 8,500 

active students who attended lectures for 19 weeks, and 

academic data has 8200 records. The next step is data 

extraction, which looks for information table structure, 

contents, and data prediction requirements. Table 1 is the LMS 

log data from Moodle, consisting of nine columns. The first, 

third, eighth, and ninth columns are the information about 

access times, users, access media, and user IP addresses. The 

second column is the student id and name; this column is the 

primary key of the data. The second column has the same data 

because this column records all user activities. The fourth to 

seventh columns describe and detail the activities carried out 

by students at the LMS. The academic data includes student id, 

name, department, faculty, cumulative grade point average 

(CGPA), and student entry year. Data requirements for 

predictions are CGPA data and detailed data on the number of 

each student activity at LMS. The next stage of data 

preparation is selection and transformation. The selection 

stage selects the target students to be predicted, namely those 

entering 2018 and 2019. Select the student id column, 

description column, and activity details from the LMS data, 

while from the academic data, select the id column, year of 

entry, and CGPA column. The transformation stage is the 

process of changing raw data into data that is ready to be used. 

At this stage, the descriptive data and details of student 

activities are converted into numerical form and counted. The 

data is combined and cleaned, and values inconsistent with the 

data are removed, for example, students with CGPA below 1, 

students with very little LMS participation, students with 

CGPA but no LMS record, and so on. The final result of the 

data preprocessing is 4435 records with the columns shown in 

Table 2. This data will be used to predict student academic 

performance. Figure 3 shows the data structure that is ready to 

use. This study chose CGPA as the target feature. CGPA is 

most often used as a prediction target [12], research using 

LMS data and using a regression model chose CGPA as the 

target [16, 45]. 

2.2 Comparison of prediction methods 

The results of the experimental comparison of several 

prediction models with the processed data, it was found that 

the GBRT model had the lowest error rate and the highest 

correlation when compared to the other models, shown in 

Table 3.  

The comparison of prediction models reveals that GBRT 

has the smallest error value. Therefore, the hyperparameters of 

this model will be optimized using the GS method. Kim and 

Park [46] have successfully performed the process of 

optimizing the GBRT hyperparameters with GS. They 

predicted and investigated the factors that have the most 

significant impact on student learning scores. Their research 

findings indicate that optimizing GBRT parameters using the 

GS method improves prediction accuracy. 

There are a lot of hyperparameters in the GBRT that can be 

changed to change both the whole ensemble (like the learning 

rate) and each decision tree (like the number of leaves on the 

tree or its maximum depth). Because the relationships between 

hyperparameters are complicated, it is hard to tell which 

combination will work best from theory alone. So, 

hyperparameter tuning is necessary because trying many 

combinations on a dataset is the only way to determine the best 
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hyperparameter values. 

The model ensemble parameters are divided into three 

categories: A tree-specific parameter that defines min samples 

split, min samples leaf, min weight fraction leaf, max depth, 

max leaf nodes, and max features. The second is the boosting 

parameter to set the boosting, namely learning rate, n 

estimators, and subsamples. And the third is the other 

parameter. Various parameters affect overall functionality: 

loss, init, random state, verbose, warm start, and presort [47]. 

In this study, we will do tuning on four parameters, namely 

n_estimators, learning_rate, max_depth, and subsample, as 

has been done [48, 49] for tuning GBRT. 

n_estimators is a parameter used to consider the number of 

improvement steps. A large number usually results in better 

performance as the gradient boost is sufficiently resistant to 

overfitting. The value must be in the range [1.0, infinity]. 

learning_rate is the parameter contribution of each tree which 

decreases as learning_rate increases. There is a trade-off 

between the learning_rate and n_estimator. The value must be 

between the range [0.0, infinity]. max_depth is a parameter 

used to determine the depth of a tree. In general, interactions 

of order h can be captured by a tree with depth h. If maximum 

depth=h, complete binary trees of depth h will be generated. 

At most, such trees will have 2**h leaf nodes and 2**h - 1 split 

nodes. A subsample is the percentage of the sample that will 

be used for each base learner's fitting. If the value is less than 

1.0, Stochastic Gradient Boosting occurs, and the parameters 

affected by the subsample are n_estimators. Increased bias and 

decreased variance result from selecting subsamples smaller 

than 1.0. The value must fall within this range (0.0, 1.0).

Table 1. LMS log data 

Time 

User 

full 

name 

Affected 

user 
Event context Component Event name Description Origin IP address 

6/06/22,23:59 
202111597 

QONITAL 
- As signment:Pengum As signment Course module vi The user with i web 192.168.1.45

6/06/22,23:59 
202051172 

YAASINTA 
- 

Course:PENGEMB

AN 
System Course viewed The user with i web 192.168.1.45 

6/06/22,23:59 
201911341 

DITA AYU 
- Front page System Course viewed The user with i web 192.168.1.45 

6/06/22,23:59 
202051172 

YAASINTA 
- Front page System Course viewed The user with i web 192.168.1.45 

6/06/22,23:59 
202111597 

QONITAL 
- 

File: Latihan Soal 

Uji 
File Course module vi The user with i web 192.168.1.45 

6/06/22,23:59 
202051162 

DANENDR 
- 

As 

signment:Decision 
As signment Course module vi The user with i web 192.168.1.45 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

6/06/22,00:00 
202151157 

VIAN NIBR 
- 

As signment: 

Collecti 
As signment Course module vi The user with i web 192.168.1.45 

6/06/22,00:00 
201911542 

RIZOJNAZIL 
- 

Course:ETIKA 

BISNIS 
System Course viewed The user with i web 192.168.1.45 

6/06/22,00:00 
202052004 

MOCHAM 
- 

Course:PROGRAM

M 
System Course viewed The user with i web 192.168.1.45 

Table 2. Data ready to use 

No. NIM Total_login 
N access 

forum 

N access didactic 

units 

Total 

assignments 

Total 

assignments 

submitted 

N access 

questionnaires 

N attempts 

questionnaires 

1 202011233 97 715 216 228 26 142 122 

2 201911631 63 2 24 122 7 1 0 
3 202011216 121 1490 296 569 42 225 192 

4 202011036 111 208 261 384 41 225 214 

5 202011199 105 824 182 376 32 172 158 
6 202011192 96 481 148 284 32 210 201 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... 
44 

34 
202053164 95 776 123 345 32 129 115 

44 
35 

202032091 118 924 152 244 22 389 323 
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No. 
N answered 

questions 

N 

questionnaire 

views 

N 

questionnaires 

submitted 

N reviews 

questionnaire 

Days first 

access x 

N entries 

course x 
CGPA 

1 14 136 3 284 1 444 3.43 

2 3 1 0 278 4 146 2.62 

3 15 221 2 439 1 865 3.55 

4 15 221 2 116 2 645 3.61 
5 15 168 2 434 1 558 3.64 

6 13 206 2 218 7 432 3.68 

... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... 
44 

34 
15 125 2 362 1 468 3.82 

44 
35 

16 379 5 300 9 396 3.84 

Table 3. Prediction model comparison 

Model RMSE 

Deep Learning (DL) 0.412 

Support Vector Machine (SVM) 0.433 

Random Forest (RF) 0.407 

Generalized Linear Model (GLM) 0.445 

Gradient Boosted Regression Trees (GBRT) 0.378 

Decision Tree (DT) 0.461 

2.3 Hyperparameters tuning 

In the previous stage, collecting and preprocessing student 

academic performance data was carried out. The next step is 

to predict using the GBRT model with GS tuning techniques. 

Each hyperparameter tuning technique has other parameters. 

Therefore, before using it, knowing what parameters must be 

understood and determining each parameter's value or value 

range is necessary. 

A scikit-learn library in Python called Gridsearchcv is used 

for hyperparameter tuning methods. The score of each model 

is then calculated using the scoring index after all parameters 

have been estimated. The ideal model and parameter 

combination are then identified. It is no longer required to 

adjust settings manually to increase development efficiency. 

However, the Gridsearchcv technique of parameter tuning 

takes more time. Additionally, time consumption increases as 

the number of factors and potential values increases. As a 

result, the critical parameter ranges are often defined in 

advance and refined. An estimator (first parameter) is a 

machine-learning model from Scikit-learn. In other words, this 

is a fundamental model. As previously mentioned, param_grid 

is a Python dictionary of search space. In the 4-dimensional 

search space, there are 256 (4×4×4×4) possible combinations, 

which means using Grid Search to train 256 different models. 

Table 4. Parameters for GridSearchCV 

Parameters Values/Ranges 

estimator GradientBoostingRegressor 

Scoring neg_mean_squared_error 

n_jobs -1

Cv 5

param_grid 

n_estimators [50,100,200,300] 

Subsample [0.9, 0.5, 0.2, 0.1] 

learning_rate [0.1,1,1.5,2] 

max_depth [2,8,12,16] 

Grid search will run n parallel jobs; n jobs with a value of -

1 indicate that all CPU cores are used. As a result, the 

execution process will run faster. The execution process will 

go more quickly as a result. The usual range for the cross-

validation fold count is 5, 10, and 15. In this case, as the CV is 

5, each hyperparameter combination is repeated five times. 

Therefore, there have been 1280 iterations (256×5). As for the 

vulnerable parameters, we set them as follows in Table 4. 

3. RESULTS AND DISCUSSION 

The results of the experiment used the parameters in Table 

1. The best parameters are n_estimators: 50, max_depth: 12, 

subsample: 0.5, and learning_rate: 0.1, with the best MSE 

value of -0.249. The code snippets and results are shown in 

Figure 2.

Figure 2. Best parameters from GridSearchCV-GBRT 

Results of our research on using the GBRT method with GS 

hyperparameter optimization to predict student performance 

with less error. Our findings show that our proposed model is 

effective in reducing prediction errors. All model performance 

evaluations show smaller error values after optimization; MSE 

decreases by 0.013, MAE by 0.018, and RMSE by 0.017, as 

shown in Figure 3.  

Figure 3. Comparison of GBRT with GS-GBRT 
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Cross-validation with k=5 in all model evaluations between 

validations have almost the same value, as shown in Table 5; 

this indicates that the proposed model has good reliability, and 

the distribution of academic performance data used in each 

validation has a relatively constant value.  

Table 5. Validation model 

K-Validation MSE MAE RMSE 

1 0.130309 0.254369 0.360984 

2 0.135093 0.249349 0.367549 

3 0.145931 0.258957 0.38201 

4 0.152121 0.25944 0.390027 

5 0.140935 0.248987 0.375413 

The GridSearchCV-GBRT technique has the lowest MSE, 

MAE, and RMSE values compared to GBRT without 

hyperparameter tuning. Figure 3 shows that hyperparameter 

tuning affects minimizing the percentage error of the 

prediction algorithm. Palkhiwala et al. [39] used GS tuning 

hyperparameters to predict student scores; they used the Math 

and Portuguese datasets and several machine learning 

algorithms. Their experiments showed that the MSE value of 

the k-NN algorithm after optimization decreased by 0.025, DT 

by 0.041, and SVM by 0.108. In the Math k-NN data, the MSE 

value decreased by 0.025, DT by 0.04, and SVM by 0.108.  

In this research, we look at techniques to optimize machine 

learning to predict student academic performance using GS. 

The results of our research show that our model can predict 

academic performance with a smaller error value than the 

model without using hyperparameter optimization. Our 

discussion includes how our results influence existing 

knowledge and how the results can be applied to specific 

problems. Our results show that machine learning 

optimization techniques can effectively minimize errors in 

predicting student academic performance. This implies that 

this model can identify students at risk for academic failure, 

prevent them from dropping out or graduating late, improve 

educational outcomes, and assist instructors in allocating 

resources and instruction more accurately. We suggest further 

research to improve the model's reliability and explore other 

applications. 

4. CONCLUSIONS 

This research presents a promising predictive model for 

student academic performance using a regression model. 

Based on the comparison of six prediction models, the GBRT 

model outperformed the others with the smallest error value. 

Furthermore, the GBRT model was optimized for 

hyperparameters using the GS method, which led to improved 

prediction accuracy. The best parameters result from GS to 

GBRT is n_estimators: 50, max_depth: 12, subsample: 0.5, 

and learning_rate: 0.1. The validation of the model using 

cross-validation with k=5 showed good reliability and 

consistent distribution of academic performance data. Overall, 

the GBRT model with hyperparameter tuning using the GS 

method can be a valuable tool for identifying students at risk 

of academic failure, preventing dropouts or late graduation, 

and improving educational outcomes. 

However, this study only used the GS method to optimize 

hyperparameters, and future research can explore other 

hyperparameter techniques for comparison. Additionally, 

researchers can add variations of hyperparameter setting 

values in the future to further enhance the model's performance. 
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