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Outlier identification and elimination are essential preprocessing steps for data analysis 

tasks such as clustering, classification, and regression. The accuracy of data analysis 

outcomes may be compromised if outliers are not adequately addressed. Detecting outliers 

is particularly challenging when they are characterized by unusual combinations of multiple 

attributes. Furthermore, the presence of outliers can impact various data processing 

activities, necessitating either the reduction of outlier influence or their complete removal. 

Outlier detection in multivariate data presents a complex process that becomes increasingly 

difficult when dealing with high-dimensional datasets. Consequently, this study focuses on 

the identification of such outliers in multivariate datasets using intelligent techniques. In the 

proposed approach, outliers are detected using an Improved Neural Network (INN), where 

the hidden neurons are tuned by a novel Synergistic Firefly-Grey Wolf Optimization (SF-

GWO) algorithm. This algorithm combines the strengths of the Firefly Optimization (SFO) 

and Grey Wolf Optimization (GWO) techniques to maximize accuracy. The unique method 

results in enhanced classification model performance, reduced computation time, and 

increased classification accuracy. The proposed model has been evaluated and compared 

with well-established traditional techniques, demonstrating its effectiveness in addressing 

the challenges of outlier detection in multidimensional datasets. 
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1. INTRODUCTION

Outlier detection, a critical data analysis approach for 

identifying unusual data points in a dataset, has been employed 

in various fields such as finance, communication networks, 

medical, and environmental research [1]. Many of these 

applications involve categorical data. For instance, intrusion 

detection datasets often comprise intercepted packets with 

categorical attributes like "protocol" [2]. Although numerous 

outlier detection algorithms exist for numerical data, only a 

few traditional methods can handle categorical data. These 

techniques suffer from high time complexity and low detection 

accuracy [3]. 

The goal of outlier detection, also known as anomaly 

detection, is to identify data points with anomalous 

characteristics. As one of the most fundamental data analytics 

approaches, outlier detection is crucial since unrecognized 

outliers can negatively impact data analysis results and, 

consequently, analysis-driven decisions [4]. Outlier detection 

can be applied in two scenarios. If outliers are considered noise, 

they must be removed before analyzing the dataset for 

knowledge discovery. In contrast, when outliers are the main 

objectives (e.g., regular purchases in an online electronics 

store), they must be accurately identified [5]. Owing to its 

effectiveness, outlier detection has become a significant 

technique for various applications, including fraud detection 

in financial transactions, intrusion detection in communication 

networks, and disease diagnosis. 

Numerous outlier detection strategies have been proposed 

in recent years [6]. Currently available methods can be 

grouped into three categories: distance-oriented, statistical 

distribution-oriented, and clustering-oriented approaches. 

Statistical distribution-oriented methods require the data 

points under investigation to follow a specific distribution [7], 

which can then be used to identify outliers. Distance-oriented 

approaches detect outliers by measuring the number of 

neighbors a data point has – an outlier is a data point with few 

neighbors. However, these methods require at least quadratic 

time complexity in relation to the number of data items, 

making them unsuitable for large datasets [8]. Clustering-

oriented algorithms group data points into separate clusters to 

detect outliers. Most traditional outlier detection methods [9] 

are designed for numerical datasets, but many practical 

applications involve categorical data. For example, the 

detection of anomalous traffic in communication networks 

involves the analysis of a sequence of network packets [10], 

which often have multiple categorical attributes such as 

"protocol." 

Detecting outliers in time series datasets is a common real-

world challenge [11]. A time series dataset consists of a 

sequence of data points ordered chronologically. Anomaly 

detection in time series data is complex due to various factors. 

First, real-time detection is a crucial requirement in many 

intrusion detection and industrial monitoring systems for 

information security [12]. Second, high-dimensional datasets 

exhibit relationships between different data attributes. Third, 

Ingénierie des Systèmes d’Information 
Vol. 28, No. 3, June, 2023, pp. 767-775 

Journal homepage: http://iieta.org/journals/isi 

767

https://orcid.org/0000-0003-3919-0967
https://orcid.org/0000-0002-9338-3519
https://orcid.org/0000-0003-3253-312X
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280328&domain=pdf


 

outliers are not always the highest or lowest values but rather 

those discordant with the underlying data, increasing 

computational complexity. Additionally, time series data 

exhibit a high degree of consistency and correlation [13], 

making it impossible to ensure that data points are uniformly 

and independently distributed. As a result, outlier detection 

techniques must address numerous complex requirements. 

Various researchers have proposed outlier detection methods 

for time series datasets, such as the FAR model, the INAR 

model, and the VAR methods, which are regression-based 

approaches that search for data points inconsistent with the 

theory [14]. Empirical likelihood-based methods, which 

incorporate simulated variables in each test and use likelihood 

ratios to detect outliers, have also been proposed. While these 

approaches are applicable in specific contexts, they also have 

some limitations. Some methods require prior knowledge of 

the data, which may be challenging in certain real-world 

situations. Furthermore, parameter selection significantly 

influences the quality and performance of the detection results 

[15]. Moreover, most algorithms are computationally 

intensive and do not apply to clustered outliers. 

This paper contributes to the field by: 

• Identifying outliers in multivariate datasets using 

intelligent technology. 

• Detecting outliers in multivariate datasets using INN, 

with hidden neurons of NN tuned for accuracy 

maximization. 

• Proposing a novel optimization algorithm called SF-

GWO for enhancing the detection phases and 

comparing it with conventional models to demonstrate 

the superiority of the developed method. 

The remainder of this paper is organized as follows: Section 

II presents a literature survey. Section III discusses outlier 

detection in multivariate datasets. Section IV describes the 

INN for outlier detection in multivariate datasets. Section V 

introduces the SF-GWO for outlier detection in multivariate 

datasets. Section VI reports the results, and Section VII 

concludes the paper. 

 

 

2. LITERATURE REVIEW 

 

In recent years, various outlier identification techniques for 

categorical data sets have been proposed, with some achieving 

remarkable improvements in computational complexity and 

detection accuracy. This literature review highlights several 

significant contributions to the field, demonstrating the 

advancements made in recent years. 

In 2021, Du et al. [16] introduced two novel outlier 

identification techniques, namely the Outlier Detection Tree 

(ODT) and the Fast Outlier Detection Tree (FAST-ODT). 

ODT is a basic entropy-based strategy using a classification 

tree to categorize data objects as either normal or abnormal. 

FAST-ODT, an enhanced version, boasts reduced time 

complexity while maintaining exceptional detection accuracy. 

The results indicate that FAST-ODT outperforms existing 

methods in terms of both computational complexity and 

precision. 

Lu et al. [17] presented the Outlier Detection for Categorical 

Attributes (ODCA) technique in 2018. This method is divided 

into three stages: data preparation, outlier ranking, and outlier 

analysis. Firstly, linear interpolation is employed to transform 

assembled outliers into isolated ones. Secondly, cross-

correlation analysis is used to convert high-dimensional data 

sets into a one-dimensional cross-correlation function for 

isolated outlier detection. Finally, a multilevel Otsu's approach 

is utilized to adaptively determine rank thresholds and output 

anomalous samples at various levels. The authors conducted 

four experiments with multiple high-dimensional time series 

data sets and compared their method with other detection 

techniques. The results suggest that ODCA outperforms 

conventional approaches in terms of effectiveness and time 

complexity. 

Degirmenci and Karal [18] proposed a novel method called 

RiLOF, which is based on the iLOF technique and overcomes 

traditional limitations. They introduced a new metric, the 

Median of Nearest Neighbors Absolute Deviation (MoNNAD), 

which combines the median and local absolute deviation of 

samples' LOF values. RiLOF can detect outliers in various 

data stream applications with consistent hyperparameters. 

Extensive tests on 15 real-world data sets demonstrated that 

RiLOF significantly outperforms 12 traditional competitors. 

In 2017, Zhu et al. [19] developed FRIOD, an innovative 

interactive outlier detection method that incorporates deep 

human involvement to enhance detection performance and 

significantly simplify the detection process. The user-friendly 

interactive approach allows users to engage in the core outlier 

identification algorithm's primary stages, including location-

aware distance thresholding, dense cell selection, and final top 

outlier validation. By incorporating human interaction, 

FRIOD optimizes the grid-oriented space partitioning, a 

crucial step, and can improve the quality of discovered outliers 

while making the detection process more effective and 

efficient. 

Lastly, Yousef et al. [20] presented UN-AVOIDS in 2021, 

an unsupervised and nonparametric technique that provides 

invariant anomalous scores (normalized to [0, 1]) for both 

viewing and identification of outliers. The key feature of UN-

AVOIDS is the transformation of data into a novel space 

called the Normalized Cumulative Distribution Function 

(NCDF), where both visualization and detection are performed. 

Outliers are easily visible in this space, resulting in high Area 

Under the Curve (AUC) scores for the anomaly detection 

algorithm. UN-AVOIDS outperformed three major anomaly 

detection techniques (IF, LOF, and FABOD) in terms of AUC 

when tested with both simulated and two newly released 

cybersecurity datasets. 

In conclusion, the advancements in outlier identification 

techniques for categorical data sets have been remarkable, 

with novel methods demonstrating improved detection 

accuracy, computational complexity, and versatility. Further 

research in this area is expected to continue pushing the 

boundaries of what is possible in outlier detection. 

In 2016, Salehi et al. [21] have presented a MiLOF detection 

technique for data streams, as well as a more customizable 

variant (MiLOF F), both of which contained a similar accuracy 

to Incremental LOF but are limited in memory. The outcomes 

reveal that both suggested techniques outperform Incremental 

LOF in terms of memory and temporal complexity while 

maintaining comparable accuracy. Furthermore, we 

demonstrated that MiLOF F was unaffected by variations in 

the count of data points, fundamental clusters, and dimensions 

in the data stream. These findings demonstrated that 

MiLOF/MiLOF F were well-applicable to application contexts 

having lessened memory (e.g., WSNs) and could handle high-

volume data streams.  

Lin and Wang [22] proposed a probabilistic deep 

autoencoder designed to reassemble power system data by 
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incorporating a nonparametric distribution estimation 

approach. This approach allowed for the inclusion of 

uncertainty information within the observed data. Confidence 

intervals, predicted by the method, were utilized as input for 

the initial layer of the neural network, while the reconstructed 

data facilitated the detection and replacement of outliers. The 

effectiveness of this technique was corroborated through 

simulated results. However, the probabilistic deep 

autoencoder necessitates an abundance of labeled data for 

training, which may be unattainable in certain real-world 

situations. Furthermore, the method may be ill-suited for 

managing high-dimensional data, a prevalent issue in 

numerous applications. 

Li et al. [23] introduced a graph-based strategy, enabling an 

unsupervised approach to evaluate a minimal amount of 

labeled data. The semi-supervised system was extended to 

active outlier detection by incorporating a query method that 

selected top-ranked outliers. The semi-supervised outlier 

detection technique demonstrated performance comparable to 

that of the leading traditional methods, while the active outlier 

detection method surpassed them. This technique was tested 

across 12 real-world datasets. However, Li et al.'s graph-based 

strategy exhibits limitations in handling complex, high-

dimensional datasets and may prove computationally taxing 

when processing vast quantities of data, potentially impacting 

performance. 

Wang et al. [24] developed the RODA algorithm, capable 

of handling both single and multiple query processing. A novel 

outlier estimation method was proposed for single query 

processing, and the R-tree index was expanded to reduce the 

retrieval space by prioritizing data points with high outlier 

degrees. The algorithm was designed to explore the sharing 

mechanism among multiple queries in depth for multiple 

query processing. Experimental results indicated that RODA 

enhanced operational efficiency and held significant practical 

applicability. However, the RODA algorithm requires a pre-

processing step to construct an R-tree index, which may be 

infeasible for dynamic or constantly changing data. 

Additionally, the method may struggle with high-dimensional 

data, as performance could deteriorate as data dimensionality 

increases. 

Yu et al. [25] suggested transferring knowledge from 

labeled source data to support unsupervised outlier detection 

in a target dataset. The source and target data were combined 

for joint clustering and outlier identification, utilizing the 

source data clustering algorithm as a constraint to maximize 

the use of source knowledge. A K-means algorithm was 

employed to address the problem using an augmented matrix. 

This algorithm was found to be a dependable approach with a 

precise mathematical definition and theoretical convergence 

guarantee. However, Yu et al. [25] 's transfer learning-based 

method assumes that the labeled source data accurately 

represents the target data, which may not always be the case. 

Moreover, the approach may be computationally intensive 

when handling large, high-dimensional datasets, potentially 

affecting its scalability. 

In conclusion, the literature review presented herein 

outlines the developments and limitations of various outlier 

identification techniques for categorical data sets. The 

experimental results and comparisons conducted across 

multiple real-world datasets demonstrate the effectiveness and 

potential improvements of the proposed methods in terms of 

outlier detection and cluster validity measures. Further 

research is necessary to address the challenges associated with 

high-dimensional data, computational complexity, and the 

availability of labeled data for training. 

 

 

3. OUTLIER DETECTION IN MULTIVARIATE 

DATASETS 
 

Outliers can have a detrimental impact on data analysis 

outcomes by skewing the results and distorting the underlying 

patterns or trends present in the data. This can lead to incorrect 

conclusions and flawed decision-making processes, which can 

have serious consequences in various fields such as finance, 

healthcare, and environmental research. For example, in 

finance, the presence of outliers in financial data can lead to 

inaccurate risk assessments and investment decisions. In 

healthcare, outliers in medical data can lead to misdiagnosis or 

ineffective treatment plans. In environmental research, outliers 

in data on pollutant levels can lead to incorrect assessments of 

environmental risks and inadequate regulatory measures. 

Furthermore, outliers can also result in inefficient data analysis 

processes. For instance, if outliers are not identified and 

removed from the dataset, data analysis techniques that rely on 

statistical assumptions such as normality or homogeneity of 

variance may not be applicable, resulting in the need for more 

complex and time-consuming analyses. Consider, for example, 

[26, 27] for compositional data consisting of multivariate 

characteristics with the goal of evaluating potential influence 

to a whole. As a result, instead of the variables itself, the ratios 

of the variables include the important information of 

compositional data. This has consequences for outlier 

identification algorithms, which must be tailored to this sort of 

data. For example, statistical analysis of the chemical 

composition of rock or the mineral content of geological 

samples may be of interest in the area of geochemistry, and 

knowledge concerning the availability of outliers may be 

useful to the researcher.  

Compositional data are distinguished from merely restricted 

data by two extra conditions, despite the fact that they are 

always defined by a constant sum constraint. Consequently, 

the knowledge in the variables must be independent of the 

scale invariance (unit scale), and on the other extreme, the 

outcomes of sub compositions should be compatible with the 

entire composition's findings (sub compositional coherence). 

Furthermore, compositional data do not conform to Euclidean 

geometry, but instead generate their unique geometry on the 

plain, which is known as the Aitchison geometry. The 

variables in this region can only have values scaling from 0 to 

a defined constant (e.g., 100 in the instance of percentages).  

Considering that the raw values associated with a 

composition are reliant on one another, another weakness of 

the comparative nature of the variables is its skewed 

covariance architecture [28]. In fact, a rise in single variable in 

one observation may result in a reduction in another. The 

closed nature and inherent interrelatedness of compositional 

data, overall, impede the effective use of typical statistical 

approaches for data analysis consider [29, 30].  

To address these flaws, the log ratio transformations for data 

from simplex to real space were devised, allowing the 

compositional data points to be expressed in ortho normal 

coordinates [31]. In the E-part simplex space, every 

composition 𝑦 describes a random vector with strictly positive 

elements.  
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𝑇𝐸 = {𝑦 = (𝑦1 , ⋯ , 𝑦𝐸)𝜖𝑆
𝐸: 𝑦𝑗 > 0, 𝑗 =

1,⋯ , 𝐸, ∑ 𝑦𝑗 = 𝑙
𝐸
𝑗=1 }

(1) 

Here, l represents a fixed constant once again. A part shows 

an element of a composition that must not be zero, because 

only the ratios among the parts are useful in compositional 

data analysis. At this point, it should be mentioned that 

suitable techniques are available in the scenario of zero parts 

yj=0 for 𝑗 ∈ {1, ⋯ , 𝐸}  in Eq. (1) induced, for instance, by 
metrics beneath a specific missing information or detection 

limit, view [32, 33], and in the high-dimensional scenario [34]. 

By transferring the actual information from the limited 

simplex space TE, to the Euclidean real space, SE-1, the logratio 

transformation technique provides for preprocessing. The 

modified data can then be used to adjust normal statistical 

processes for data analysis, resulting in better outcomes. The 

clr, the alr, and the ilr transformations define the primary 

family members of log ratio transformations emphasized in the 

literature. Only the final two are isometric, but they're 

completely bijections. Aitchison [26] presented both the alr as 

well as clr transformations, which were later supplanted by 

transformation [35]. The alr does not preserve distance, and 

the clr, while isometric, produces a unique covariance 

architecture. In the case of (E-1)-dimensional hyperplane 

covered by clr coefficients, the ilr-transformed shows the 

assessment of an orthonormal basis. The ilr transformation 

defines a bijective and isometric mapping, using the formula 

ilr: TE→SE-1. One among the selected basis's suggestions is:  

𝑎 = 𝑖𝑙𝑟(𝑦) = (𝑎1, ⋯ , 𝑎𝐸−1) (2) 

𝑎𝑘 = √
𝐸−𝑘

𝐸−𝑘+1
𝑙𝑛

𝑦𝑘

√∏ 𝑦𝑙
𝐸
𝑙=𝑘+1

𝐸−𝑘
 𝑓𝑜𝑟   𝑘 = 1,⋯ , 𝐸 − 1 (3) 

As a result of this definition, the non-collinear data point a 

in the (E-1)-dimensional hyperplane has become the 

expression of 𝑦 ∈ 𝑇𝐸. Because one portion of the composition

is chosen as the pivot, the recommended ilr coordinates are 

known to as pivot (log ratio) positions (in this scenario y1). The 

pivot is not selected randomly in applications because only the 

pivot can be read directly with respect to its overall dominance 

relative to the rest of the arrangement. Because y1 is not 

implicated in any one the remaining coordinates, the 

equivalent coordinate a1, communicates complete relevant 

data regarding component y1 in the composition [27]. This is 

especially helpful with respect to interpretation, since a1 can 

now be interpreted with respect to y1.  

4. IMPROVED NEURAL NETWORK FOR THE

OUTLIER DETECTION IN MULTIVARIATE

DATASETS

NNs [36] are made up of small computational units called 

"neurons," which are linked to one another through weight 

connectors. These units then compute the weighted sum of the 

inputs and determine the output utilizing activation functions 

or squashing. There are three primary elements of a neural 

method:  

• The input signal y1 coupled to neuron l is amplified by

synaptic weight ωωlj at synapses, or joining links, which

contain strength or weight.

• An adder that adds the weighted inputs together.

• A neuron's output is produced by an activation function.

It's also known as a squashing function since it reduces

(limits) the output signal's intensity range to a predefined

limit.

Based on whether the bias cl is negative or positive, it 

contains the impact of boosting or reducing the net input of the 

activation function. The output of neuron l may be expressed 

quantitatively as: 

𝑧𝑙 = 𝜑(∑ 𝑦𝑗 ∙ 𝜔𝑙𝑗 + 𝑐𝑙
𝑛
𝑗=1 ) (4) 

The input signals are shown by y1, y2, y3,⋯, yn. The weights 

of neuron are represented by ωl1,ωl2,ωl3,⋯ ,ωln. The bias is 

given by cl. φ defines the function of activation. To better 

understand the impact of bias on neuron function, the output 

supplied in Eq. (4) is split into two phases, the initial of which 

contains the weighted inputs and the total, which is presented 

as Tl:  

𝑇𝑙 = ∑ 𝑦𝑗 ∙ 𝜔𝑙𝑗
𝑛
𝑗=1 (5) 

The output of the adder is thus shown in Eq. (6): 

𝑤𝑙 = 𝑇𝑙 + 𝑐𝑙 (6) 

Here, the neuron's output will be: 

𝑧𝑙 = 𝜑(𝑤𝑙) (7) 

The connection among the adder output and weighted input 

will be altered on the basis of the bias value [37].  

Improved Neural Network 

The INN is used for detecting the outliers in the multivariate 

datasets. The major objective of the introduced outlier 

detection in the multivariate datasets is to optimize the hidden 

neurons of NN with the intention of accuracy maximization as 

below. 

𝑓𝑖𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥⏟    
𝐻𝑁𝑁𝑁

(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) 
(8) 

Here, the fitness or the objective function is given by fit, and 

hidden neurons of NN is given by HNNN respectively. 

Accuracy is the accurate prediction count divided by the total 

prediction count as below. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑈𝑃+𝑇𝑈𝑁

𝑇𝑈𝑃+𝑇𝑈𝑁+𝐹𝑈𝑃+𝐹𝑈𝑁
(9) 

In the above equation, true positive is TUP, false negative is 

FUN, true negative is TUN, and false positive is FUP 

respectively.  

5. PROPOSED OPTIMIZATION FOR THE OUTLIER

DETECTION IN MULTIVARIATE DATASETS

The proposed SF-GWO is used for enhancing the detection 

phase of the outlier detection model through the optimization 

of the hidden neurons of NN with the consideration of 

accuracy maximization. GWO [38] is influenced by the grey 

wolves. It is composed of four wolves such as alpha, beta, 
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delta, and omega. The main phases included are getting nearer 

to the prey, prey harassing, and prey attacking. The GWO is 

better in the case of challenging search spaces. But it has the 

drawback in the case of multi objective optimization problems. 

Hence, to overcome its limitations, SFO is integrated into it 

and the so formed algorithm is referred as SF-GWO. This SF-

GWO can handle all forms of multi objective constrained 

problems.  

In the case of multi-modal problems, the SFO [39] approach 

defines a population-oriented iterative heuristic global 

optimization algorithm. Pollination and root velocity are 

words used by SFO to provide robustness.  

In the proposed SF-GWO, the algorithm is modelled 

through the random concept. If ra≥0.5, then the update is by 

SFO.  
 

𝑌𝑗+1⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑌𝑗⃗⃗ + 𝑒𝑗 × 𝑡𝑗⃗⃗  (10) 
 

Here, the new individual is Yj+1, sunflower individual is Yj, 

step of the sunflower is ej, and the direction is 𝑡𝑗 ⃗⃗⃗⃗ respectively.  

Otherwise, if ra<0.5, then the update is by GWO.  
 

𝑌𝑗+1⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝑌1⃗⃗⃗⃗ +𝑌2⃗⃗⃗⃗ +𝑌3⃗⃗⃗⃗ 

3
  (11) 

 

Here, the new position is 𝑌𝑗+1⃗⃗ ⃗⃗ ⃗⃗  ⃗, alpha position is 𝑌1⃗⃗  ⃗, beta 

position is 𝑌2⃗⃗  ⃗, and delta position is 𝑌3⃗⃗  ⃗ respectively. The pseudo 

code of SF-GWO is in Algorithm 1.  
 

Algorithm 1: Proposed SF-GWO 

Start  

Parameter initialization 

Population initialization 

Fitness computation 

While 𝑖𝑡𝑒𝑟 < max _𝑖𝑡𝑒𝑟 

If 𝑟𝑎 ≥ 0.5 

 𝑌𝑗+1⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑌𝑗⃗⃗ + 𝑒𝑗 × 𝑡𝑗⃗⃗  

else 

 
𝑌𝑗+1⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

𝑌1⃗⃗  ⃗ + 𝑌2⃗⃗  ⃗ + 𝑌3⃗⃗  ⃗

3
 

iter=iter+1 

Stop  
 

 

6. RESULTS DISCUSSION 

 

The suggested outlier detection methodology has been 

empirically validated, and the findings are discussed in this 

section. The suggested method was run on an i3 processor with 

8GB RAM and MATLAB 14.1 loaded. In the case of single 

outliers, two outlier datasets were evaluated, while in the case 

of multiple outliers, one dataset was used. The datasets utilized 

in the introduced method experiments are described in Tables 

1 and 2. 
 

Table 1. Data description (single outlier) 
 

Datasets No. of samples No of features Outlier (%) 

PenDigits [40] 6870 16 2.27 

MNIST [41] 7603 100 9.2 

 

Table 2. Data description (multiple outlier) 

 
Datasets Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 

Wine quality [42]  0.41 % 3.32% 29.74% 44.9% 17.96% 3.57% 0.1% 

 

In the suggested method experiments, parameters like true 

negative rate and false negative rate are employed to calculate 

the detection rate. The parameters are written as follows:  

 

𝐹𝑁𝑅 =
𝐹𝑈𝑁

𝑇𝑈𝑃+𝐹𝑈𝑁
  (12) 

 

𝑇𝑁𝑅 =
𝑇𝑈𝑁

𝐹𝑈𝑃+𝑇𝑈𝑁
  (13) 

 

The detection rate is calculated using Eqns. (12) and (13).  

 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = (1 − 𝐹𝑁𝑅) × 𝑇𝑁 (14) 

 

6.1 Confusion matrix analysis 

 

Figure 1 depicts the suggested method's confusion matrix, 

which is dependent on the TUP, TUN, FUP, and FUN parameters. 

 
 

Figure 1. Confusion matrix analysis 
 

6.2 Detection rate analysis 

 

The Figure 2 and Table 3 demonstrate the suggested 

method's detection performance for three data sets, against the 

suggested method's higher performance; it is compared to 

traditional methods. The suggested SF-GWO detects outliers 

better than the standard method, as shown in Figures. The 

word actual refers to the dataset's outlier proportion. In terms 

of real outliers in the dataset, the suggested method has a 

higher detection rate. The suggested SF-GWO outperforms the 

conventional methods in terms of detection performance. 

Table 4 shows the detection rate. 

 

Table 3. Detection rate analysis (Single outlier) 

 
 Datasets  
 PenDigits MNIST 

Detection rate 
(%) 

Actual 
MHMM 

[43] 
HSMM 

[44] 
RKHS 
[45] 

SF-
GWO 

Actual 
MHMM 

[43] 
HSMM 

[44] 
RKHS 
[45] 

SF-
GWO 

 3 2.6 2.4 2.7 2.8 9.5 9.1 8.9 9.0 9.3 
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Table 4. Detection rate analysis (Multiple outlier) 

 
Classes  Detection rate (%) 

Class 1 

Actual  1 

MHMM [43] 0.4 

HSMM [44] 0.7 

RKHS [45] 0.5 

SF-GWO 0.9 

Class 2 

Actual  4 

MHMM [43] 3.4 

HSMM [44] 3.7 

RKHS [45] 3.2 

SF-GWO 3.8 

Class 3 

Actual  30 

MHMM [43] 24 

HSMM [44] 27 

RKHS [45] 25 

SF-GWO 28 

Class 4 

Actual  45 

MHMM [43] 42 

HSMM [44] 43 

RKHS [45] 41 

SF-GWO 44 

Class 5 

Actual  18 

MHMM [43] 14 

HSMM [44] 15 

RKHS [45] 12 

SF-GWO 17 

Class 6 

Actual  4 

MHMM [43] 3.3 

HSMM [44] 3.4 

RKHS [45] 3.2 

SF-GWO 3.7 

Class 7 

Actual  2 

MHMM [43] 1.5 

HSMM [44] 1.4 

RKHS [45] 1.7 

SF-GWO 1.9 

 

 
 

Figure 2. Detection rate analysis (Single outlier) 

 

 
 

Figure 3. Detection rate analysis (Multiple outlier) 

6.3 Accuracy analysis 

 

Figure 3 shows the detection accuracy of the introduced 

method versus the suggested SF-GWO. For both the single 

outlier dataset as well as the multiple outlier dataset, the 

suggested method outperforms the traditional methods in 

terms of detection accuracy. For all three datasets, the 

suggested method's average detection accuracy is 97.2%, 

which is pretty satisfactory. The average of the traditional 

methods is 93.5 percent, which is 4% lower than the suggested 

approach. To evaluate the performance gain in classification 

methods owing to outlier identification, the introduced method 

is tested alongside a classifier approach.  Figure 4 and Table 5 

show the classification efficiency of existing approach in 

comparison to the suggested method. There are two types of 

performance evaluations: with outlier identification and 

without outlier detection. The variances in classification 

accuracy and enhancements in calculation time are studied as 

a result of this. Figure 5 and Table 6 show that without outlier 

detection methods, the classification method in NN, LR, and 

DT methods is lowered for all three data sets. 

 

 
 

Figure 4. Detection accuracy analysis 

 

 
 

Figure 5. Classification accuracy analysis 

 

Table 5. Detection accuracy analysis 

 
Data sets Detection accuracy (%) 

Pen Digits Existing method 88 

 SF-GWO 94 

MNIST Existing method 92 

 SF-GWO 98 

WineData Existing method 94 

 SF-GWO 99 

772



Table 6. Classification accuracy analysis 

Classification accuracy (%) 

Without outlier detection With outlier detection 

PenDigits MNIST WineData PenDigits MNIST WineData 

NN [36] 92 94 94 96 95 94 

LR [46] 91 92 92 95 93 93 

DT [47] 90 91 90 94 92 90 

SF-GWO 94 95 96 97 96 96 

6.4 Computational time analysis 

Figure 6 and Table 7 show a comparison of classification 

method calculation times. Outliers are effectively recognized 

using the suggested outlier detection, resulting in a reduction 

in computation time when categorizing data for classification 

methods. On the other hand, for classification methods without 

outlier identification, the calculation time increases, this has 

an impact on classification accuracy: 

Figure 6. Computational time analysis 

Table 7. Computational time analysis 

Classification accuracy (%) 

Without outlier detection With outlier detection 

PenDigits MNIST WineData PenDigits MNIST WineData 

NN [36] 92 94 94 96 95 94 

LR [46] 91 92 92 95 93 93 

DT [47] 90 91 90 94 92 90 

SF-GWO 94 95 96 97 96 96 

7. CONCLUSIONS

In conclusion, this research proposed an intelligent 

technology for identifying outliers in multivariate datasets 

using an INN. The proposed model employed a novel SF-

GWO algorithm to fine-tune the hidden neurons of the NN, 

resulting in improved classification model performance and 

increased accuracy. Moreover, the proposed model 

significantly reduced computation time, making it more 

practical and efficient for real-world applications. The 

proposed model was compared to well-known conventional 

technologies in the experimental analysis, and the results 

demonstrated the superiority of the proposed model in terms 

of accuracy and efficiency. The proposed model's potential to 

detect outliers in various fields, including finance, healthcare, 

and engineering, was also discussed. However, there are 

limitations to this study. For instance, the proposed model's 

performance could be affected by the size and quality of the 

dataset used, and further research is needed to investigate the 

model's robustness in real-world applications.  

Overall, this research provides a valuable contribution to the 

field of outlier detection and presents a promising approach for 

detecting outliers in multivariate datasets using an intelligent 

and efficient algorithm. 
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NOMENCLATURE 

 

NN Improved Neural Network 

FAR Functional coefficient Auto-Regressive 

SF-GWO Sun Flower-based Grey Wolf Optimization 

alr additive logratio 

ODT Outlier Detection Tree 

ELM Extreme Learning Machine 

SFO Sun Flower Optimization 

INAR INteger Auto-Regressive 

ODCA Outlier Detection method based on Cross-

correlation Analysis 

RiLOF Robust outlier detection method 

FRIOD Feature-Rich Interactive Outlier Detection 

GWO Grey Wolf Optimization 

VAR Vector Auto-Regression 

NCDF Neighborhood Cumulative Density Function 

PSO Particle Swarm Optimization 

MoNNAD Median of Nearest Neighborhood Absolute 

Deviation 

AUC Area Under the ROC Curve 

MiLOF Memory-efficient incremental Local outlier 

clr centred logratio 

NCDF Neighborhood Cumulative Density Function 

PSO Particle Swarm Optimization 

RODA R-tree based Outlier Detection Algorithm 

VAAD Visualization Aided Anomaly Detection 

WSNs Wireless Sensor Networks 

ilr isometric logratio 
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