
Systematic Approaches to Data Placement, Replication and Migration in Heterogeneous 

Edge-Cloud Computing Systems: A Comprehensive Literature Review 

Rohini Thimmapura Venkatesh1* , Dimbachamanahalli Krishnappa Chandrashekar2 , Pavitra Bai Srinivas Rao3 , 

Rajashree Sridhar4 , Sunitha Rajanna4  

1 Department of Computer Science and Engineering, Dayananda Sagar College of Engineering Affiliated to Visvesvaraya 

Technological University, Bangalore, Karnataka 560078, India 
2 Department of Computer Science and Engineering, Cambridge Institute Affiliated to VTU Bangalore, Karnataka 560036, 

India 
3 Department of ISE, SJB Institute of Technology Affiliated Visvesvaraya Technological University Bangalore, Karnataka 

560060, India 
4 Department of Computer Science and Engineering/ Artificial Intelligence & Machine Learning, BNMIT Affiliated VTU 

Bangalore, Karnataka 560070, India 

Corresponding Author Email: rohinitv@gmail.com

https://doi.org/10.18280/isi.280326 ABSTRACT 

Received: 30 March 2023 

Accepted: 21 May 2023 

The advent of Online Social Networks (OSNs) and the Internet-of-Things (IoT) has 

catalyzed an unprecedented surge in data generation at smart device endpoints. This 

phenomenon necessitates robust strategies for efficient data distribution and processing on 

data servers. Furthermore, the burgeoning volume of data intensifies challenges associated 

with data placement, replication, and migration in edge-cloud computing paradigms. 

Considerations such as access delay, cost implications, workload balance, and data security 

become critical parameters in the storage and processing of data from OSNs and IoT 

devices. Researchers have proposed various strategies to optimize data placement costs, 

access latency, migration costs, and load balancing constraints. This paper presents an 

extensive survey on the existing strategies for data placement, data replication, and data 

migration. The future research directions in edge-cloud computing informed by this survey 

are also delineated herein. 
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1. INTRODUCTION

Edge-cloud computing systems are comprised of numerous 

geographically dispersed data centers connected to a large user 

node network via the internet and potentially private 

communication channels, as illustrated in Figure 1 [1]. This 

system architecture, which evolved over time and through 

various upgrades, exhibits a high degree of heterogeneity in 

processor capabilities and storage capacities. Owing to the 

technical and economic impracticalities of earlier hardware-

centric, massive parallel processing approaches, these 

distributed heterogeneous systems have become the primary 

processing technique for contemporary data-intensive 

applications. 

These applications involve the storage and processing of 

vast amounts of data, frequently accessed by a global user 

community. For instance, Google fields over 60,000 search 

requests per second, translating to more than 5.5 billion daily 

search requests and over 2 trillion annually as of 2021 [2]. 

Other companies face similar data volumes, prompting them 

to adopt non-traditional, horizontal scaling approaches where 

large numbers of commodity machines are used for data 

processing and storage. 

In these applications, data is stored across geo-distributed 

data centers. To optimize data storage, data managers must 

determine the locations for data placement and replication, 

ensuring that user data requests are satisfied efficiently and 

reliably. Maintaining consistency among data replicas remains 

a critical requirement. 

A data processing task may necessitate access to different 

data items located across various data centers. The nearest 

location to the processing center is typically selected for data 

access, underscoring the importance of data placement 

decisions for system efficiency. These decisions must also take 

into account the storage capacity limits of the data centers [3]. 

The primary challenge lies in managing the vast volume of 

data and the rapid processing required to meet user requests. 

Earlier methods reliant on faster, more powerful hardware 

with massive parallel processing capabilities were found to be 

economically unfeasible. Thus, the optimization of data 

placement in a distributed environment has emerged as a 

critical concern. 

To minimize access delay, maximize data reliability and 

availability, and balance the load among all nodes of the 

distributed systems, novel data placement policies, data 

replication, and data migration strategies are essential [4]. The 

remainder of this paper surveys these strategies, highlighting 

their advantages and limitations in an edge-cloud computing 

context. 

In this paper, we have done a review on various 

methodologies and techniques applied to address the issues 

such as data placement, data replication and data migration in 

large Geo-distributed systems. The main research contribution 

of this review article is as follows: 
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1. We have broadly categorized the different 

methodologies applied and various solutions of data 

placement problem in heterogeneous distributed data 

processing environment. 

2. We briefed about the various approaches for data 

replication and data migration techniques which 

maximizes the availability and minimizes the access 

delay to the users and to balance the load among the 

nodes of the Geo-distributed systems. 

3. Finally, we addressed the various challenges and future 

research direction for upcoming researchers to perform 

research in this area and to enhance the performance of 

the data storage management in distributed systems. 

The remainder of the paper is presented as follows. Section 

2 describes the review of the data placement problem 

strategies. Section 3 presents the data replication strategies and 

methodology applied to solve the data replication in 

distributed systems. Section 4 addresses the challenges and 

future direction to conduct research. The last section presents 

conclusions briefing the future direction of the research. 

 

 
 

Figure 1. Overall architecture [1] 

 

 

2. RELATED WORK 

 

Data intensive applications in large distributed environment 

need to deal with common techniques such as data placement, 

data replication and data migration. Data placement deals with 

placing the data objects in the proper storage location to 

maximize the availability and to minimize the latency, 

network resource utilization.  

As the growth of the data from various sectors such as social 

networks, e-commerce and other IT business etc. increased 

then data need to stored, processed and made available to the 

user. The service providers in distributed system are 

responsible for storing and processing the large volume of data. 

They have the responsibility to serve user with minimum 

response time and greater availability. 

To address these issues the data must be placed in proper 

location, and/or same copies must place at multiple locations 

or data is transferred from one location to another location to 

minimize the cost incurred in serving the data. Traditionally 

various techniques have been made attempts to provide the 

solutions to these problems. Methods such as Distributed Hash 

Table (DHT), data mining and machine learning techniques 

exist in the literature. 

In this next Section 3, we described data placement methods 

using clustering techniques, hashing methods and other 

solutions for cloud data centers. 

3. STATE-OF-THE-ART DATA PLACEMENT 

TECHNIQUES 

 

In this section, we discuss the data placement methods that 

have been described by various authors. 

Qin et al. [5] described a data placement scheme in 

distributed data centers. In this method, authors used Bcube 

data center topology. The method combines both sequential 

and random strategies. The three aspects to store the data in 

node is data access, load balancing and recovery time. The 

method ensures load balancing and failure repair in the 

distributed system. 

Zhang et al. [6] introduced a data placement scheme based 

on the location. Scientific applications are producing large 

volume of data in terms of terabytes to peta bytes. The main 

issues are data access cost, remote data, associated data access 

and storage capacity. They described a data placement policy 

depends on Lagrangian heuristic algorithm. In this method, the 

data items are placed in data center depends on the user access 

patterns. These user IO access patterns are depicted on user 

access pattern space. The data items have storage cost. If all 

the data items of request pattern are placed in the same data 

center, then accessing is faster. If the associated data items are 

stored in the remote node, data access cost includes 

communication cost. Authors formulated an optimization 

problem to minimize the data access delay. The objective 

function is to minimize the local and remote access cost. 

Saha and Sharma [7] described a dynamic data placement 

scheme for heterogeneous nodes with different processing and 

storage capacity. In this work, a block of data is partitioned 

into k-partitions by analyzing the history of access frequency 

of the data blocks. The processing cost and storage cost of each 

storage node is calculated. The average weight value is 

calculated at each node. In the first phase, processing cost of 

each node is considered then average weight value is 

calculated. In the second phase, storage capacity of all the 

nodes is considered after which average storage weight is 

calculated. Finally, average weight is calculated from the 

average of processing and storage cost and this value is used 

for distributing blocks across the nodes evenly. In this work, 

authors solved the issue of load balancing. They ignored data 

transfer time between processing nodes and the network 

bandwidth. 

 

3.1 Data placement using clustering techniques 

 

Data placement using various clustering methods is 

discussed here. Li et al. [8] described data placemen scheme 

using k-means clustering. The data item is clustered and 

placed in the nearest data storage nod and data objects are 

clustered using item-based and user base interest [9]. 

Collaborative Filtering (CF) method groups the data objects 

based on user interest and Case Based Reasoning (CBR) 

groups the data items based on associated data objects. A 

threshold distance is used, if the distance is less than threshold 

distance, then data objects are placed in the nearest data center 

or a new data center cluster is created to store the data objects. 

Kchaou et al. [10] have described a data placement using 

fuzzy C Means clustering technique. In this method, 

placement of data with two-stage data flow and is modeled as 

directed a-cyclic graph. The processing of huge data is costly 

in terms of data movement, execution delay and bandwidth 

cost. The main objective of this work is to minimize the data 

migration or transmission between the data centers. The three 
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types of data transmission are: transmission of requested data, 

transmission of associated data and re-transmission of data. In 

this work, authors described a method for data placement 

scheme containing 2 steps: First is the offline data placement 

stage and online data placement. In offline data placement, the 

initial data objects are placed and distributed among data 

centers. The data objects are placed and dependency of data 

objects is calculated. This is represented using dependency 

matrix. Dependency matrix is represented between the data 

objects di and dj and dependency between the data object di 

and data center. In the second stage, the fuzzy C-Mean 

algorithm is applied to place the data-sets into data centers. 

Once the few data centers are overloaded, data placement is 

adjusted. In this work described the algorithm for minimizing 

the data movement and the main objective is to place offline 

and online data among the data centers by using the 

dependency of the data items. 

Atrey et al. [11] described a data placement in geo-

distributed cloud data center using spectral clustering- 

technique. Authors introduced a new framework using 

hypergraph partition of data items into geo-distributed clouds. 

They described two algorithms to compute the spectra of 

hypergraph.i.e SpectralApprox and SpectralDist [12]. The 

SpeCH is efficient and scalable method for data placement 

[13]. The SpeCH method is based on the spectral clustering 

algorithm [14]. The method does not adapt to dynamic 

changes in the system. The data placement method described 

in this paper is not applicable for data replication [15]. 

 

3.2 Data placement in cloud data centers 

 

To match authors and their own affiliations, please insert 

numerical Data placement in cloud environment by various 

researchers is illustrated in detail. The state-of-the-art survey 

and research work by researchers are described [16-18]. 

Paiva et al. [19] described Autoplacer which automatically 

optimizes the data replica storage based on the locality pattern. 

In this work apart from finding the technique to place the data 

in proper location and also fast data accessing method. In the 

first challenge, data placement optimization and in the second 

challenge, a data structure which combines the placement of 

data is integrated with key-value store. In general, the auto 

placer combines the data placement and efficient lookup [20]. 

Auto placer works in sequence of rounds, in each round top-k 

data item are relocated. In the first step, information regarding 

the hotspot data items is collected by each node. In the second 

step, the hotspot information is exchanged by the nodes. In the 

next step, Probabilistic Associative Array (PAA) is computed 

by each node and distributed to all the nodes. Finally, the 

relocation of data items to the new derived location is done. 

Sivakumar et al. illustrated a data replication in geo-

distributed systems to satisfy the requirements such as access 

latency, availability and scalability [21]. They used quoram 

based protocols Dynamo [22] and Cassandra [23]. To achieve 

low latency with respect to read and write request in 

maintaining the data consistency of the replicas, latency-aware 

optimized data replication is presented. They used real traces 

such as Gowalla, Twitter, Wikipedia and performed 

experiment on Amazon EC2 using Cassandra cloud and 

resolves the issues such latency, data consistency and 

availability. 

Li et al. [24] introduced an approach for data placement 

using workflow for scientific applications for cloud data 

centres. In this work, a novel workflow-based approach 

includes the data placement in cloud data centres with the aim 

to minimize the transmission cost as compared to the 

traditional workflow in cluster and grid systems. Author 

designed a Discrete Particle Swarm Optimization algorithm 

based on the workflow of the scientific applications. In this 

method, all the datasets are pre-fetched at build time and 

during the run time the datasets transferred. In this case the 

cost of upload and download is taken in to account. The data 

transfer cost is the bandwidth and migration cost from remote 

data centre to initial data centre multiplied with the size of the 

data sets. 

Zhou et al. [25] introduced a data placement strategy to 

improve the performance of the cloud nodes. In the initial 

phase, clusters are formed based on the dependency of the data 

items. They build a tree structures system design. In this work, 

authors stored the data items together, if the data items have 

dependency. Some of data objects have fixed storage location 

because of its ownership of the data in the storage node. In this 

work, smaller size data items are migrated from one node to 

other, whereas the large size data items are placed at fixed 

position to reduce the amount data transfer between the nodes. 

The frequent data transfer can be allowed between the nodes 

in network with high bandwidth. A heuristic algorithm is 

designed for data placement in cloud environment [26]. 

Zhang et al. [27] described optimal data storage in cloud 

environment. In this work, they considered two types of data: 

original and generated data. The basic types of costs are 

included to model resource cost as, bandwidth, storage and 

computation cost. They proposed a GT-CSB (Generic best 

Trade-off among computation, storage, bandwidth) algorithm, 

to modify minimum storage cost to a shortest distance problem 

using data dependency graph (DDG) [28]. They introduced an 

approach Provenance elimination strategy (PCE) to general 

DDG. This method is evaluated and proved that, running time 

is reduced as compared to other existing method. 

Erradi and Mansouri [29] described the cost optimization 

for data placement and data movement between hot and cold 

tiers in cloud storage systems. The objects may be tweet or 

photos send by the Twitter or FaceBook. They proposed two 

online algorithms for data placement problem. The first cost 

optimization algorithm uses no replication and stores the data 

objects in the hot tier. Later, based on the access pattern of get 

and put request, the data objects are moved to cool tier to 

optimize the cost of access. In the second algorithm, initially 

data objects are placed in cool tier and the algorithm considers 

the replication. In this algorithm data objects are then 

replicated in the hot tier based on the get and put request of the 

users. Further they compared the online and offline algorithms 

with other state-of-the-art algorithm techniques. They found 

that algorithm with replication performs better than the 

without replication. 

 

3.3 Data placement using various hashing techniques 

 

Consistent hashing is used in many existing systems for data 

distribution in large distributed system. Some of the existing 

system which uses consistent hashing for data placement are: 

Ceph [30], Dynamo [22], Cassandra [23], GlusterFS [31]. 

Consistent hashing is a key value storage management which 

increases the scalability and availability. Another important 

advantage of consistent hashing is that, on adding new nodes 

or deleting a node less data movement is required and 

automatically reorganize the data objects. Consistent hashing 

uses a virtual ring and all the storage nodes are organized on a 

753



 

ring. The Id numbers of the storage server are aligned to form 

a virtual ring. The data objects are keys and hashed to position 

on the ring in a clockwise direction.  

In distributed system, there are multiple copies of the same 

data. Figure 2 illustrates how the consistent hashing works; let 

us consider three storage nodes A, B and C on the ring. 

Consistent hashing uses virtual nodes to distribute the data 

even more uniform and balance the load. Each storage nodes 

are associated with two or three virtual nodes. The storage 

node A includes A.1, A.2, A.3 and storage node B includes 

B.1, B.2 and B.3 as virtual nodes. Virtual nodes are hashed at 

multiple positions on the hash ring. 

 

 
 

Figure 2. Example consistent hashing 

 

In consistent hashing, if the data item is already hashed in 

one physical node then skip the virtual nodes of the 

corresponding physical node. The replica is placed in another 

virtual node of storage node. For example, let Data item D1 is 

hashed to physical node A, then the replica of the D1 is placed 

in the other virtual nodes of storage node let say, B Or C node. 

A data placement scheme is described by Qiang et al. is the 

combination of two algorithms [8]. i.e., K-Means clustering 

and consistent hashing. In this data placement strategy, to 

minimize the access latency, a user-based and item-based data 

is clustered. Case based Reasoning (CBR) and co-ordination 

filtering technique is used to cluster the data. A k-Mean 

clustering algorithm is applied. Clusters are stored in the nodes 

by applying consistent hashing algorithm. Cluster centers are 

updated dynamically by updating threshold value. Clustering 

algorithm is combined with consistent hashing to place the 

data on the nodes.  

Consistent hashing algorithm places, hash value space into 

a virtual counter clockwise. Hash function H is used and hash 

value h is calculated using the data key to place data on storage 

node. With this strategy, authors solved the issues such as load 

balancing, scalability and fault-tolerance. In this work, authors 

described consistent hashing with elasticity [32, 33]. An 

elastic consistent hashing adapts to the existing consistent 

hashing method and in addition to it provides the optimized 

power and resource utilization. This method resizes the large 

and small data storage requirement. In this work authors 

proposed two algorithms: The first is data placement and the 

second is data migration or data re-integration. Consistent 

hashing algorithm distributes data objects and balances the 

load among storage nodes [33]. Data placement is done using 

consistent hashing. Based on the current load of the nodes, 

nodes are removed and added to the system depending on the 

workload requirements. 

When the load is less compared to the data storage nodes 

then they are removed. When workload requirement increases, 

then data storage nodes are scaled-up to satisfy the demand 

and to achieve high performance. If the workload decreases 

then data storage nodes are removed to reduce the power and 

resource utilization requirement. In this work, the authors 

proposed algorithm for data migration. When a node is added, 

data objects are migrated to the newly added nodes. Data 

selective migration strategy is applied to data to minimize rate 

of data migration between nodes. 

Using this method, we can increase the performance. In this 

work, the system uses 2-way replication. Exactly one copy of 

data object is placed in primary data storage node. If the data 

item is already is stored in primary data storage node, then 

other copy should be placed in secondary storage node. 

Zhou et al. [34] introduced a data distribution using 

hierarchical consistent hashing (HiCH). In this method, data 

nodes are divided into buckets and these buckets are formed 

as separate consistent hashing ring for hotness, access pattern 

and latency. 

Zhou et al. [35] introduced a consistent hashing called 

attribtedCH. To characterize the distinct node features, each 

node maintains an attributeCH that distributes the data in 

heterogeneous nodes on a consistent hashing ring. In this work, 

authors illustrated a concept called attributedCH, which 

maintains capacity, network bandwidth and location at each 

node. This information is being used in data distribution. 

Before data distribution is done, attributedCH divides the hash 

ring into sectors. In this method, data selection with small data 

movement increases the performance, load balance and 

resource utilization. 

 

 

4. STATE-OF-THE-ART DATA REPLICATION 

TECHNIQUES 

 

Data replication is the crucial issue, which improves the 

data availability and reliability. Data replication is classified 

into static and dynamic replication [36, 37]. Gill and Singh [38] 

described a cost-aware replication for cloud data centers in 

heterogeneous environment as shown in the Figure 3. In this 

work, availability of data replica is stored at multiple locations 

of the data center. The probability of the data block is different 

at different region of the data center. Data center consists of 

set of data center, users, scheduler/Broker, and replica catalog 

and replica manager [38]. User request data items and request 

is given to broker. Broker sends a request to replica catalog. 

Replica catalog holds information such list of files with 

location of each file. Broker schedules the nearest data center 

to the user after receiving the response from replica catalog. 

Replica manager maintains the replica creation, deletion and 

is present in the entire data center.  

The cost at super data center is high and reliable ordinary 

data center. Replica catalog receives request from Replica 

Manager. The request includes location of data replicas and 

probability of the availability of the replicas at multiple 

locations. Replica Manager gets the reply from the replica 

catalog. The Replica manager finds the probability of replica 

unavailability of all the replicas. With this information, 

Replica Manager finds the file availability. The high 

probability of available files has high data access rate, 

indicates that, these files are more popular files. It means that, 

the system provides high availability. If there are files with 

high probability of available but have less popular, it means 

that, the overall system availability is not effectively 

increasing. 
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Figure 3. A data replication in cloud data centers 

 

The cost of replication at any data center is given by 

processing speed, performance and probability of replica 

availability. The total cost of replication at all the data centers 

is obtained and compared with the total budget. They proposed 

a strategy called DCR2S algorithm which consists of three 

steps. In the first step, finding which file and when to replicate, 

second step is to finding the number of replicas to create and 

third step is to locating the new replicas. They calculated the 

cost of replication, and file availability as the number of 

replicas are increased. 

Mansouri et al. [39] described the data replication strategy 

based on the popularity of the data. They proposed the 

algorithm called Dynamic Popularity aware Replication 

Strategy (DPRS). This algorithm selects the location to place 

the data in the cloud by considering the free storage 

availability, number of requests and data access behavior. 

They considered data distribution and number of data request 

as the parameter to find the popularity of the data. If the 

number of accesses is more, then file is considered as popular. 

Apart from this criterion, two other important issues 

considered are: data item life time and data distribution over 

time to differentiate the old and new data requests. DPRS 

scheme includes five steps as follows: aggregation, popularity 

of file, replication finding files for replication and replica 

placement. This algorithm comprises the parallel download 

scheme. In this approach files are divided into equal sized 

bytes and equal to the number of servers. Each server will 

download the file for transfer parallel. If x is the number of 

servers, then (size of the file/x) bytes will be downloaded 

parallel by all the x servers. In this work, they solved the issues 

such as mean access time, network resource utilization, data 

storage and replica frequency and hit ratio. In this work, 

authors have not discussed network security and replica 

consistency. 

Mansouri et al. [40] described storage and processing 

management in cloud data centers. The various methods for 

data replication policy in cloud, grid and hybrid environment 

are described in detail [36, 39, 41]. Mansouri and Javidi [42] 

proposed a data replication strategy called pre-fetching data 

replication algorithm based on the prediction. In this work, the 

popular files are pre-replicated and stored at different location. 

The strategy finds the co-relation between files access pattern 

and it pre-fetches the files which are associated. So, when the 

next time request arrives for the files, it will be locally 

available. PDR algorithm works as follows: In the first step, it 

builds the dependency matrix and stores the dependency 

between the files. In the second step, strategy finds the popular 

files based on the average file request rate. In the third step, 

the unwanted files are replaced with most popular files. PDR 

strategy uses fuzzy replacement strategy [39]. 

Cavalcante et al. [43] introduced a replica placement 

scheme called popRing. This replica placement scheme is 

called, Key Value-Store for distributed data intensive 

applications. They described the problem as multi-objective 

optimization. A popRing method is applied to place the 

replicas and is depends on genetic algorithm. They used 

OpenStack-Swift as the benchmark to evaluate the popRing 

algorithm. In this work, the placement of every data item is 

mapped to data nodes. These data nodes ar called virtual nodes. 

The mapping function used in the popRing approach is 

consistent hashing. popRing method is used to minimize load 

im-balancing and eliminate redundancy of the data in the 

storage node. The popRing [44] scheme is used to minimize 

the replica storing and maintenance cost. They formulated the 

multi-objective function and solution to this optimization 

minimizes the objective function value. 

Azari et al. [45] described a strategy for data replication in 

grid systems. The algorithm is called PGFR This algorithm is 

based on accessing the dependent files. All the dependent files 

such as image, video, audio files are made available locally. 

The algorithm creates connectivity graph to identify the group 

of related files at grid location. The users accessing at one grid 

site have group of interesting dependent files. Placing these 

dependent files reduces the access time and improves 

performance. The algorithm consists of three steps: The first 

step is to construct dependency graph: dependency graph is 

constructed based on access pattern and file access sequence. 

When the file is requested at one grid site, if the file is not 

present in the requested grid site, the file is stored at grid site 

and number of file access is set to one. This information is 

stored in database. If the requested file is present in the grid 

site, then the number of file access is incremented by one. The 

second step is to identify popular files, each time when the file 

is accessed the vertex value incremented and this represents 

the number of file accesses. In third step, when the data request 

arrives at grid site and requested data is not present then 

replicate and store replicas at each grid region. 

Mseddi et al. [46] described a data migration scheme called, 

CRANE: an efficient data migration scheme for cloud storage. 

This scheme complements replica creation and replica storage 

management is performed effectively. The main objective of 

this method is to reduce the response time required for data 

replica placement. Replica placement includes replica creation, 

locating/migrating data replicas between or within data centers. 

This task consumes network traffic between those nodes 

which are involved in data migration. Second contribution is 

that algorithm tries minimize the network traffic and the 

availability of data. OpenStack project presents a data replica 

placement strategy with data replica migration. In this 

OpenStack, the data is 3-way replicated and stored across the 

data nodes to improve the availability. Swift finds the optimal 

replica placement and calls replica migration scheme. CRANE, 

considers network bandwidth and experimental results are 

compared with OpenStack Swift with the CRANE method. 

Zhou et al. [25] designed an algorithm for data placement 

as an efficient way to minimize the access latency and storage 

cost. In this work, a OSN storage system is designed, which 

includes four different categories of cost: cost of inter data 

center, cost of data storage, traffic cost of data center and user 

data migration. In this work, a data placement cost minimizing 

system model is designed. Data placement with replica is done 

by analyzing the latency cost. The replication strategy applied 
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to all the nodes is same and all the nodes are peer nodes. 

Migration of data from source node to destination includes 

cost moving data objects from one data center to another and 

calculated the cost before and after data migration. System is 

modeled as the interaction between users and data centers as a 

graph. They developed a cost minimizing strategy called LRP 

for placement of replicas and data migration. The strategy 

adapts to the dynamic changes in the distributed system and 

minimizes the cost.  

Hassanzadeh-Nazarabadi et al. [47] introduced a 

decentralized dynamic data replication of skip graph data 

based on locality for P2P cloud. They designed locality-aware 

and decentralized dynamic replication algorithm for skip 

graphs. They used average delay between the pair-wise latency 

of data request. 

Bok et al. [48] illustrated a workload-balancing scheme in 

geo-distributed systems using data migration and data 

replication of data objects. A balancer is present in node acting 

as a central server. The load balancer distributes the data 

among all the nodes. The load of the node is calculated and if 

the node is overloaded, then node sends the current load 

information to the balancer. The balancer distributes the data 

among the all the nodes and balances the load. In this work, 

they considered the hash based scheme to store data objects. 

When node is included and removed in distributed system 

client maintains the metadata information and periodic load 

synchronization using load balancer. This reduces the accesses 

to the load balancer. 

Mansouri and Buyya [49] specified the difference between 

the accessing cost of hot-spot objects and cold-spot objects. 

The monetary cost consists of creation of replica, read, write 

and migration cost. They achieved the optimal cost with linear 

and dynamic programming. They obtained a heuristic solution 

for set covering problem for replica placement, get and put 

requests and replica migration. In this work, all the users are 

assigned to closest DC based on the get and put requests and 

data is replicated and migrated in other DC’s based on the get 

and put request. These replicas are called slave replicas. 

The objects present in hot spot receives more get, put 

requests compare to object present in cold spot. The objective 

of the optimization problem is to minimize the get/put and 

replica migration cost and the location of replicas. They 

developed RPCLV algorithm for replica placement and 

migration based on the get, put and replica migration cost. The 

designed RPCLV algorithm reduces the data storage cost and 

data transfer latency of the between the data centres. 

Mokadem and Hameurlain [50], Limam et al. [51] described 

a replication scheme, to satisfy the tenant requirement. In this 

approach data replication is included only if calculated 

approximate value of response time is greater than the 

threshold response time or query response time exceeds the 

number of times of threshold response time. They introduced 

a DRAPP replication technique. The method deals with: when 

to replicate? What and how many copies to replicate? Where 

to place the replicas and which replica to delete? Replica 

degree is adjusted dynamically to reduce the resource 

utilization [50]. They described the effect of response time and 

bandwidth consumption as the impact of varying number of 

cloudlets and data centre. 
 

 

5. STATE-OF-THE-ART OF DATA MIGRATION 

SCHEMES 
 

Briefly and descriptively title each table and caption each 

figure. In this section, state-of-the-art data migration strategies 

by various researchers are discussed.  

Mseddi et al. [52] described a replica migration scheme 

called CRANE. It described a system with replica placement 

and migration sequence from source to destination. The main 

objective of this work is to reduce the time required to migrate 

replicas from source storage server to target storage server. In 

this method, a new replica location is used to create a minimal 

time and to copy the data to new location. The method 

maintains network traffic and high availability. The 

implemented CRANE replica migration is compared with 

most comprehensive method and integrate in to openstack [53, 

54]. The method minimizes the network traffic and with 

moderate level of availability. In this work, the method 

reduces the replica migration time while meeting minimum 

availability and bandwidth capacity of the network link. In this 

work, cost optimization for minimizing the replica migration 

time is established with well defined constraints. The replicas 

are migrated from source node to destination node. The 

selection of source replica from multiple replicas and network 

path is important. In openStack swift at any point of time, only 

one replica partition is participating in replica migration and 

during this period other replicas are not available [46]. 

OpenStack Swift does not account the network bandwidth 

usage when partitions are migrating. When a new data center 

is added, the partitions are relocated using as-unique-as-

possible algorithm. 

Teli et al. [55] described an algorithm to reduce the cost of 

data movement and data aggregation. In this work, the 

geographic data centers are modeled as graph system. The 

nodes represent the vertices and communication between the 

vertices represents the edges of the graph. Weights on the 

edges represent bandwidth cost. The proposed algorithms are: 

cost optimization of data movement and aggregation. After 

building the graph model, corresponding bandwidth cost 

matrix is calculated. They found the cost of data transfer is by 

multiplying size of the data object with the bandwidth cost. 

Mansouri et al. [56] illustrated a dynamic data migration 

and data replication scheme. The strategy is based on the two 

main costs: first one is residential cost which includes get and 

put cost and next is data movement cost which includes the 

cost of the network bandwidth. They introduced two 

algorithms such as optimal offline algorithm and two online 

algorithms. The scheme dynamically select storage objects 

and finds the read/write residential cost and data movement 

cost. They formulated a cost optimization problem with 

constraints. Offline algorithm requires high time complexity, 

hence they introduced a new online algorithm which includes 

residential and migration cost. In this algorithm, data 

migration happens only when there is a cost saving and total 

migration cost is equal to or less than without migration of the 

data. 

Zhang et al. [57] introduced a data placement and 

replication strategy using genetic algorithm. In this work, to 

optimize the cost of access delay and storage cost replicas are 

placed at multiple proper locations. They modeled the OSN 

system as graphs which optimize the cost inter-node traffic and 

storage cost. They build a method, to optimize the storage cost 

and minimize the latency a minimum number of replicas are 

stored at different locations. They constructed a social graph 

of OSN using Facebook dataset and designed a GA based 

algorithm. The cost model is built to minimize the latency and 

inter-server traffic. In this work, load balancing among server 

is not considered. 
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Yang et al. [58], Rohini and Ramakrishna [59] introduced a 

cost optimization for data placement and load-balancing 

strategy in OSN. In this approach, the data objects required by 

the users are placed in the same node. The system is modeled 

as graph and objective of the work is to minimize the cost of 

storage and transfer of data. A cost-effective load-balancing 

algorithm based on the graph partitioning (BGPA) is 

developed for OSN. The BGPA algorithm optimizes the 

storage cost and transfer cost. The distributed system used in 

this work is based on static and not with respect to the dynamic 

changes in the system. 

 

 

6. CONCLUSION 

 

Data placement, data replication and data migration are very 

important issues in edge-cloud computing system. Data 

placement in heterogeneous distributed systems stores user 

required data items nearest to the user. Data replication 

strategy enhances the availability and reliability of the data to 

the users by placing replicas in the various data centers. Data 

migration in distributed system is relocates the data objects 

dynamically to improve the performance of the system. In this 

work, we discussed various state-of-the art survey on data 

placement policies such as data placement using hashing 

techniques, clustering techniques and genetic algorithms. 

State-of-the-art data replication strategies and data migration 

techniques. From the comprehensive survey work, we have 

identified research gaps and future directions for further 

research in the data placement edge-cloud computing system. 
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