
Systematic Approaches to Data Placement, Replication and Migration in Heterogeneous

Edge-Cloud Computing Systems: A Comprehensive Literature Review

Rohini Thimmapura Venkatesh1* , Dimbachamanahalli Krishnappa Chandrashekar2 , Pavitra Bai Srinivas Rao3 ,

Rajashree Sridhar4 , Sunitha Rajanna4

1 Department of Computer Science and Engineering, Dayananda Sagar College of Engineering Affiliated to Visvesvaraya

Technological University, Bangalore, Karnataka 560078, India
2 Department of Computer Science and Engineering, Cambridge Institute Affiliated to VTU Bangalore, Karnataka 560036,

India
3 Department of ISE, SJB Institute of Technology Affiliated Visvesvaraya Technological University Bangalore, Karnataka

560060, India
4 Department of Computer Science and Engineering/ Artificial Intelligence & Machine Learning, BNMIT Affiliated VTU

Bangalore, Karnataka 560070, India

Corresponding Author Email: rohinitv@gmail.com

https://doi.org/10.18280/isi.280326 ABSTRACT

Received: 30 March 2023

Accepted: 21 May 2023

The advent of Online Social Networks (OSNs) and the Internet-of-Things (IoT) has

catalyzed an unprecedented surge in data generation at smart device endpoints. This

phenomenon necessitates robust strategies for efficient data distribution and processing on

data servers. Furthermore, the burgeoning volume of data intensifies challenges associated

with data placement, replication, and migration in edge-cloud computing paradigms.

Considerations such as access delay, cost implications, workload balance, and data security

become critical parameters in the storage and processing of data from OSNs and IoT

devices. Researchers have proposed various strategies to optimize data placement costs,

access latency, migration costs, and load balancing constraints. This paper presents an

extensive survey on the existing strategies for data placement, data replication, and data

migration. The future research directions in edge-cloud computing informed by this survey

are also delineated herein.

Keywords:

data placement, data migration data replica,

edge computing replication workload

balancing

1. INTRODUCTION

Edge-cloud computing systems are comprised of numerous

geographically dispersed data centers connected to a large user

node network via the internet and potentially private

communication channels, as illustrated in Figure 1 [1]. This

system architecture, which evolved over time and through

various upgrades, exhibits a high degree of heterogeneity in

processor capabilities and storage capacities. Owing to the

technical and economic impracticalities of earlier hardware-

centric, massive parallel processing approaches, these

distributed heterogeneous systems have become the primary

processing technique for contemporary data-intensive

applications.

These applications involve the storage and processing of

vast amounts of data, frequently accessed by a global user

community. For instance, Google fields over 60,000 search

requests per second, translating to more than 5.5 billion daily

search requests and over 2 trillion annually as of 2021 [2].

Other companies face similar data volumes, prompting them

to adopt non-traditional, horizontal scaling approaches where

large numbers of commodity machines are used for data

processing and storage.

In these applications, data is stored across geo-distributed

data centers. To optimize data storage, data managers must

determine the locations for data placement and replication,

ensuring that user data requests are satisfied efficiently and

reliably. Maintaining consistency among data replicas remains

a critical requirement.

A data processing task may necessitate access to different

data items located across various data centers. The nearest

location to the processing center is typically selected for data

access, underscoring the importance of data placement

decisions for system efficiency. These decisions must also take

into account the storage capacity limits of the data centers [3].

The primary challenge lies in managing the vast volume of

data and the rapid processing required to meet user requests.

Earlier methods reliant on faster, more powerful hardware

with massive parallel processing capabilities were found to be

economically unfeasible. Thus, the optimization of data

placement in a distributed environment has emerged as a

critical concern.

To minimize access delay, maximize data reliability and

availability, and balance the load among all nodes of the

distributed systems, novel data placement policies, data

replication, and data migration strategies are essential [4]. The

remainder of this paper surveys these strategies, highlighting

their advantages and limitations in an edge-cloud computing

context.

In this paper, we have done a review on various

methodologies and techniques applied to address the issues

such as data placement, data replication and data migration in

large Geo-distributed systems. The main research contribution

of this review article is as follows:

Ingénierie des Systèmes d’Information
Vol. 28, No. 3, June, 2023, pp. 751-759

Journal homepage: http://iieta.org/journals/isi

751

https://orcid.org/0000-0002-7647-7433
https://orcid.org/0000-0002-7742-4712
https://orcid.org/0000-0003-0826-0192
https://orcid.org/0000-0003-0451-647X
https://orcid.org/0000-0002-4125-298X
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280326&domain=pdf

1. We have broadly categorized the different

methodologies applied and various solutions of data

placement problem in heterogeneous distributed data

processing environment.

2. We briefed about the various approaches for data

replication and data migration techniques which

maximizes the availability and minimizes the access

delay to the users and to balance the load among the

nodes of the Geo-distributed systems.

3. Finally, we addressed the various challenges and future

research direction for upcoming researchers to perform

research in this area and to enhance the performance of

the data storage management in distributed systems.

The remainder of the paper is presented as follows. Section

2 describes the review of the data placement problem

strategies. Section 3 presents the data replication strategies and

methodology applied to solve the data replication in

distributed systems. Section 4 addresses the challenges and

future direction to conduct research. The last section presents

conclusions briefing the future direction of the research.

Figure 1. Overall architecture [1]

2. RELATED WORK

Data intensive applications in large distributed environment

need to deal with common techniques such as data placement,

data replication and data migration. Data placement deals with

placing the data objects in the proper storage location to

maximize the availability and to minimize the latency,

network resource utilization.

As the growth of the data from various sectors such as social

networks, e-commerce and other IT business etc. increased

then data need to stored, processed and made available to the

user. The service providers in distributed system are

responsible for storing and processing the large volume of data.

They have the responsibility to serve user with minimum

response time and greater availability.

To address these issues the data must be placed in proper

location, and/or same copies must place at multiple locations

or data is transferred from one location to another location to

minimize the cost incurred in serving the data. Traditionally

various techniques have been made attempts to provide the

solutions to these problems. Methods such as Distributed Hash

Table (DHT), data mining and machine learning techniques

exist in the literature.

In this next Section 3, we described data placement methods

using clustering techniques, hashing methods and other

solutions for cloud data centers.

3. STATE-OF-THE-ART DATA PLACEMENT

TECHNIQUES

In this section, we discuss the data placement methods that

have been described by various authors.

Qin et al. [5] described a data placement scheme in

distributed data centers. In this method, authors used Bcube

data center topology. The method combines both sequential

and random strategies. The three aspects to store the data in

node is data access, load balancing and recovery time. The

method ensures load balancing and failure repair in the

distributed system.

Zhang et al. [6] introduced a data placement scheme based

on the location. Scientific applications are producing large

volume of data in terms of terabytes to peta bytes. The main

issues are data access cost, remote data, associated data access

and storage capacity. They described a data placement policy

depends on Lagrangian heuristic algorithm. In this method, the

data items are placed in data center depends on the user access

patterns. These user IO access patterns are depicted on user

access pattern space. The data items have storage cost. If all

the data items of request pattern are placed in the same data

center, then accessing is faster. If the associated data items are

stored in the remote node, data access cost includes

communication cost. Authors formulated an optimization

problem to minimize the data access delay. The objective

function is to minimize the local and remote access cost.

Saha and Sharma [7] described a dynamic data placement

scheme for heterogeneous nodes with different processing and

storage capacity. In this work, a block of data is partitioned

into k-partitions by analyzing the history of access frequency

of the data blocks. The processing cost and storage cost of each

storage node is calculated. The average weight value is

calculated at each node. In the first phase, processing cost of

each node is considered then average weight value is

calculated. In the second phase, storage capacity of all the

nodes is considered after which average storage weight is

calculated. Finally, average weight is calculated from the

average of processing and storage cost and this value is used

for distributing blocks across the nodes evenly. In this work,

authors solved the issue of load balancing. They ignored data

transfer time between processing nodes and the network

bandwidth.

3.1 Data placement using clustering techniques

Data placement using various clustering methods is

discussed here. Li et al. [8] described data placemen scheme

using k-means clustering. The data item is clustered and

placed in the nearest data storage nod and data objects are

clustered using item-based and user base interest [9].

Collaborative Filtering (CF) method groups the data objects

based on user interest and Case Based Reasoning (CBR)

groups the data items based on associated data objects. A

threshold distance is used, if the distance is less than threshold

distance, then data objects are placed in the nearest data center

or a new data center cluster is created to store the data objects.

Kchaou et al. [10] have described a data placement using

fuzzy C Means clustering technique. In this method,

placement of data with two-stage data flow and is modeled as

directed a-cyclic graph. The processing of huge data is costly

in terms of data movement, execution delay and bandwidth

cost. The main objective of this work is to minimize the data

migration or transmission between the data centers. The three

752

types of data transmission are: transmission of requested data,

transmission of associated data and re-transmission of data. In

this work, authors described a method for data placement

scheme containing 2 steps: First is the offline data placement

stage and online data placement. In offline data placement, the

initial data objects are placed and distributed among data

centers. The data objects are placed and dependency of data

objects is calculated. This is represented using dependency

matrix. Dependency matrix is represented between the data

objects di and dj and dependency between the data object di

and data center. In the second stage, the fuzzy C-Mean

algorithm is applied to place the data-sets into data centers.

Once the few data centers are overloaded, data placement is

adjusted. In this work described the algorithm for minimizing

the data movement and the main objective is to place offline

and online data among the data centers by using the

dependency of the data items.

Atrey et al. [11] described a data placement in geo-

distributed cloud data center using spectral clustering-

technique. Authors introduced a new framework using

hypergraph partition of data items into geo-distributed clouds.

They described two algorithms to compute the spectra of

hypergraph.i.e SpectralApprox and SpectralDist [12]. The

SpeCH is efficient and scalable method for data placement

[13]. The SpeCH method is based on the spectral clustering

algorithm [14]. The method does not adapt to dynamic

changes in the system. The data placement method described

in this paper is not applicable for data replication [15].

3.2 Data placement in cloud data centers

To match authors and their own affiliations, please insert

numerical Data placement in cloud environment by various

researchers is illustrated in detail. The state-of-the-art survey

and research work by researchers are described [16-18].

Paiva et al. [19] described Autoplacer which automatically

optimizes the data replica storage based on the locality pattern.

In this work apart from finding the technique to place the data

in proper location and also fast data accessing method. In the

first challenge, data placement optimization and in the second

challenge, a data structure which combines the placement of

data is integrated with key-value store. In general, the auto

placer combines the data placement and efficient lookup [20].

Auto placer works in sequence of rounds, in each round top-k

data item are relocated. In the first step, information regarding

the hotspot data items is collected by each node. In the second

step, the hotspot information is exchanged by the nodes. In the

next step, Probabilistic Associative Array (PAA) is computed

by each node and distributed to all the nodes. Finally, the

relocation of data items to the new derived location is done.

Sivakumar et al. illustrated a data replication in geo-

distributed systems to satisfy the requirements such as access

latency, availability and scalability [21]. They used quoram

based protocols Dynamo [22] and Cassandra [23]. To achieve

low latency with respect to read and write request in

maintaining the data consistency of the replicas, latency-aware

optimized data replication is presented. They used real traces

such as Gowalla, Twitter, Wikipedia and performed

experiment on Amazon EC2 using Cassandra cloud and

resolves the issues such latency, data consistency and

availability.

Li et al. [24] introduced an approach for data placement

using workflow for scientific applications for cloud data

centres. In this work, a novel workflow-based approach

includes the data placement in cloud data centres with the aim

to minimize the transmission cost as compared to the

traditional workflow in cluster and grid systems. Author

designed a Discrete Particle Swarm Optimization algorithm

based on the workflow of the scientific applications. In this

method, all the datasets are pre-fetched at build time and

during the run time the datasets transferred. In this case the

cost of upload and download is taken in to account. The data

transfer cost is the bandwidth and migration cost from remote

data centre to initial data centre multiplied with the size of the

data sets.

Zhou et al. [25] introduced a data placement strategy to

improve the performance of the cloud nodes. In the initial

phase, clusters are formed based on the dependency of the data

items. They build a tree structures system design. In this work,

authors stored the data items together, if the data items have

dependency. Some of data objects have fixed storage location

because of its ownership of the data in the storage node. In this

work, smaller size data items are migrated from one node to

other, whereas the large size data items are placed at fixed

position to reduce the amount data transfer between the nodes.

The frequent data transfer can be allowed between the nodes

in network with high bandwidth. A heuristic algorithm is

designed for data placement in cloud environment [26].

Zhang et al. [27] described optimal data storage in cloud

environment. In this work, they considered two types of data:

original and generated data. The basic types of costs are

included to model resource cost as, bandwidth, storage and

computation cost. They proposed a GT-CSB (Generic best

Trade-off among computation, storage, bandwidth) algorithm,

to modify minimum storage cost to a shortest distance problem

using data dependency graph (DDG) [28]. They introduced an

approach Provenance elimination strategy (PCE) to general

DDG. This method is evaluated and proved that, running time

is reduced as compared to other existing method.

Erradi and Mansouri [29] described the cost optimization

for data placement and data movement between hot and cold

tiers in cloud storage systems. The objects may be tweet or

photos send by the Twitter or FaceBook. They proposed two

online algorithms for data placement problem. The first cost

optimization algorithm uses no replication and stores the data

objects in the hot tier. Later, based on the access pattern of get

and put request, the data objects are moved to cool tier to

optimize the cost of access. In the second algorithm, initially

data objects are placed in cool tier and the algorithm considers

the replication. In this algorithm data objects are then

replicated in the hot tier based on the get and put request of the

users. Further they compared the online and offline algorithms

with other state-of-the-art algorithm techniques. They found

that algorithm with replication performs better than the

without replication.

3.3 Data placement using various hashing techniques

Consistent hashing is used in many existing systems for data

distribution in large distributed system. Some of the existing

system which uses consistent hashing for data placement are:

Ceph [30], Dynamo [22], Cassandra [23], GlusterFS [31].

Consistent hashing is a key value storage management which

increases the scalability and availability. Another important

advantage of consistent hashing is that, on adding new nodes

or deleting a node less data movement is required and

automatically reorganize the data objects. Consistent hashing

uses a virtual ring and all the storage nodes are organized on a

753

ring. The Id numbers of the storage server are aligned to form

a virtual ring. The data objects are keys and hashed to position

on the ring in a clockwise direction.

In distributed system, there are multiple copies of the same

data. Figure 2 illustrates how the consistent hashing works; let

us consider three storage nodes A, B and C on the ring.

Consistent hashing uses virtual nodes to distribute the data

even more uniform and balance the load. Each storage nodes

are associated with two or three virtual nodes. The storage

node A includes A.1, A.2, A.3 and storage node B includes

B.1, B.2 and B.3 as virtual nodes. Virtual nodes are hashed at

multiple positions on the hash ring.

Figure 2. Example consistent hashing

In consistent hashing, if the data item is already hashed in

one physical node then skip the virtual nodes of the

corresponding physical node. The replica is placed in another

virtual node of storage node. For example, let Data item D1 is

hashed to physical node A, then the replica of the D1 is placed

in the other virtual nodes of storage node let say, B Or C node.

A data placement scheme is described by Qiang et al. is the

combination of two algorithms [8]. i.e., K-Means clustering

and consistent hashing. In this data placement strategy, to

minimize the access latency, a user-based and item-based data

is clustered. Case based Reasoning (CBR) and co-ordination

filtering technique is used to cluster the data. A k-Mean

clustering algorithm is applied. Clusters are stored in the nodes

by applying consistent hashing algorithm. Cluster centers are

updated dynamically by updating threshold value. Clustering

algorithm is combined with consistent hashing to place the

data on the nodes.

Consistent hashing algorithm places, hash value space into

a virtual counter clockwise. Hash function H is used and hash

value h is calculated using the data key to place data on storage

node. With this strategy, authors solved the issues such as load

balancing, scalability and fault-tolerance. In this work, authors

described consistent hashing with elasticity [32, 33]. An

elastic consistent hashing adapts to the existing consistent

hashing method and in addition to it provides the optimized

power and resource utilization. This method resizes the large

and small data storage requirement. In this work authors

proposed two algorithms: The first is data placement and the

second is data migration or data re-integration. Consistent

hashing algorithm distributes data objects and balances the

load among storage nodes [33]. Data placement is done using

consistent hashing. Based on the current load of the nodes,

nodes are removed and added to the system depending on the

workload requirements.

When the load is less compared to the data storage nodes

then they are removed. When workload requirement increases,

then data storage nodes are scaled-up to satisfy the demand

and to achieve high performance. If the workload decreases

then data storage nodes are removed to reduce the power and

resource utilization requirement. In this work, the authors

proposed algorithm for data migration. When a node is added,

data objects are migrated to the newly added nodes. Data

selective migration strategy is applied to data to minimize rate

of data migration between nodes.

Using this method, we can increase the performance. In this

work, the system uses 2-way replication. Exactly one copy of

data object is placed in primary data storage node. If the data

item is already is stored in primary data storage node, then

other copy should be placed in secondary storage node.

Zhou et al. [34] introduced a data distribution using

hierarchical consistent hashing (HiCH). In this method, data

nodes are divided into buckets and these buckets are formed

as separate consistent hashing ring for hotness, access pattern

and latency.

Zhou et al. [35] introduced a consistent hashing called

attribtedCH. To characterize the distinct node features, each

node maintains an attributeCH that distributes the data in

heterogeneous nodes on a consistent hashing ring. In this work,

authors illustrated a concept called attributedCH, which

maintains capacity, network bandwidth and location at each

node. This information is being used in data distribution.

Before data distribution is done, attributedCH divides the hash

ring into sectors. In this method, data selection with small data

movement increases the performance, load balance and

resource utilization.

4. STATE-OF-THE-ART DATA REPLICATION

TECHNIQUES

Data replication is the crucial issue, which improves the

data availability and reliability. Data replication is classified

into static and dynamic replication [36, 37]. Gill and Singh [38]

described a cost-aware replication for cloud data centers in

heterogeneous environment as shown in the Figure 3. In this

work, availability of data replica is stored at multiple locations

of the data center. The probability of the data block is different

at different region of the data center. Data center consists of

set of data center, users, scheduler/Broker, and replica catalog

and replica manager [38]. User request data items and request

is given to broker. Broker sends a request to replica catalog.

Replica catalog holds information such list of files with

location of each file. Broker schedules the nearest data center

to the user after receiving the response from replica catalog.

Replica manager maintains the replica creation, deletion and

is present in the entire data center.

The cost at super data center is high and reliable ordinary

data center. Replica catalog receives request from Replica

Manager. The request includes location of data replicas and

probability of the availability of the replicas at multiple

locations. Replica Manager gets the reply from the replica

catalog. The Replica manager finds the probability of replica

unavailability of all the replicas. With this information,

Replica Manager finds the file availability. The high

probability of available files has high data access rate,

indicates that, these files are more popular files. It means that,

the system provides high availability. If there are files with

high probability of available but have less popular, it means

that, the overall system availability is not effectively

increasing.

754

Figure 3. A data replication in cloud data centers

The cost of replication at any data center is given by

processing speed, performance and probability of replica

availability. The total cost of replication at all the data centers

is obtained and compared with the total budget. They proposed

a strategy called DCR2S algorithm which consists of three

steps. In the first step, finding which file and when to replicate,

second step is to finding the number of replicas to create and

third step is to locating the new replicas. They calculated the

cost of replication, and file availability as the number of

replicas are increased.

Mansouri et al. [39] described the data replication strategy

based on the popularity of the data. They proposed the

algorithm called Dynamic Popularity aware Replication

Strategy (DPRS). This algorithm selects the location to place

the data in the cloud by considering the free storage

availability, number of requests and data access behavior.

They considered data distribution and number of data request

as the parameter to find the popularity of the data. If the

number of accesses is more, then file is considered as popular.

Apart from this criterion, two other important issues

considered are: data item life time and data distribution over

time to differentiate the old and new data requests. DPRS

scheme includes five steps as follows: aggregation, popularity

of file, replication finding files for replication and replica

placement. This algorithm comprises the parallel download

scheme. In this approach files are divided into equal sized

bytes and equal to the number of servers. Each server will

download the file for transfer parallel. If x is the number of

servers, then (size of the file/x) bytes will be downloaded

parallel by all the x servers. In this work, they solved the issues

such as mean access time, network resource utilization, data

storage and replica frequency and hit ratio. In this work,

authors have not discussed network security and replica

consistency.

Mansouri et al. [40] described storage and processing

management in cloud data centers. The various methods for

data replication policy in cloud, grid and hybrid environment

are described in detail [36, 39, 41]. Mansouri and Javidi [42]

proposed a data replication strategy called pre-fetching data

replication algorithm based on the prediction. In this work, the

popular files are pre-replicated and stored at different location.

The strategy finds the co-relation between files access pattern

and it pre-fetches the files which are associated. So, when the

next time request arrives for the files, it will be locally

available. PDR algorithm works as follows: In the first step, it

builds the dependency matrix and stores the dependency

between the files. In the second step, strategy finds the popular

files based on the average file request rate. In the third step,

the unwanted files are replaced with most popular files. PDR

strategy uses fuzzy replacement strategy [39].

Cavalcante et al. [43] introduced a replica placement

scheme called popRing. This replica placement scheme is

called, Key Value-Store for distributed data intensive

applications. They described the problem as multi-objective

optimization. A popRing method is applied to place the

replicas and is depends on genetic algorithm. They used

OpenStack-Swift as the benchmark to evaluate the popRing

algorithm. In this work, the placement of every data item is

mapped to data nodes. These data nodes ar called virtual nodes.

The mapping function used in the popRing approach is

consistent hashing. popRing method is used to minimize load

im-balancing and eliminate redundancy of the data in the

storage node. The popRing [44] scheme is used to minimize

the replica storing and maintenance cost. They formulated the

multi-objective function and solution to this optimization

minimizes the objective function value.

Azari et al. [45] described a strategy for data replication in

grid systems. The algorithm is called PGFR This algorithm is

based on accessing the dependent files. All the dependent files

such as image, video, audio files are made available locally.

The algorithm creates connectivity graph to identify the group

of related files at grid location. The users accessing at one grid

site have group of interesting dependent files. Placing these

dependent files reduces the access time and improves

performance. The algorithm consists of three steps: The first

step is to construct dependency graph: dependency graph is

constructed based on access pattern and file access sequence.

When the file is requested at one grid site, if the file is not

present in the requested grid site, the file is stored at grid site

and number of file access is set to one. This information is

stored in database. If the requested file is present in the grid

site, then the number of file access is incremented by one. The

second step is to identify popular files, each time when the file

is accessed the vertex value incremented and this represents

the number of file accesses. In third step, when the data request

arrives at grid site and requested data is not present then

replicate and store replicas at each grid region.

Mseddi et al. [46] described a data migration scheme called,

CRANE: an efficient data migration scheme for cloud storage.

This scheme complements replica creation and replica storage

management is performed effectively. The main objective of

this method is to reduce the response time required for data

replica placement. Replica placement includes replica creation,

locating/migrating data replicas between or within data centers.

This task consumes network traffic between those nodes

which are involved in data migration. Second contribution is

that algorithm tries minimize the network traffic and the

availability of data. OpenStack project presents a data replica

placement strategy with data replica migration. In this

OpenStack, the data is 3-way replicated and stored across the

data nodes to improve the availability. Swift finds the optimal

replica placement and calls replica migration scheme. CRANE,

considers network bandwidth and experimental results are

compared with OpenStack Swift with the CRANE method.

Zhou et al. [25] designed an algorithm for data placement

as an efficient way to minimize the access latency and storage

cost. In this work, a OSN storage system is designed, which

includes four different categories of cost: cost of inter data

center, cost of data storage, traffic cost of data center and user

data migration. In this work, a data placement cost minimizing

system model is designed. Data placement with replica is done

by analyzing the latency cost. The replication strategy applied

755

to all the nodes is same and all the nodes are peer nodes.

Migration of data from source node to destination includes

cost moving data objects from one data center to another and

calculated the cost before and after data migration. System is

modeled as the interaction between users and data centers as a

graph. They developed a cost minimizing strategy called LRP

for placement of replicas and data migration. The strategy

adapts to the dynamic changes in the distributed system and

minimizes the cost.

Hassanzadeh-Nazarabadi et al. [47] introduced a

decentralized dynamic data replication of skip graph data

based on locality for P2P cloud. They designed locality-aware

and decentralized dynamic replication algorithm for skip

graphs. They used average delay between the pair-wise latency

of data request.

Bok et al. [48] illustrated a workload-balancing scheme in

geo-distributed systems using data migration and data

replication of data objects. A balancer is present in node acting

as a central server. The load balancer distributes the data

among all the nodes. The load of the node is calculated and if

the node is overloaded, then node sends the current load

information to the balancer. The balancer distributes the data

among the all the nodes and balances the load. In this work,

they considered the hash based scheme to store data objects.

When node is included and removed in distributed system

client maintains the metadata information and periodic load

synchronization using load balancer. This reduces the accesses

to the load balancer.

Mansouri and Buyya [49] specified the difference between

the accessing cost of hot-spot objects and cold-spot objects.

The monetary cost consists of creation of replica, read, write

and migration cost. They achieved the optimal cost with linear

and dynamic programming. They obtained a heuristic solution

for set covering problem for replica placement, get and put

requests and replica migration. In this work, all the users are

assigned to closest DC based on the get and put requests and

data is replicated and migrated in other DC’s based on the get

and put request. These replicas are called slave replicas.

The objects present in hot spot receives more get, put

requests compare to object present in cold spot. The objective

of the optimization problem is to minimize the get/put and

replica migration cost and the location of replicas. They

developed RPCLV algorithm for replica placement and

migration based on the get, put and replica migration cost. The

designed RPCLV algorithm reduces the data storage cost and

data transfer latency of the between the data centres.

Mokadem and Hameurlain [50], Limam et al. [51] described

a replication scheme, to satisfy the tenant requirement. In this

approach data replication is included only if calculated

approximate value of response time is greater than the

threshold response time or query response time exceeds the

number of times of threshold response time. They introduced

a DRAPP replication technique. The method deals with: when

to replicate? What and how many copies to replicate? Where

to place the replicas and which replica to delete? Replica

degree is adjusted dynamically to reduce the resource

utilization [50]. They described the effect of response time and

bandwidth consumption as the impact of varying number of

cloudlets and data centre.

5. STATE-OF-THE-ART OF DATA MIGRATION

SCHEMES

Briefly and descriptively title each table and caption each

figure. In this section, state-of-the-art data migration strategies

by various researchers are discussed.

Mseddi et al. [52] described a replica migration scheme

called CRANE. It described a system with replica placement

and migration sequence from source to destination. The main

objective of this work is to reduce the time required to migrate

replicas from source storage server to target storage server. In

this method, a new replica location is used to create a minimal

time and to copy the data to new location. The method

maintains network traffic and high availability. The

implemented CRANE replica migration is compared with

most comprehensive method and integrate in to openstack [53,

54]. The method minimizes the network traffic and with

moderate level of availability. In this work, the method

reduces the replica migration time while meeting minimum

availability and bandwidth capacity of the network link. In this

work, cost optimization for minimizing the replica migration

time is established with well defined constraints. The replicas

are migrated from source node to destination node. The

selection of source replica from multiple replicas and network

path is important. In openStack swift at any point of time, only

one replica partition is participating in replica migration and

during this period other replicas are not available [46].

OpenStack Swift does not account the network bandwidth

usage when partitions are migrating. When a new data center

is added, the partitions are relocated using as-unique-as-

possible algorithm.

Teli et al. [55] described an algorithm to reduce the cost of

data movement and data aggregation. In this work, the

geographic data centers are modeled as graph system. The

nodes represent the vertices and communication between the

vertices represents the edges of the graph. Weights on the

edges represent bandwidth cost. The proposed algorithms are:

cost optimization of data movement and aggregation. After

building the graph model, corresponding bandwidth cost

matrix is calculated. They found the cost of data transfer is by

multiplying size of the data object with the bandwidth cost.

Mansouri et al. [56] illustrated a dynamic data migration

and data replication scheme. The strategy is based on the two

main costs: first one is residential cost which includes get and

put cost and next is data movement cost which includes the

cost of the network bandwidth. They introduced two

algorithms such as optimal offline algorithm and two online

algorithms. The scheme dynamically select storage objects

and finds the read/write residential cost and data movement

cost. They formulated a cost optimization problem with

constraints. Offline algorithm requires high time complexity,

hence they introduced a new online algorithm which includes

residential and migration cost. In this algorithm, data

migration happens only when there is a cost saving and total

migration cost is equal to or less than without migration of the

data.

Zhang et al. [57] introduced a data placement and

replication strategy using genetic algorithm. In this work, to

optimize the cost of access delay and storage cost replicas are

placed at multiple proper locations. They modeled the OSN

system as graphs which optimize the cost inter-node traffic and

storage cost. They build a method, to optimize the storage cost

and minimize the latency a minimum number of replicas are

stored at different locations. They constructed a social graph

of OSN using Facebook dataset and designed a GA based

algorithm. The cost model is built to minimize the latency and

inter-server traffic. In this work, load balancing among server

is not considered.

756

Yang et al. [58], Rohini and Ramakrishna [59] introduced a

cost optimization for data placement and load-balancing

strategy in OSN. In this approach, the data objects required by

the users are placed in the same node. The system is modeled

as graph and objective of the work is to minimize the cost of

storage and transfer of data. A cost-effective load-balancing

algorithm based on the graph partitioning (BGPA) is

developed for OSN. The BGPA algorithm optimizes the

storage cost and transfer cost. The distributed system used in

this work is based on static and not with respect to the dynamic

changes in the system.

6. CONCLUSION

Data placement, data replication and data migration are very

important issues in edge-cloud computing system. Data

placement in heterogeneous distributed systems stores user

required data items nearest to the user. Data replication

strategy enhances the availability and reliability of the data to

the users by placing replicas in the various data centers. Data

migration in distributed system is relocates the data objects

dynamically to improve the performance of the system. In this

work, we discussed various state-of-the art survey on data

placement policies such as data placement using hashing

techniques, clustering techniques and genetic algorithms.

State-of-the-art data replication strategies and data migration

techniques. From the comprehensive survey work, we have

identified research gaps and future directions for further

research in the data placement edge-cloud computing system.

REFERENCES

[1] Jing, C., Zhu, Y., Li, M. (2013). Customer satisfaction-

aware scheduling for utility maximization on geo-

distributed cloud data centers. In 2013 IEEE 10th

International Conference on High Performance

Computing and Communications & 2013 IEEE

International Conference on Embedded and Ubiquitous

Computing, Zhangjiajie, China, pp. 218-225.

https://doi.org/10.1109/HPCC.and.EUC.2013.40

[2] Trieu, T.T., Ngo, D.N. (2017). Towards building a

platform for e-social on-demand learning and

development. International Journal of Information and

Education Technology, 7(11): 814-817.

https://doi.org/10.18178/ijiet.2017.7.11.978

[3] Yu, B., Pan, J. (2015). Location-aware associated data

placement for geo-distributed data-intensive applications.

In 2015 IEEE Conference on Computer Communications

(INFOCOM), Hong Kong, China, pp. 603-611.

https://doi.org/10.1109/INFOCOM.2015.7218428

[4] Wang, M., Zhang, J., Dong, F., Luo, J. (2014). Data

placement and task scheduling optimization for data

intensive scientific workflow in multiple data centers

environment. In 2014 Second International Conference

on Advanced Cloud and Big Data, Huangshan, China, pp.

77-84. https://doi.org/10.1109/CBD.2014.19

[5] Qin, Y., Ai, X., Chen, L., Yang, W. (2016). Data

placement strategy in data center distributed storage

systems. In 2016 IEEE International Conference on

Communication Systems (ICCS), Shenzhen, China, pp.

1-6. https://doi.org/10.1109/ICCS.2016.7833566

[6] Zhang, J., Chen, J., Luo, J., Song, A. (2016). Efficient

location-aware data placement for data-intensive

applications in geo-distributed scientific data centers.

Tsinghua Science and Technology, 21(5): 471-481.

https://doi.org/10.1109/TST.2016.7590316

[7] Saha, T.K., Sharma, T. (2017). A dynamic data

placement policy for heterogeneous hadoop cluster. In

2017 4th International Conference on Advances in

Electrical Engineering (ICAEE), Dhaka, Bangladesh, pp.

302-307. https://doi.org/10.1109/ICAEE.2017.8255371

[8] Li, Q., Wang, K., Wei, S., Han, X., Xu, L., Gao, M.

(2014). A data placement strategy based on clustering

and consistent hashing algorithm in Cloud Computing. In

9th International Conference on Communications and

Networking in China, Maoming, China, pp. 478-483.

https://doi.org/10.1109/CHINACOM.2014.7054342

[9] Chedrawy, Z., Abidi, S.S.R. (2005). An intelligent

knowledge sharing strategy featuring item-based

collaborative filtering and case based reasoning. In 5th

International Conference on Intelligent Systems Design

and Applications (ISDA'05), Warsaw, Poland, pp. 67-72.

https://doi.org/10.1109/ISDA.2005.22

[10] Kchaou, H., Kechaou, Z., Alimi, A.M. (2018). A two-

stage fuzzy c-means data placement strategy for

scientific cloud workflows. In 2018 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), Rio de

Janeiro, Brazil, pp. 1-8. https://doi.org/10.1109/FUZZ-

IEEE.2018.8491530

[11] Atrey, A., Van Seghbroeck, G., Volckaert, B., De Turck,

F. (2018). Scalable data placement of data-intensive

services in geo-distributed clouds. In CLOSER2018, the

8th International Conference on Cloud Computing and

Services Science, pp. 497-508. SCITEPRESS-Science

and Technology Publications.

[12] Atrey, A., Van Seghbroeck, G., Mora, H., De Turck, F.,

Volckaert, B. (2019). SpeCH: A scalable framework for

data placement of data-intensive services in geo-

distributed clouds. Journal of Network and Computer

Applications, 142: 1-14.

https://doi.org/10.1016/j.jnca.2019.05.012

[13] Atrey, A., Van Seghbroeck, G., Mora, H., De Turck, F.,

Volckaert, B. (2019). Unifying data and replica

placement for data-intensive services in geographically

distributed clouds. In 9th International Conference on

Cloud Computing and Services Science (CLOSER), pp.

25-36. https://doi.org/10.5220/0007613400250036

[14] Rohini, T., Ramakrishna, M. (2019). Spectral clustering

and bounded-load consistent hashing for data placement

in heterogeneous geo-distributed systems. Journal of

Advanced Research in Dynamic and Control Systems,

11(06): 306-315.

[15] Vengadeswaran, S., Balasundaram, S. R. (2020). Clust:

grouping aware data placement for improving the

performance of large-scale data management system. In

Proceedings of the 7th ACM IKDD CoDS and 25th

COMAD, pp. 1-9.

https://doi.org/10.1145/3371158.3371159

[16] Mazumdar, S., Seybold, F., Kritikos, K., Verginadis, Y.

(2019). A survey on data storage and placement

methodologies for Cloud-Big Data ecosystem. Journal of

Big Data, 6(1): 15. https://doi.org/10.1186/s40537-019-

0178-3

[17] He, S., Li, Z., Zhou, J., Yin, Y., Xu, X., Chen, Y., Sun,

X.H. (2019). A holistic heterogeneity-aware data

placement scheme for hybrid parallel I/O systems. IEEE

757

Transactions on Parallel and Distributed Systems, 31(4):

830-842. https://doi.org/10.1109/TPDS.2019.2948901

[18] Kaur, A., Gupta, P., Singh, M. (2020). A data placement

strategy based on crow search algorithm in cloud

computing. Recent Advances in Computer Science and

Communications (Formerly: Recent Patents on

Computer Science), 13(1): 43-52.

https://doi.org/10.2174/2213275912666181127123431

[19] Paiva, J., Ruivo, P., Romano, P., Rodrigues, L. (2014).

Autoplacer: Scalable self-tuning data placement in

distributed key-value stores. ACM Transactions on

Autonomous and Adaptive Systems (TAAS), 9(4): 1-30.

[20] Paiva, J., Ruivo, P., Romano, P., Rodrigues, L. (2014).

Autoplacer: Scalable self-tuning data placement in

distributed key-value stores. ACM Transactions on

Autonomous and Adaptive Systems (TAAS), 9(4): 1-30.

https://doi.org/10.1145/2641573

[21] Shankaranarayanan, P.N., Sivakumar, A., Rao, S.,

Tawarmalani, M. (2014). Performance sensitive

replication in geo-distributed cloud datastores. In 2014

44th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks, Atlanta, GA, USA,

pp. 240-251. https://doi.org/10.1109/DSN.2014.34

[22] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G.,

Lakshman, A., Pilchin, A., Sivasubramanian, S.,

Vosshall, A., Vogels, W. (2007). Dynamo: Amazon's

highly available key-value store. ACM SIGOPS

Operating Systems Review, 41(6): 205-220.

https://doi.org/10.1145/1323293.1294281

[23] Lakshman, A., Malik, P. (2010). Cassandra: a

decentralized structured storage system. ACM SIGOPS

Operating Systems Review, 44(2): 35-40.

https://doi.org/10.1145/1773912.1773922

[24] Li, X., Zhang, L., Wu, Y., Liu, X., Zhu, E., Yi, H., Wang,

F., Zhang, C., Yang, Y. (2016). A novel workflow-level

data placement strategy for data-sharing scientific cloud

workflows. IEEE Transactions on Services Computing,

12(3): 370-383.

https://doi.org/10.1109/TSC.2016.2625247

[25] Zhou, J., Fan, J., Jia, J., Cheng, B., Liu, Z. (2018).

Optimizing cost for geo-distributed storage systems in

online social networks. Journal of Computational

Science, 26: 363-374.

https://doi.org/10.1016/j.jocs.2017.08.001

[26] Zhao, Q., Xiong, C., Wang, P. (2016). Heuristic data

placement for data-intensive applications in

heterogeneous cloud. Journal of Electrical and Computer

Engineering, 2016: 3516358.

https://doi.org/10.1155/2016/3516358

[27] Zhang, J., Yuan, D., Cui, L., Zhou, B.B. (2019). A highly

efficient algorithm towards optimal data storage and

regeneration cost in multiple clouds. Future Generation

Computer Systems, 99: 459-472.

https://doi.org/10.1016/j.future.2019.04.002

[28] Yuan, D., Cui, L., Li, W., Liu, X., Yang, Y. (2015). An

algorithm for finding the minimum cost of storing and

regenerating datasets in multiple clouds. IEEE

Transactions on Cloud Computing, 6(2): 519-531.

https://doi.org/10.1109/TCC.2015.2491920

[29] Erradi, A., Mansouri, Y. (2020). Online cost

optimization algorithms for tiered cloud storage services.

Journal of Systems and Software, 160: 110457.

https://doi.org/10.1016/j.jss.2019.110457

[30] Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.,

Maltzahn, C. (2006). Ceph: A scalable, high-

performance distributed file system. In Proceedings of

the 7th Symposium on Operating Systems Design and

Implementation, pp. 307-320.

[31] Davies, A., Orsaria, A. (2013). Scale out with GlusterFS.

Linux Journal, 2013(235): 1.

[32] Xie, W., Zhou, J., Reyes, M., Noble, J., Chen, Y. (2015).

Two-mode data distribution scheme for heterogeneous

storage in data centers. In 2015 IEEE International

Conference on Big Data (Big Data), Santa Clara, CA,

USA, pp. 327-332.

https://doi.org/10.1109/BigData.2015.7363772

[33] Xie, W., Chen, Y. (2017). Elastic consistent hashing for

distributed storage systems. In 2017 IEEE International

Parallel and Distributed Processing Symposium (IPDPS),

Orlando, FL, USA, pp. 876-885.

https://doi.org/10.1109/IPDPS.2017.88

[34] Zhou, J., Xie, W., Gu, Q., Chen, Y. (2016). Hierarchical

consistent hashing for heterogeneous object-based

storage. In 2016 IEEE Trustcom/BigDataSE/ISPA,

Tianjin, China, pp. 1597-1604.

https://doi.org/10.1109/TrustCom.2016.0247

[35] Zhou, J., Chen, Y., Wang, W. (2018). Attributed

consistent hashing for heterogeneous storage systems. In

Proceedings of the 27th International Conference on

Parallel Architectures and Compilation Techniques, pp.

1-12. https://doi.org/10.1145/3243176.3243202

[36] Mansouri, N., Javidi, M.M. (2020). A review of data

replication based on meta-heuristics approach in cloud

computing and data grid. Soft Computing, 24: 14503-

14530. https://doi.org/10.1007/s00500-020-04802-1

[37] Rohini T., Ramakrishna, M.V. (2020). Adaptive dynamic

data replication with load-balancing in distributed

systems. Journal of Advanced Research in Dynamical

and Control Systems, 12(3): 1034-1043.

http://doi.org/10.5373/JARDCS/V12SP3/20201349

[38] Gill, N.K., Singh, S. (2016). A dynamic, cost-aware,

optimized data replication strategy for heterogeneous

cloud data centers. Future Generation Computer Systems,

65: 10-32. https://doi.org/10.1016/j.future.2016.05.016

[39] Mansouri, N., Rafsanjani, M.K., Javidi, M.M. (2017).

DPRS: A dynamic popularity aware replication strategy

with parallel download scheme in cloud environments.

Simulation Modelling Practice and Theory, 77: 177-196.

https://doi.org/10.1016/j.simpat.2017.06.001

[40] Mansouri, Y., Toosi, A.N., Buyya, R. (2017). Data

storage management in cloud environments: Taxonomy,

survey, and future directions. ACM Computing Surveys

(CSUR), 50(6): 1-51. https://doi.org/10.1145/3136623

[41] Mansouri, N., Javidi, M.M. (2018). A hybrid data

replication strategy with fuzzy-based deletion for

heterogeneous cloud data centers. The Journal of

Supercomputing, 74: 5349-5372.

https://doi.org/10.1007/s11227-018-2427-1

[42] Mansouri, N., Javidi, M.M. (2018). A new prefetching-

aware data replication to decrease access latency in cloud

environment. Journal of Systems and Software, 144:

197-215. https://doi.org/10.1016/j.jss.2018.05.027

[43] Cavalcante, D.M., de Farias, V.A., Sousa, F.R., Paula,

M.R.P., Machado, J.C., de Souza, J.N. (2018). PopRing:

A popularity-aware replica placement for distributed

key-value store. n Proceedings of the 8th International

Conference on Cloud Computing and Services Science

(CLOSER 2018), pp. 440-447.

758

https://doi.org/10.1007/s00500-020-04802-1

[44] Cavalcante, D.M., Farias, V.A., Sousa, F.R.C., Paula,

M.R.P., Machado, J.C., Souza, N. (2018). PopRing: A

popularity-aware replica placement for distributed key-

value store. In Proceedings of the 8th International

Conference on Cloud Computing and Services Science

(CLOSER 2018), pp. 440-447.

[45] Azari, L., Rahmani, A.M., Daniel, H.A., Qader, N.N.

(2018). A data replication algorithm for groups of files in

data grids. Journal of Parallel and Distributed Computing,

113: 115-126.

https://doi.org/10.1016/j.jpdc.2017.10.008

[46] Mseddi, A., Salahuddin, M.A., Zhani, M.F., Elbiaze, H.,

Glitho, R.H. (2018). Efficient replica migration scheme

for distributed cloud storage systems. IEEE Transactions

on Cloud Computing, 9(1): 155-167.

https://doi.org/10.1109/TCC.2018.2858792

[47] Hassanzadeh-Nazarabadi, Y., Küpçü, A., Özkasap, Ö.

(2018). Decentralized and locality aware replication

method for DHT-based P2P storage systems. Future

Generation Computer Systems, 84: 32-46.

https://doi.org/10.1016/j.future.2018.02.007

[48] Bok, K., Choi, K., Choi, D., Lim, J., Yoo, J. (2019). Load

balancing scheme for effectively supporting distributed

in-memory based computing. Electronics, 8(5): 546.

https://doi.org/10.3390/electronics8050546

[49] Mansouri, Y., Buyya, R. (2019). Dynamic replication

and migration of data objects with hot-spot and cold-spot

statuses across storage data centers. Journal of Parallel

and Distributed Computing, 126: 121-133.

https://doi.org/10.1016/j.jpdc.2018.12.003

[50] Mokadem, R., Hameurlain, A. (2020). A data replication

strategy with tenant performance and provider economic

profit guarantees in Cloud data centers. Journal of

Systems and Software, 159: 110447.

https://doi.org/10.1016/j.jss.2019.110447

[51] Limam, S., Mokadem, R., Belalem, G. (2019). Data

replication strategy with satisfaction of availability,

performance and tenant budget requirements. Cluster

Computing, 22: 1199-1210.

https://doi.org/10.1007/s10586-018-02899-6

[52] Mseddi, A., Salahuddin, M.A., Zhani, M.F., Elbiaze, H.,

Glitho, R.H. (2015). On optimizing replica migration in

distributed cloud storage systems. In 2015 IEEE 4th

International Conference on Cloud Networking

(CloudNet), Niagara Falls, ON, Canada, pp. 191-197.

https://doi.org/10.1109/CloudNet.2015.7335304

[53] Kumar, K.A., Quamar, A., Deshpande, A., Khuller, S.

(2014). SWORD: Workload-aware data placement and

replica selection for cloud data management systems.

The VLDB Journal, 23: 845-870.

https://doi.org/10.1007/s00778-014-0362-1

[54] Ayache, M., Erradi, M., Freisleben, B. (2015). Access

control policies enforcement in a cloud environment:

Openstack. In 2015 11th International Conference on

Information Assurance and Security (IAS), Marrakech,

Morocco, pp. 26-31.

https://doi.org/10.1109/ISIAS.2015.7492740

[55] Teli, P., Thomas, M.V., Chandrasekaran, K. (2016). Big

data migration between data centers in online cloud

environment. Procedia Technology, 24: 1558-1565.

https://doi.org/10.1016/j.protcy.2016.05.135

[56] Mansouri, Y., Toosi, A.N., Buyya, R. (2017). Cost

optimization for dynamic replication and migration of

data in cloud data centers. IEEE Transactions on Cloud

Computing, 7(3): 705-718.

https://doi.org/10.1109/TCC.2017.2659728

[57] Zhang, L., Li, X., Khalajzadeh, H., Yang, Y., Zhu, R., Ji,

X., Ju, C., Yang, Y. (2018). Cost-effective and traffic-

optimal data placement strategy for cloud-based online

social networks. In 2018 IEEE 22nd International

Conference on Computer Supported Cooperative Work

in Design ((CSCWD)), Nanjing, China, pp. 110-115.

https://doi.org/10.1109/CSCWD.2018.8465343

[58] Yang, Y., Li, X., Khalajzadeh, H., Liu, X., Ji, X., Qian,

F. (2019). Data placement cost optimization and load

balancing for online social networks. In 2019 Seventh

International Conference on Advanced Cloud and Big

Data (CBD), Suzhou, China, pp. 162-167.

https://doi.org/10.1109/CBD.2019.00038

[59] Rohini, T.V., Ramakrishna, M.V. (2022). Cost

optimization for dynamic data migration and re-

placement with load-balancing in geo-distributed

systems. In: Kumar, A., Senatore, S., Gunjan, V.K. (eds)

ICDSMLA 2020. Lecture Notes in Electrical

Engineering, vol 783. Springer, Singapore.

https://doi.org/10.1007/978-981-16-3690-5_143

759

