
Handling HTTP Flood Attacks in High-Load Applications Using Akka Actors Model

Kairat Tokpayev* , Agyn Bedelbayev , Anar Iskendirova

Faculty of Information Technology, Al-Farabi Kazakh National University, Almaty 050040, Republic of Kazakhstan

Corresponding Author Email: tokpayevkairat@aol.com

https://doi.org/10.18280/isi.280314 ABSTRACT

Received: 20 February 2023

Accepted: 3 May 2023

The subject of this scientific research is the study of the principles of using asynchronous

programming methods to process flood attacks and implement effective methods to handle

HTTP Flood attacks on servers. The relevance of this research lies in the need to develop a

practical example of using the Akka framework implementation for building microservices

based on the Scala language. A practical combination of system analysis and observation

of successive stages of the formation of the Akka actor to handle an HTTP Flood attack

forms the basis of the methodological approach in this research. This provides ample

opportunities to handle DDoS attacks in high-load applications through the use of the Akka

Actors model, which aligns with the provisions of the Digital Kazakhstan state program.

The practical significance of the results obtained in this research lies in the prospect of their

implementation in creating microservice systems with strict API rules and a distributed

system strategy, capable of handling millions of active users and ignoring potential fraud,

including DDoS attacks.

Keywords:

DDoS attacks, microservice systems, Scala

functional language, computing hardware,

service-oriented asynchronous

programming

1. INTRODUCTION

This scientific paper addresses the urgent need to counter

server attacks, which have become more prevalent due to the

emergence of tools that facilitate such attacks, including

Distributed Denial of Service (DDoS) attacks such as the

popular HTTP Flood. These attacks impose a heavy load on

server applications and can potentially cause server failure if

requests are delegated incorrectly. The resulting server failures

have significant consequences and complicate server

functioning [1]. DDoS attacks continue to be a significant

threat, despite the availability of methods to detect and

mitigate their consequences, such as monitoring network

traffic and searching for anomalies, as well as technological

solutions based on distributed query processing technology

using actor models [2-4].

The Akka Actors technology, which is based on the Scala

programming language, presents an efficient approach to

asynchronous request processing in high-load systems,

reducing potential damage to server infrastructure. Akka

Actors is a high-level abstraction model for building parallel

and distributed services, providing a strategy for writing

parallel systems and simplifying the writing of services during

thread construction. This approach aligns with the "Digital

Kazakhstan" program's provisions [5, 6].

The increasing role of the internet in our lives has led to a

rise in cybercrime, both financially and politically. Symantec

statistics reveal a staggering 81% growth in the total number

of attacks since 2011, reaching 5.5 billion in subsequent years.

Agha [7] further explores the topic of parallel computing

models in distribution systems, highlighting the mutual

influence of actors in the system and their ability to send

messages within the system. The Akka Actors model ensures

high-quality interaction by maintaining a constant readiness to

receive messages and allowing for dynamic changes in actor

relationships, increasing the flexibility of managing this

process [8, 9].

Weiser [10] draws attention to the latest developments in

hardware systems for accelerating computing processes that

have a clear focus on experimental platforms, resulting in

improved operational efficiency in the future. Yoshioka et al.

[11] discuss the general principles of stochastic optimization

of the mixed moving average process, emphasizing the

importance of considering the sequence of mathematical

operations that describe the processing of random requests

when creating a stochastic optimization model. In their joint

scientific study on asynchronous global types in collaborative

logic programming, Bianchini and Dagnino [12] draw

attention to the significance of global types in communication

programming, enabling high-level protocol specifications with

a large number of participants involved and effective

protection against external influences, including DDoS attacks.

The purpose of this research paper is to review the

technology for building the Akka Actors model and provide a

practical example of its implementation using the Akka

framework. This study emphasizes the need to address HTTP

Flood attacks in high-load applications and explores the

potential of the Akka Actors model to enable efficient and

reliable request processing in distributed systems. Cited

references are included throughout the text.

2. MATERIALS AND METHODS

The basis of the methodological approach in this research

paper is a combination of a systematic analysis of the general

principles and causes of DDoS attacks on high-load

applications with the observation of the sequence of creating

an Akka actor to handle an HTTP Flood attack. The theoretical

basis of this scientific research is the analyzed results of

Ingénierie des Systèmes d’Information
Vol. 28, No. 3, June, 2023, pp. 655-662

Journal homepage: http://iieta.org/journals/isi

655

https://orcid.org/0000-0003-1286-6429
https://orcid.org/0000-0001-9839-4156
https://orcid.org/0009-0004-6419-5115
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280314&domain=pdf

scientific papers of a number of scientists who studied the

problematic aspects of the practical application of service-

oriented asynchronous programming as a method of legal

actions in DDoS attacks. A systematic analysis of the

principles of the occurrence of DDoS attacks on high-load

applications made it possible to determine the scheme of an

HTTP Flood attack on the web server architecture, which is

necessary to understand the significance of the HTTP protocol

as a targeted application layer attack protocol. This made it

possible to create a graphical diagram of an attack of this kind,

for a visual illustration of the process described in this

scientific study. In addition, through the application of a

system analysis of the key principles of the occurrence of

DDoS attacks, an overview was performed of the HTTP Flood,

as the most well-known server attack in high-load applications

to date.

The observation of the sequence of formation of actors for

handling the HTTP Flood attack made it possible to determine

the model hierarchy of actors, from the parent actor to the

creation of its child forms. Akka's actor hierarchy model on

the example of some Internal Actor branch has been

represented in the corresponding graphic. When conducting a

scientific research, materials were used that make up its

theoretical base and reflect the main aspects of creating the

Akka Actors model for handling an HTTP Flood attack in

high-load applications. This made it possible to create a

graphical representation of the performance of web servers,

which is necessary to form a comparative assessment of their

throughput and visually illustrate the practical benefits of

using the Akka Actors model [13].

In addition, this scientific research used the materials of the

electronic resource [13, 14] (Scala Version 2.7.0) containing

data on the construction of the hierarchy of Akka Actors, as

well as the interaction between parent and child actors. This

made it possible to obtain and present code fragments in the

Scala language (Version 2.7.0), showing examples of data

failure processing when receiving information from one of the

actors included in the system. Scala code fragments were also

obtained, displaying the actor model of the API (Application

Programming Interface) microservice system and the main

service. This is necessary to create a meaningful illustration of

the actor hierarchy in the Akka Actors model, as well as to

understand the sequence of procedures executed in order to

perform additional checks before writing to the server

database.

3. RESULTS

The “Digital Kazakhstan” development program adopted at

the state level defines the key directions for the development

of digital sectors of the economy. In this context, special

attention is paid to the use of digital technologies in the

medium term and the transition of the country's economy to a

new development trajectory, which involves the formation of

a digital economy in the long term [5]. This determines the

need to find the best ways to counter server attacks that pose a

significant threat to information stored on servers.

The most well-known attack to date is the HTTP Flood

attack [15]. Due to high resource consumption, this type of

DDoS attack can stop the service for clients and fill up the

client-server socket channel, which can be detected by

network monitoring. The main concepts behind this are an

attack on the heaviest APIs, basically its “get” request with

filter parameters and lots of response data. Due to network

traffic monitoring, the website administrator or automatic

system alerts can predict and block the source IP (Internet

Protocol) address that is sending the HTTP Flood. However,

in a situation where an attacker could try to imitate the

behavior of a normal user using this endpoint, it became more

difficult to quickly recognize what is happening in the process

of servicing infrastructure resources. For these purposes, it is

necessary to constantly monitor the use of the metric

dashboard, analyze daily highload statistics and solve this

problem through the synergy of the two approaches [16]. In

DDoS attacks, detection and monitoring may be interrupted or

disrupted, depending on the nature and severity of the attack.

DDoS attacks involve overwhelming a target system or

network with a flood of traffic from multiple sources,

rendering it inaccessible to legitimate users. These attacks can

be highly disruptive, causing significant downtime, financial

losses, and damage to the reputation of the targeted

organization. Detecting and monitoring DDoS attacks is

essential to mitigate their impact and prevent further damage.

However, the effectiveness of detection and monitoring can be

limited by the size and complexity of the attack, the

sophistication of the attackers, and the capacity of the

monitoring systems.

In some cases, DDoS attacks can be so intense that they

overload and disrupt monitoring systems, making it difficult

or impossible to detect and respond to the attack. Additionally,

attackers may use tactics such as "low and slow" attacks,

which are designed to evade detection by gradually increasing

the volume of traffic over time. Therefore, while detection and

monitoring are critical components of DDoS mitigation, they

may not always be uninterrupted or foolproof, and other

strategies such as prevention, mitigation, and response

planning are also necessary to protect against DDoS attacks.

In this case, ACL also plays a significant role – API access

control levels at the stage of authorizing a user HTTP request.

Knowing the role that has been assigned to users, such

resource intensive requests could be encapsulated from the

invention. Figure 1 is a schematic representation of an HTTP

Flood attack on a web server architecture.

Figure 1. HTTP Flood attack on the web server architecture
Source: reference [17]

Considering all application layer protocols, HTTP is the

most targeted application layer attack protocol due to its

increasing role in the example of daily expanding online

services. In addition, the attackers know that the default HTTP

traffic protocol is not blocked by any company policies or

infrastructure strategy policies. Web application protocols are

not always enough to protect the provided methods, and the

656

functionality of the Akkaactor-based microservice building

model plays an important role in simultaneously processing,

and thus, flooding requests from attackers and maintaining a

high load on the service as a load balancer from the side of

actors. Using parameters for distributed values and network

traffic statistics, microservice systems can detect HTTP Flood

behavior on a signal based on real-time metric parameters, and

using the Akka actor model, a read flood request can be

processed simultaneously by actors in the Scala programming

language. By analyzing the final result of the metric data, it is

possible to form and make a decision in a timely manner,

which enabled taking care of HTTP Flood attacks and alerting

subsystems to block these types of attacks at any access

control level.

The actor's model hierarchy goes from top to bottom. The

implementation of such a model helps to stop the development

of the process of managing basic behavior on the low-level

side of creating a service and allows getting all the features for

creating and managing the life cycle of an actor, as well as

handling errors in the system. The actor hierarchy is

fundamentally strong for strategies, in which Akka Actors

belong to a parent actor, so it is possible to create “child”

actors and directly control the behavior of the entire service.

In Akka, a parent actor is an actor that creates and

supervises one or more child actors. Child actors are actors that

are created by a parent actor and are responsible for carrying

out specific tasks or functions. The parent actor-child actor

relationship is a fundamental concept in the Akka actor system,

as it enables the creation of complex, hierarchical actor

structures that can be used to model and manage the behavior

of a service or application.

When a parent actor creates a child actor, it becomes the

supervisor of that actor. This means that the parent actor is

responsible for monitoring the behavior of the child actor and

handling any errors or failures that may occur. If a child actor

encounters an error or fails to perform its task, the parent actor

can decide how to handle the situation, which may include

restarting the child actor, terminating it, or taking other

corrective actions. This parent-child actor hierarchy enables

Akka to create fault-tolerant systems that can recover from

errors and failures quickly and reliably. By creating a

hierarchy of actors, developers can organize and control the

behavior of an entire service or application, making it easier to

implement complex business logic and manage the flow of

data and messages between actors.

For example, in the event that it becomes necessary to

process a “send” request from a client and add additional

checks before writing to a database, the following procedures

can be performed for this purpose:

1. Creation of a parent actor as well as an actor for the

request processing moment.

2. Switching the actor to a validation method just before

putting it into the database, for example, if the form of a

telephone “regular expression” needs to be corrected.

3. While the method is being tested, an actor can be waiting

for a response to be checked, and with another child actor

created, a method can be simultaneously composed to check

the name while waiting.

4. Depending on the result of the two methods carried by

the child actor, the parent actor will decide whether to write

the data to a database or issue an error due to an invalid

validation case.

The hierarchy of actors, extending from child form to parent

form, is shown in Figure 2.

Figure 2. The Akka Actor hierarchy model in the “some

Internal actor” branch example
Source: reference [14]

The distinguishing feature of the process described above is

that the original Akkaactors system already has two actors

created in the Actor System block for inline management of

actors within the system [14]. Interacting with many actors and

creating a goal for the final state of the actor form a certain

status received from all industry relations, after which the

actors must be stopped. Their interaction, in which the parent

actor stopped a particular child actor, also stopped, so the

correct solution after the completion of the request processing

is to stop the actor with the Actor Context using the special

“stop” command. It is also possible to manage the process of

the internal actor library, since the main strength of the actor

model is the processing of the received results, especially in

cases of fault tolerance:

def childActor(size: Long): ActorBehavior[String] =

ActorBehaviors.receiveMessage(message

=>childActor(size + message.length))

The above method shows an iterative function for handling

a message received by the main actor class named Actor

Behaviors. Below is an example of fail handling if an error

occurs while receiving a message from one of the child actors:

def parentActor: ActorBehavior[String] = {

ActorBehaviors.supervise[String] {

ActorBehaviors.setup{result =>

val actorChildExample1 = result.spawn(child(0), "child1")

val actorChildExample2 = result.spawn(child(0), "child2")

ActorBehaviors.receiveMessage[String] {actorMessage =>

// message handling that might throw an exception

val parts = actorMessage.split(" ")

child1! parts (0)

child2! parts (1)

Behaviors.same

}}

}

onFailure(SupervisorStrategy.restart) // main handling of

error occur in case of onFailure strategy

}

Akka Actors are designed not only to handle errors and

method results in this way, but can also perform a full set of

tasks from a client-side request to receiving a response from

the database server. This flexible model allows adjusting such

a high load on enterprise applications depending on the stated

business requirements regarding fraud prevention and control.

For this case, it is assumed that messages sent from one actor

to another must be immutable [18]. The flexibility of the actor

model allows for the adjustment of the high load on enterprise

applications, based on the specific business requirements

657

related to fraud prevention and control. This is achieved by

allowing messages to be sent from one actor to another in a

flexible and customizable way.

In the actor model, actors communicate with each other by

exchanging messages, which can contain data, instructions, or

requests. This communication can be tailored to meet specific

business needs, such as fraud prevention and control. For

example, actors can be designed to monitor and detect

suspicious activities, and to alert other actors or systems when

necessary. The flexibility of the actor model also enables the

implementation of complex workflows and business logic,

which can help to prevent fraud and improve control over the

system. For instance, actors can be used to enforce

authorization and authentication rules, to validate data inputs,

and to route messages between different parts of the system.

The functionality of an actor is assumed as an object of a

computing system that can respond to an incoming message:

1. Send a fixed number of messages on demand to other

actors.

2. Create, at the request of the task of counting new actors,

in this case, of “child actors”.

3. Develop rules for processing the next received message.

Because of this relation of actors to each other, they (actors)

are created asynchronously, while the actor that sent the

message does not wait for the second actor, but continues its

operation through the to-do list. Only the second actor can

exchange messages with exactly those actors that sent

messages to it [7]. The actor model strategy written compared

to the Apache web server, where the second Apache server can

handle about 4000 sessions, while the Akka actor model

strategy written by Yaws supports processing performance of

80000 sessions [13]. Statistics show that this strategy-based

model, with real modification and a well-planned architecture,

is 20 times more fault tolerant than Apache. This case shows

the best aspects of actor models in the practice of performing

operations with a huge number of requests and volumes of data.

Considering actor models with a messaging strategy, it is

safe to say that the fault tolerance of actor-based models does

not have problems with shared-memory computing systems,

which cause additional responsibilities for managing threads

and creating processes internally by hand, which also will

impact debugging and troubleshooting, deadlocks, as well as

low scalability potential. Below is a model of the API

microservice system actor and the main service. Using library

dependencies, it is necessary to create an Akka HTTP request

maker by running the following code snippet where there are

two API requests for post students and getting the URL

(Uniform Resource Locator) of all objects [5]:

ddos-http-protection-api:

lazy valuserRoutes: Route = {

pathPrefix("entites") {

path("create-entity") {

// authenticateOAuth2Async("user",

oauthAuthenticator) { user: UserContext =>

headersMap{ headers =>

post {

entity(as[SomeEntity]) { SomeEntity =>

log.debug(s"CREATE Rest for test further

$kaznuPhdStudent test REST API DDOS by HEAVY GET")

handleRequest(ddosPropsMaker,

DdosActor.CreateKaznuPhdStudent(Some(kaznuPhdStude

nt), headers, None))

}

}

// }

}

} ~

path("user-all") {

// authenticateOAuth2Async("user",

oauthAuthenticator) { user: UserContext =>

headersMap{ headers =>

log.debug(s"{| DDOS heavy scan endpoint | HTTP FLOOD

TYPED}")

get {

handleRequest(ddosPropsMaker,

DdosActor.GetAllEntities(None, headers, None))

}}}}

}

After the actor model of the message descriptor is prepared

in the main part of the microservices, depending on the results,

a decision is made that will allow adjusting the preservation of

the HTTP Flood by the actors with each request:

ddos -http-protection-core:

in main method:

def receive = {

case message: GetAllEntities=> {

pipe {

ddosRepo.getAllEntitesMethod(Some(List(message.getAll

Entites.getOrElse(""))))

} to self

context.become(waitingResponse)

}

case message: CreateEntites=> {

pipe {

ddosRepo.createEntities(message.ddosHttpFloodEntity.get)

} to self

context.become(waitingResponse)

}}

consequently, next order operation:

def waitingResponse: Receive = {

case akka.actor.Status.Success(_) =>

log.debug(s"has been stored in repo. Finish request")

context.parent ! Accepted()

case result: ErrorInfo=>

log.debug(s"5 ERROR RESULT ${result.toString}")

context.parent ! result

}

The “waiting Response” method receives the response from

the main request processing methods and handles the last step

of the logical decision, including error handling and sending

the response to the “ddos-http-protection-api” microservice in

the parent actor hierarchy. Actors function for some time after

they are created and are stopped according to the user's request.

At the same time, at the moment when the parent actor stops,

its descendants also stop synchronously. This situation

actively contributes to the acceleration of resource cleanup,

and also enables preventing resource leaks, in particular, this

applies to leaks caused by open files and sockets [5]. In real

conditions, when there is a need to work with low-level multi-

threaded code, as a rule, the complexity associated with the

need to manage the life cycles of various parallel resources

that are closely related to each other is not taken into account.

658

To stop an actor, return Behaviors stopped inside it. In this

case, as a rule, a response comes in the given form to a user

message indicating the actor's stop when it has finally finished

executing. It is technically possible to stop a child actor, which

requires calling context.stop(childRef) from the parent actor.

However, arbitrary actors (not parent ones) cannot be stopped

in this way [5]. The Akka actor API provides a number of

lifecycle signals. In particular, the PostStop dispatch takes

place immediately after the actor has been stopped.

import akka.actor.{Actor, ActorSystem, Props}

class ResourceActor extends Actor {

 // Initialize the resource when the actor is created

 val resource: MyResource = initializeResource()

 override def receive: Receive = {

 case SomeMessage =>

 // Use the resource to process the message

 val result = processMessage(resource, SomeMessage)

 // Send the result back to the sender

 sender() ! result

 }

 override def postStop(): Unit = {

 // Release the resource when the actor is stopped

 releaseResource(resource)

 }

 private def initializeResource(): MyResource = {

 // Code to initialize the resource

 // ...

 new MyResource

 }

 private def releaseResource(resource: MyResource): Unit

= {

 // Code to release the resource

 // ...

 }

 private def processMessage(resource: MyResource,

message: SomeMessage): SomeResult = {

 // Code to use the resource to process the message

 // ...

 new SomeResult

 }

}

object ResourceActor {

 def props(): Props = Props(new ResourceActor)

}

object MyApp extends App {

 // Create the actor system

 val system = ActorSystem("MyApp")

 // Create the parent actor

 val parentActor = system.actorOf(Props[ParentActor],

"parentActor")

 // Send a message to the parent actor

 parentActor ! SomeMessage

 // Stop the actor system when done

 system.terminate()

}

The ResourceActor is responsible for managing a resource

(represented here by the MyResource class). The

initializeResource() method is called when the actor is created,

and initializes the resource. The releaseResource() method is

called in the postStop() hook, which is called when the actor

is stopped, and releases the resource. The processMessage()

method is called when the actor receives a message, and uses

the resource to process the message. In this example, the

message is of type SomeMessage, and the result is of type

SomeResult. The ResourceActor is created by the ParentActor,

which is not shown in this example. When the parent actor is

stopped, it in turn stops its child actors, including the

ResourceActor.

After that, the message is no longer processed. When a

parent actor stops, it, in turn, stops its own child actor, after

which it stops itself. This sequence of operations must be

strictly adhered to, all PostStop signals of child elements

should be processed up to the processing of the PostStop signal

of the parent actor. Figure 3 provides a performance

comparison of web servers that clearly illustrates the

effectiveness of the practical application of the Akka Actors

model in high-load applications.

Figure 3. Comparative analysis of web server performance
Source: Compiled by the authors based on reference [13]

The information presented in Figure 3 is a clear illustration

of the practical advantages of actor models in high-load

applications. The colors indicate the amount of performance

of web servers:

– red – Yaws (a web server created in the Erland language

using the Akka Actors model in question);

– green – Apache (local disk);

– blue – Apache HTTP Server.

As follows from the data presented in Figure 3, the

throughput of the Yaws server, in which the considered Akka

Actors model was used, is 800 Kb/s, or up to 80000 insecure

processes [19]. At the same time, the Apache server fails at

about 4000 processes. Thus, the presented statistics clearly

demonstrate that the fault tolerance of the model based on the

Akka strategy is 20 times higher than that of Apache HTTP

Server.

4. DISCUSSION

In a joint scientific paper aimed at studying the principles of

building a new paradigm of social distributed computing, the

team of researchers represented by Garcia-Valls et al. [20]

touched upon the problems of seamlessly integrating

computing into physical networks. The authors draw attention

to the fact that the rational use of the Scala programming

language can significantly improve the quality of

asynchronous request processing in high-load systems.

According to the researchers, this is essential when building

social distributed computing systems, in which fog

infrastructures play a dominant role, ensuring that the user of

659

the systems maintains a high level of mobility. The

conclusions of the researchers are fundamentally consistent

with the results obtained in this scientific paper, demonstrating

their practical significance for modeling processes in cyber-

physical systems.

For their part, in a collaborative scientific study of the

foundations of building a unified structure to improve

interaction between languages and programming models of

high-performance computing, Pineiro and Pichel [21] note that

differences in software stacks are one of the most significant

problems on the way to convergence of high-performance

computing. According to scientists, any language or any

programming model should tell the computer or computing

system the actions that they should perform. For this reason,

when building a specific programming model, it is necessary

to clearly understand the behavior of individual actors and be

able to determine the language that is used to display specific

examples of these actors. This is extremely important for the

effective construction of the Akka Actors model in order to

counteract DDoS attacks on the server. The results obtained

by the researchers are fundamentally consistent with the

results of this scientific paper.

At the same time, the team of researchers represented by

Pineiro et al. [22] jointly considered the key principles of the

Ignis platform that is designed to work with large amounts of

data and have the ability to run applications based on various

programming languages. The study of scientists notes that the

use of various massively parallel architectures determines the

presence in them of several types of key elements, among

which sequential processes, data parameter transformation

functions, and actors should be distinguished. At the same time,

the creation of applications involves the use of programming

languages that are supported by the existing data structure and

most of all meet the tasks set for developers. The Scala

programming language in this case should be considered a

priority when building the Akka Actors model. The

conclusions of the researchers contribute to the expansion of

ideas about the creation and practical use of massively parallel

architectures, without contradicting the results obtained in this

scientific paper.

In a collaborative study of split integration and coordination

using a self-organizing coordinate area pattern, the research

team represented by Pianini et al. [23] note that the so-called

design patterns are often applied directly in software

development, preserving knowledge of the most common

problems. According to scientists, one of these problems is

HTTP Flood attacks on servers (databases). The problem can

be effectively solved by developing microservice systems with

strict API rules, followed by the implementation of a

distributed system strategy, which will allow interaction with

a large number of external users. The findings are

fundamentally consistent with the results of this scientific

paper. In a scientific paper aimed at studying the sequence of

applying factoring to improve the quality of the source code as

one of the most important stages in the evolution of software,

Tesone et al. [24] note that “live” programming provides the

ability to create quality software at a faster pace than it takes

place during the processes of its editing, compiling and

debugging. At the same time, the concept of a sequential

construction of a software process implies a clear execution of

operations, with the ability to process service requests with a

high load on the server and scaling the needs for services. This

greatly contributes to the prevention of flood attacks on the

server. The results obtained by scientists expand the

understanding of the possibilities of service-oriented

asynchronous programming without conflicting with the

results of this research paper.

In a joint scientific study of attack detection mechanisms in

networks with low power consumption, Ankam and Reddy

[25] draw attention to the fact that flooding should be

considered not only as one of the options for transmitting

significant amounts of information, but also as a variant of a

DDoS attack, capable of completely paralyzing the

functioning of the server. A server failure results in the

inability to process subsequent user requests, which negatively

affects the operation of an application. This necessitates the

development and implementation of special measures to

prevent DDoS attacks on the server and counter them. The

conclusions of the scientists are fundamentally consistent with

the results obtained in this research paper. In a joint scientific

paper aimed at studying the prospects for the development of

distributed network algorithms, Castafieda et al. [26] note that

combinatorial topology is of great importance for improving

the efficiency of the analysis of distributed algorithms of high

fault tolerance, which are used in applications with large

memory and high load. According to the authors, flood attacks

on applications with a high load can destabilize their work for

a long time, while the introduction of microservice systems

with built-in API rules and a strategy for using a distributed

system with a large number of external users is the best

solution in terms of the effectiveness of countering attacks of

this kind. The conclusions of the researchers fully coincide

with the results obtained in this scientific paper.

Niknejad et al. [27] conducted a joint study of the general

principles of building a service-oriented architecture and came

to the conclusion that this kind of architecture, being a separate

architectural approach, improves the performance of typical

systems while maintaining their key functions. At the same

time, service-oriented programming using software models to

counter flood attacks on servers in high-load applications is a

method of legal action in such situations. The conclusions of

the researchers are fully consistent with the results obtained in

this scientific paper. In a scientific study of aspect-oriented

programming based on semantics for the composition of

context-sensitive web servers, the research team represented

by Li et al. [28] concluded that a change in context forms a

certain composition, in which the context itself is organically

woven into the server architecture. According to the authors,

any change in the context allows changing the architecture of

servers, which is essential when the risk of flood attacks on the

server increases. The conclusions of the authors expand the

results of this research paper within the context of assessing

the value of various changes in the service architecture when

it becomes necessary to prevent attacks on the server.

Thus, discussing the results obtained in this research paper

within the context of their comparison with the results

obtained by other scientists who have investigated various

aspects of the use of server-side DDoS flood processing

methods, as well as the development and implementation of

models for handling attacks in applications with a high load

demonstrated their fundamental coincidence in the main

aspects. This indicates a high level of reliability of the results

of this scientific research and the possibility of their practical

use for the development of systems with a large number of

active users in order to increase the effectiveness of

counteracting network attacks.

660

5. CONCLUSIONS

Understanding of the key concepts of handling heavy API

requests at a high frequency allows to consistently develop

ways to handle these attacks from network traffic anomalies

for architectural solutions with actor models based on the

Scala programming language. That being said, the main

challenge should not be learning Scala or Akka programming

so much as understanding the key principles of handling such

complex HTTP-based attacks and gaining the ability to

implement a behavioral actor while processing such heavy

requests at the same time. In the course of this scientific

research, it has been proven that messaging entities model a

more fault-tolerant model than shared memory application

systems in the case of request handles. Actors can precede

more data, and the post-fall error handling policy is less

painful. A clear messaging strategy from one actor to another

can share the high load of “receiving” heavy HTTP Flood

requests that are aimed at solving the problem of building an

attack infrastructure as a network traffic and database side.

The practical application of the Akka model provides for the

management of actors in hierarchies, were parent actors

control child actors and handle exceptions. Applying the

acquired knowledge in real situations allows simulating the

communication necessary to obtain information from users. In

addition, the achievement of a high level of control of actors

in individual groups is ensured. Taken together, using the

Akka Actors model to handle an HTTP Flood attack in high-

load applications is an objectively justified solution in terms

of optimizing asynchronous type service-oriented

programming techniques to counter DDoS attacks. Prospects

for subsequent scientific research in the direction stated in the

subject of this scientific paper include searching for additional

opportunities for the practical application of service-oriented

asynchronous programming methods to counter DDoS attacks

within the context of the development of the digital

infrastructure of the Republic of Kazakhstan.

REFERENCES

[1] Radavičius, T., Tvaronavičienė, M. (2022).

Digitalisation, knowledge management and technology

transfer impact on organisations’ circularity capabilities.

Insights into Regional Development, 4(3): 76-95.

http://doi.org/10.9770/IRD.2022.4.3(5)

[2] Kovács, A.M. (2022). Ransomware: A comprehensive

study of the exponentially increasing cybersecurity threat.

Insights into Regional Development, 4(2): 96-104.

https://doi.org/10.9770/IRD.2022.4.2(8)

[3] Fakunle, S.O., Ajani, B.K. (2021). Peculiarities of ICT

adoption in Nigeria. Insights into Regional Development,

3(4): 51-61. http://doi.org/10.9770/IRD.2021.3.4(4)

[4] Lavrov, E., Pasko, N., Siryk, O., Burov, O., Natalia, M.

(2020). Mathematical models for reducing functional

networks to ensure the reliability and cybersecurity of

ergatic control systems. Proceedings - 15th International

Conference on Advanced Trends in Radioelectronics,

Telecommunications and Computer Engineering,

TCSET 2020: 179-184. Lviv-Slavske: Institute of

Electrical and Electronics Engineers.

http://doi.org/10.1109/TCSET49122.2020.235418

[5] Order of the Government of the Republic of Kazakhstan

No. 827 “On approval of the State program Digital

Kazakhstan”. (2017).

https://adilet.zan.kz/rus/docs/P1700000827, accessed on

Oct. 14, 2022.

[6] Aizstrauts, A., Ginters, E., Lauberte, I., Eroles, M.A.P.

(2013). Multi-level architecture on web services based

policy domain use cases simulator. Lecture Notes in

Business Information Processing, 153: 130-145.

http://doi.org/10.1007/978-3-642-41638-5_9

[7] Agha, G.A. (1985). Actors: A model of concurrent

computation in distributed systems. Cambridge,

Massachusetts Institute of Technology.

[8] Lavrov, E.A., Paderno, P.I., Volosiuk, A.A., Pasko, N.B.,

Kyzenko, V.I. (2019). Automation of functional

reliability evaluation for critical human-machine control

systems. Proceedings of 2019 3rd International

Conference on Control in Technical Systems, CTS 2019:

144-147. St. Petersburg: Institute of Electrical and

Electronics Engineers.

http://doi.org/10.1109/CTS48763.2019.8973294

[9] Barlybayev, A., Sabyrov, T., Sharipbay, A., Omarbekova,

A. (2017). Data base processing programs with using

extended base semantic hypergraph. Advances in

Intelligent Systems and Computing, 569: 28-37.

http://doi.org/10.1007/978-3-319-56535-4_3

[10] Weiser, M. (2021). Ubiquitous computing. Computer,

26(10): 71-72.

[11] Yoshioka, H., Yoshioka, Y., Tanaka, T., Hashigichi, A.

(2022). Stochastic optimization of a mixed moving

average process for controlling non-Markovian

streamflow environments. Applied Mathematical

Modelling, 116: 490-509.

https://doi.org/10.1016/j.apm.2022.11.009

[12] Bianchini, R., Dagnino, F. (2023). Asynchronous global

types in co-logic programming. Science of Computer

Programming, 225: Article ID: 102895.

https://doi.org/10.1007/978-3-030-78142-2_9

[13] Armstrong, J. (2003). Concurrency oriented

programming in Erlang. Stockholm, Swedish Institute of

Computer Science.

[14] Akka Documentation. (2020).

https://doc.akka.io/docs/akka/current/typed/guide/tutori

al_1.html, accessed on Oct. 14, 2022.

[15] Li, M. (2003). Decision analysis of statistically detecting

distributed denial-of-service flooding attacks. II

International Journal of Information Technology and

Decision Making, 2(3): 397-405.

[16] Cabrera, J.B.D. (2001). Proactive detection of distributed

denial of service attacks using mib traffic variables – a

feasibility study. II Proceedings of International

Symposium on Integrated Network Management,

Piscataway, pp. 609-622.

[17] Wang, H., Zhang, D., Shin, K.G. (2004). Detecting SYN

flooding attacks. Proceedings of Twenty-First Annual

Joint Conference of the IEEE Computer and

Communications Societies Piscataway, pp. 1530-1539.

[18] Mozer. M.C. (2005). Lessons from an Adaptive Akka.

New York, Wiley.

[19] Technology set, Akka in examples. (2020).

http://www.sics.se/~joe/apachevsyaws. accessed on Oct.

14, 2022

[20] Garcia-Valls, M., Dubey, A., Botti, V. (2020).

Introducing the new paradigm of social dispersed

computing: Applications, technologies and challenges.

Journal of Systems Architecture, 91: 83-102.

661

https://doi.org/10.1016/j.sysarc.2018.05.007

[21] Pineiro, C., Pichel, J.C. (2022). A unified framework to

improve the interoperability between HPC and Big Data

languages and programming models. Future Generation

Computer Systems, 134: 123-139.

https://doi.org/10.1016/j.future.2022.04.002

[22] Pineiro, C., Martinez-Castano, R., Pichel, J.C. (2020).

Ignis: An efficient and scalable multi-language Big Data

framework. Future Generation Computer Systems, 105:

705-716. https://doi.org/10.1016/j.future.2019.12.052

[23] Pianini, D., Casadei, R., Viroli, M., Natali, A. (2021).

Partitioned integration and coordination via the self-

organising coordination regions pattern. Future

Generation Computer Systems, 114: 44-68.

https://doi.org/10.1016/j.future.2020.07.032

[24] Tesone, P., Polito, G., Fabresse, L., Bouraqadi, N.,

Ducasse, S. (2020). Preserving instance state during

refactorings in live environments. Future Generation

Computer Systems, 110: 1-17.

https://doi.org/10.1016/j.future.2020.04.010

[25] Ankam, S., Reddy, D.N.S. (2023). A mechanism to

detecting flooding attacks in quantum enabled cloud-

based lowpower and lossy networks. Theoretical

Computer Science, 941: 29-38.

https://doi.org/10.1016/j.tcs.2022.08.018

[26] Castafieda, A., Fraigniaud, P., Paz, A., Raisbaum, S.,

Roy, M., Travers, C. (2021). A topological perspective

on distributed network algorithms. Theoretical Computer

Science, 849: 121-137.

https://doi.org/10.1016/j.tcs.2020.10.012

[27] Niknejad, N., Ismail, W., Gham, I., Nazari, B., Bahari,

M., Hussin, A.R.B.C. (2020). Understanding Service-

Oriented Architecture (SOA): A systematic literature

review and directions for further investigation.

Information Systems, 91: 101491.

https://doi.org/10.1016/j.is.2020.101491

[28] Li, L., Liu, D., Bouguettaya, A. (2021). Semantic based

aspect-oriented programming for context-aware Web

service composition. Information Systems, 36(3): 551-

564. https://doi.org/10.1016/j.is.2010.06.003

662

