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ABSTRACT 

   While designing the inverter, the total harmonic distortion (THD) in the output is a major concern to decide its performance. In order to 

calculate the total harmonic distortion (THD) of a symmetric modular multilevel inverter (MMI) with switched capacitors, a Harris hawk 

optimization (HHO) was used in this study. Utilizing symmetric and identical DC sources, the suggested modular multilevel inverter is designed. 

The suggested topology may be expanded up to many levels and utilizes fewer switches to provide 9 levels of output than conventi1al cascaded 

H-bridge multilevel inverters. Using a low-frequency switching control approach known as selective harmonic elimination pulse width 

modulation, the switches are less stressed and the inverter output's THD profile is improved. Additionally, the switching angles of the MMI have 

been optimized by solving the non-linear equations of the SHEPWM using the Harris Hawk Optimizer. Ant colony optimization (ACO) and 

particle swarm optimization (PSO), two alternative optimizers, were compared in terms of the THD of the output. This comparison shows that 

the HHO delivers a lower THD than other optimization techniques approximately near to 5%, as per the IEEE-519 standard, and is thus more 

highly advised. Finally, a hardware configuration for the suggested inverter is implemented to confirm the simulation findings. 
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  NOMENCLATURE 

THD Total Harmonic Distortion 

MMI Modular Multilevel Inverter 

PSO Particle swarm optimization 

ACO Ant Colony Optimization 

HHO Harris Hawk Optimization 

PWM Pulse Width Modulation 

SHEPWM Selective Harmonic Elimination PWM 

SVPWM Space Vector Pulse Width Modulation 

MLI Multilevel Inverter 

NPC Neutral Point Clamping 

FC Flying Capacitor 

CHB Cascaded H-Bridge 

NSwitch  Number of Switches 

NGate Number of Gate Drivers 

NSource  Number of DC Sources 

NDiode Number of Switched Diodes 

NDClink  Number of DC link Capacitors 

TBlock Total Blocking Voltage 

 

1. INTRODUCTION 

   Energy is the most important factor of development and 

one of the main factors of production that has a direct impact 

on the quality of life of people and the development of 

communities. With the aim of providing adequate and 

satisfactory energy, various studies in the field of energy 

systems are underway [1-3]. Due to environmental benefits, 

improved energy security, diversity in energy production 

methods, flexibility in energy exchanges and many other 

capabilities, the share of renewable energy in the overall 

energy portfolio is increasing. At the same time, increasing the 

efficiency of energy received from renewable sources has 

doubled their popularity. Despite the high cost of these 

systems, because of the straight impact on human health and 

with the purpose of sustainable development, investment and 

development of these systems have been quite reasonable. 

Therefore, optimal management and planning of these 

sustainable energy sources is one of the main approaches in 

various studies [6-8]. 

Fuel cell is extremely important among renewable energy 

sources due to its energy production, effective performance in 

the field of wastewater treatment, pollution reduction and 

multifunctional potential, and plays an important role in both 

energy and the environment [9]. One of the most common and 

well-known technologies related to fuel cells for power 

generation and wastewater treatment is microbial fuel cell 

(MFC) [10-12]. This type of fuel cell is a subset of biomass 

that generates electrical energy by trapping electrons 

metabolized by specific microorganisms in wastewater, and 

reduces carbon dioxide in the atmosphere by treating 

wastewater. Notably, various researches are being conducted 

on it from different perspectives. Most of the investigations 
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have been done on improving the physical modules of MFC, 

MFC planning, linking MFC with other technologies and 

obviously optimal control of MFC. Additive manufacturing 

(AM) techniques are a new and attractive technology for 

producing materials with complex structures. Additive 

manufacturing is a useful technology for manufacturing 

energy converters and a promising aspect for fuel cells for 

clean energy conversion with low-cost geometric structures 

for assembling fuel cell components. AM techniques being 

also suitable for generating microstructures and flexible 

electrochemical active regions of fuel cells with high precision 

and resolution that provide the following opportunities: (1) 

minimizing fabrication time, (2) reducing material waste, (3) 

complex structure engineering, (4) cost-effectiveness, and 

environmentally friendly processing. However, very restricted 

exploration has been done on fault study in MFCs [13-15]. In 

general, fault analysis in various systems is extremely 

important, because it can greatly increase the reliability and 

safety of technical processes and avoid the instability of the 

closed-loop system. Early detection of faults can also prevent 

abnormal process progress, decrease productivity and 

production losses, and empower the planning and execution 

of smart measures to avoid system catastrophic failures [16]. 

Therefore, fault identification and analysis are essential for the 

effective and safe operation of the MFC.  

As a consequence of the presence of microorganisms, 

complex configuration and tough coupling properties in MFC 

[17-18], the incidence of fault is high, even though its 

diagnosis is very difficult. Various types of faults can be 

observed in MFC, including low substrate utilization, low 

microbial activity, lack of oxygen, decreased substrate 

concentration, and sensor defects. Thus, to achieve stable and 

reliable performance as well as to prevent possible damages, 

this study was conducted with the aim of rapid fault 

identification in MFC. 

Deep learning and wavelet packet techniques are the most 

important procedures for detecting faults in microbial fuel 

cells, but each has its own drawbacks. The former offers 

effective performance in data classification, but suffers from 

the complexity of the mechanism, as well as the high volume 

of calculations and the very high volume of data [19]. The 

latter is not able to detect types of faults online despite being 

able to detect different types of faults [20]. The practical 

implementation of the Q-tree fault detection technique 

evaluated in reference [21] has not yet been possible. The 

inclusion of issues related to the consideration of parameter 

uncertainty and nonlinear model in the MFC fault detection 

technique has remained barren so far. Parameter uncertainty, 

which is often present in the modeling of physical systems, 

and is also true of MFCs [22-23], has not been considered in 

any of the MFC faults studies to date. Linear models, 

linearization or elimination of nonlinear terms in MFC fault 

detection also have their own shortcomings in modeling and 

defect identification.  

So, the most important innovation of this paper is to present 

a robust fault detection scheme considering the 

inconveniences of nonlinear MFC system and parametric 

uncertainty. First, a two-population nonlinear MFC model is 

planned to accurately describe the system dynamics and 

achieve effective and precise information about the MFC 

system, and then parametric uncertainty is included in the 

model. By designing a hybrid technique based on linear matrix 

inequality (LMI) and adaptive approaches, a novel robust 

observer is introduced for fault detection in the MFC system, 

in which the upper bound of uncertainty is considered 

unknown. By solving the linear matrix inequality and by 

means of the adaptive technique, the physical solution to the 

problem of fault detection is obtained in a nonlinear MFC 

system with two populations at any time and it can be used for 

additional processing. 

This article is as follows; In the second part, the MFC built-

up methods based on additive manufacturing are described firt, 

and then the nonlinear model of the MFC system is offered. In 

this section, uncertainties in the model along with various 

parameters of MFC are described. The third section describes 

the diagnostic scheme. This technique is fully explained by 

considering the working class that takes in the MFC model. 

The fourth section gives the simulation results and the fifth 

section presents the conclusions. 

 

2. MICROBIAL FUEL CELL; FABRICATION BASED 

ON ADDITIVE MANUFACTURING AND 

MATHEMATICAL MODEL 

AM technologies are included in the following groups: 1- 

binder jetting; 2- vat polymerization; 3- material extrusion; 4- 

powder bed fusion (PFB); 5- material jetting; 6- sheet 

lamination; and 7- directed energy deposition. The first four 

methods of AM technologies are used in fuel cell 

manufacturing and the rest of them, despite having a high 

potential, are still under research and development. In MFC, 

the anode plays an important role and acts both as a conductor 

and as a carrier of bacteria. The selective laser melting-based 

AM method has been used to fabricate the aluminum alloy 

anode with higher power [24] and the selective laser sintering 

method has been used to fabricate the anode with low density, 

high surface area, and ideal surface roughness. In MFC, the 

proton exchange membrane is another main component, and 

Polyjet 3D printing technology which belongs to the material 

extrusion category, has been used to make the Tangoplus 

polymer ion exchange membrane [25] which has a large 

surface area and is less prone to biodegradation and biofouling, 

providing longer lifetime and higher power output for 

operation. A high-performance membrane of Gel-Lay and 

large anode surface has also been fabricated using fused 

deposition modeling (FDM) [26] and it has been proven that 

AM is able to fabricate more than one functional component 

in a microbial fuel cell. In [27], FDM was used to fabricate a 

single-chamber air-cathode microbial fuel cell without 

supporting fixtures, fittings, and gaskets. Simplifying the 

manufacturing process, reducing the size and thus increasing 

the surface area, increasing the power density, longer lifetime 

for operation, lower biodegradation and biofouling and 

processing of inexpensive materials such as thermoplastics are 

among the advantages of using additive manufacturing 

technology for the MFC system. Figure 1 shows the structure 

of a microbial fuel cell. The anode, cathode, membrane, 

substrate and bacterial species are the main components of the 

MFC system. First, the electrons produced by the 

microorganisms are transferred directly or through an external 

medium to the MFC anode electrode. They are then 

transferred to the MFC cathode via an external circuit, where 

they combine with receptor electrons such as oxygen or 

ferricyanide. During this process, in addition to extracting 

electrical power, wastewater is also treated. The overall 

performance of MFCs and microbial systems depends on 

many components. A nonlinear model describing the 
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dynamics of the MFC system is now presented, and this model 

is used to design an unknown input observer. For a single-

chamber two populations MFC, a model with parameterized 

uncertainty is as follows:  

𝒙̇𝟏 = 𝜽𝟏

𝒙𝟑

𝒌𝒂 + 𝒙𝟑

𝒙𝟏 − 𝒌𝒂𝒙𝟏 − 𝒂𝒂𝒅𝒙𝟏 
(1)  

𝒙̇𝟐 = 𝜽𝟐

𝒙𝟑

𝒌𝜷 + 𝒙𝟑

𝒙𝟐 − 𝒌𝒅𝒙𝟐 − 𝒂𝒎𝒅𝒙𝟐 
(2)  

𝒙̇𝟑 = −𝒌𝟏𝜽𝟏

𝒙𝟑

𝒌𝒂 + 𝒙𝟑

𝒙𝟏 − 𝒌𝟐𝜽𝟐

𝒙𝟑

𝒌𝜷 + 𝒙𝟑

𝒙𝟐

+ 𝒅[𝒖(𝒕) − 𝒙𝟑] 

(3)  

 
Figure 1. Single Chamber two-population MFC 

 

Where 𝒙𝟏 , 𝒙𝟐  and 𝒙𝟑  are the anodophilic, methanogenic 

microorganisms acetate (substrate) concentration, in that 

order. Input 𝒖 is the influent substrate concentration (𝑺𝒐), and 

the dilution rate 𝒅 specifies the ratio of the input flow rate of 

substrate to the volume of the chamber. This parameter is an 

important feature to adjust the growth rate of microorganisms 

[28]. On the other hand, to avoid the necessity for big control 

action, influent concentration (𝑺𝒐) is considered as an input 

for satisfying the control objective. The parameters of 𝒌𝟏 and 

𝒌𝟐  are the reciprocals of anodophilic and methanogenic 

bacterial, in that order. The (𝒌𝒂) and (𝒌𝜷) are decay rates of 

anodophilic and methanogenic microorganisms, respectively. 

Also, 𝒂𝒂 and 𝒂𝒎 are bio-film retention constants. Parameters 

𝜽𝟏 and 𝜽𝟐 are 𝝁𝒎𝒂𝒙,𝒂, 𝒓(𝑴𝒐) and 𝝁𝒎𝒂𝒙,𝒎 in that order, which 

in company with other parameters are fully explained in [22]. 

 

3. MFC FAULT DETECTION BASED ON PROPOSED 

UNKNOWN INPUT OBSERVER 

This part provides the organization of the fault detection 

technique for the nonlinear model of MFC. The MFC model 

is involved in the subsequent continuous nonlinear system 

class 

𝒙̇(𝒕) = 𝑨𝒙(𝒕) + 𝑩𝒖(𝒕) + 𝒈(𝒙) + 𝒇(𝒕) 

𝒚(𝒕) = 𝑪𝒙(𝒕) 

 

(4)  

As stated by the MFC model, 𝒙(𝒕) signifies the states of 

system and 𝑨  and 𝑩  indicate the matrixes of linear 

coefficients in Equation (4) and 𝒈(𝒙) takes in the uncertainty 

of the model in addition to the nonlinear terms present in the 

system model. 

𝑨 = [
−𝒌𝒂 − 𝒂𝒂𝒅 𝟎 𝟎

𝟎 −𝒌𝒅 − 𝒂𝒎𝒅 𝟎
𝟎 𝟎 −𝒅

] 

𝑩 = [
𝟎
𝟎
𝒅
] 

𝒈(𝒙) =

[
 
 
 
 
 
 𝜽𝟏

𝒙𝟑

𝒌𝒂 + 𝒙𝟑

𝒙𝟏

𝜽𝟐

𝒙𝟑

𝒌𝜷 + 𝒙𝟑

𝒙𝟐

−𝒌𝟏𝜽𝟏

𝒙𝟑

𝒌𝒂 + 𝒙𝟑

𝒙𝟏 − 𝒌𝟐𝜽𝟐

𝒙𝟑

𝒌𝜷 + 𝒙𝟑

𝒙𝟐
]
 
 
 
 
 
 

 

𝒚 is the output of the system and 𝒇(𝒕) is the input fault to the 

system which follows the subsequent equation 𝒇(𝒕) ∈ 𝑹𝒏𝒖 

is fault in the system and 𝒇(𝒕) belong to 

𝑭 = {𝒇(𝒕) ∈ 𝑹𝒏𝒖|‖𝒇‖ ≤ 𝒇𝒎𝒂𝒙} (5)  

Where 𝒇(𝒕) is bounded and it is supposed that there is no 

information about its upper boundary (𝒇𝒎𝒂𝒙). In other words, 

by designing of an unknown input observer to distinguish fault 

without knowledge from its upper bound, we are capable to 

recognize and detect any of MFC system faults with any 

amplitude. 

The dynamics of the observer is now defined as follows: 

𝒙̇(𝒕) = 𝑨𝒙(𝒕) + 𝑩𝒖(𝒕) + 𝒈(𝒙) + 𝒇̂(𝒕)

+ 𝑳(𝒚(𝒕) − 𝒚̂(𝒕)) 

𝒚̂(𝒕) = 𝑪𝒙(𝒕) 

(6)  

Where 𝒙(𝒕) specifies the observer states, 𝒚̂(𝒕) indicates the 

observer output vector and 𝒇̂(𝒕)  also signifies the fault 

estimate. 

By describing the error between the actual system and 

observer states as Equation (7), it is obtained  

𝒆(𝒕) = 𝒙(𝒕) − 𝒙(𝒕) (7)  

As well as defining the error between the actual value of the 

fault and its estimatin as follows 

𝒇̃(𝒕) = 𝒇(𝒕) − 𝒇̂(𝒕) (8)  

The error dynamics becomes as follows 

𝒆̇(𝒕) = (𝑨 − 𝑳𝑪)𝒆(𝒕) + 𝒈(𝒙(𝒕)) − 𝒈(𝒙(𝒕))

+ 𝒇̃(𝒕) 

(9)  

Given that the Lipshitz condition is set to 𝒈(𝒙(𝒕)) , the 

following relation can be written for it 

𝒈(𝒙(𝒕)) − 𝒈(𝒙(𝒕)) ≤ 𝜸|𝒙(𝒕) − 𝒙(𝒕)| = 𝜸𝒆(𝒕) (10)  

Now, by placing the Lipshitz condition in Equation (10) in 

the system error equations (9), it is obtained: 

𝒆̇(𝒕) = (𝑨 − 𝑳𝑪 + 𝜸𝑰)𝒆(𝒕) + 𝒇̃(𝒕) (11)  

Which 𝑰 represents the unit matrix in the dimensions of the 

system states. Now to design the observer and also to ensure 

the stability of the system, Lyapunov function is scheduled in 

the following form: 

𝑽(𝒕) = 𝒆𝑻(𝒕)𝑷 𝒆(𝒕) +
𝟏

𝜼
𝒇̃𝑻𝒇̃ 

(12)  

Where 𝑷 is a positive symmetric matrix that is ultimately 

obtained by the LMI method and 𝜼 is also a positive parameter 

for regulating adaptive law.  From Equation (12), we derive 

the first order to prove the stability of the observer. 
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𝑽̇(𝒕) = 𝒆̇𝑻(𝒕)𝑷 𝒆(𝒕) + 𝒆𝑻(𝒕)𝑷 𝒆̇(𝒕)

−
𝟏

𝜼
(𝒇̇̂𝑻𝒇̃ + 𝒇̃𝑻𝒇̇̂) 

(13)  

As we know, in order to guarantee stability, in addition to 

the Lyapunov function must be positive-definite, and this can 

be seen in Equation (12), the derivative of Lyapunov function 

must also be negative semi-definite, i.e. 

𝑽̇(𝒕) ≤ 𝟎 (14)  

To establish relation (14), it is necessary that 

𝒆̇𝑻(𝒕)𝑷 𝒆(𝒕) + 𝒆𝑻(𝒕)𝑷 𝒆̇(𝒕) −
𝟏

𝜼
(𝒇̇̂𝑻𝒇̃ + 𝒇̃𝑻𝒇̇̂)

≤ 𝟎 

(15)  

It is now obtained by placing Equation (11) in relation (15) 

((𝑨 − 𝑳𝑪 + 𝜸𝑰)𝒆(𝒕) + 𝒇̃(𝒕))
𝑻

𝑷 𝒆(𝒕) 

+𝒆𝑻(𝒕)𝑷 ((𝑨 − 𝑳𝑪 + 𝜸𝑰)𝒆(𝒕) + 𝒇̃(𝒕)) 

−
𝟏

𝜼
(𝒇̇̂𝑻𝒇̃ + 𝒇̃𝑻𝒇̇̂) ≤ 𝟎 

(16)  

With a little mathematical simplification, Equation (16) is 

rewritten as follows: 

𝒆𝑻(𝒕)((𝑨 − 𝑳𝑪 + 𝜸𝑰)𝑻𝑷

+ 𝑷(𝑨 − 𝑳𝑪 + 𝜸𝑰))𝒆(𝒕) 

+𝒆𝑻(𝒕)𝑷𝒇̃ + 𝒇̃𝑻𝑷𝒆(𝒕) −
𝟏

𝜼
(𝒇̇̂𝑻𝒇̃ + 𝒇̃𝑻𝒇̇̂) ≤ 𝟎 

(17)  

It is now obtained by factoring from 𝒇̃ and 𝒇̃𝑻 in Equation (17) 

𝒆𝑻(𝒕)((𝑨 − 𝑳𝑪 + 𝜸𝑰)𝑻𝑷

+ 𝑷(𝑨 − 𝑳𝑪 + 𝜸𝑰))𝒆(𝒕) 

+(𝒆𝑻(𝒕)𝑷 −
𝟏

𝜼
𝒇̇̂𝑻) 𝒇̃ + 𝒇̃𝑻(𝑷𝒆(𝒕) −

𝟏

𝜼
𝒇̇̂) ≤ 𝟎 

(18)  

It is clear that in order to eliminate the effects of the 

estimation error 𝒇̃  and 𝒇̃𝑻 , the coefficients of these factors 

must be equal to zero in relation (18), and paying attention to 

this point gives the necessary settings as follows: 

𝒆𝑻(𝒕)𝑷 −
𝟏

𝜼
𝒇̇̂𝑻 = 𝟎 

(19)  

𝑷𝒆(𝒕) −
𝟏

𝜼
𝒇̇̂ = 𝟎 

(20)  

Solving each of Equation (19) or (20) gives: 

𝒇̇̂ = 𝜼𝑷𝒆(𝒕) (21)  

Equation (21) is in fact the adaptive law for estimating the 

fault entered into the system. It is obtained by placing 

Equation (21) in Equation (18) 

𝒆𝑻(𝒕)((𝑨 − 𝑳𝑪 + 𝜸𝑰)𝑻𝑷

+ 𝑷(𝑨 − 𝑳𝑪 + 𝜸𝑰))𝒆𝑻(𝒕) ≤ 𝟎 

(22)  

By means of multiplying 𝒆𝑻(𝒕)  from the left and 𝒆(𝒕) from 

the right and substituting 𝑷 = 𝑿−𝟏, 𝑿 > 𝟎 and 𝑳 = 𝒀𝑿−𝟏 

((𝑨 + 𝜸𝑰)𝑿 − 𝒀𝑪)𝑻 + (𝑨 + 𝜸𝑰)𝑿 + 𝒀𝑪 ≤ 𝟎 (23)  

𝑿 > 𝟎 (24)  

Solving LMI (23) and (24) ensures the stability of the 

observer system. Therefore, the stability of fault observer is 

guaranteed and in the next part, we will evaluate its efficiency 

by performing simulations. 

4. NUMERICAL SIMULATION RESULTS 

In this section, numerical simulation using MATLAB 

software is used to show the ability of the planned technique 

to precisely and rapidly detect the fault. It is assumed that an 

unknown input fault signal in the formula of (25) enters the 

MFC system. 

𝒇(𝒕) = {
𝟎. 𝟎𝟐 𝒊𝒇 𝒕 ≥ 𝟏𝟓 𝒂𝒏𝒅 𝒕 ≤ 𝟐𝟎

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

(25)  

By trial and error, the parameters related to the diagnostic 

technique are designated as follows: 

 𝜸 = 𝟏𝟎, 𝜼 = 𝟏𝟎 (26)  

By substituting the parameters and solving the LMI in 

Equations (23) and (24), the 𝑷 and 𝑳 matrices are achieved as 

follows: 

𝑳 = [𝟐. 𝟐𝟒 𝟑. 𝟎𝟖 𝟒. 𝟓𝟑]𝑻 (27)  

𝑷 = [
−𝟏𝟓. 𝟓𝟔 𝟖. 𝟏𝟖 𝟖. 𝟎𝟗
𝟖. 𝟏𝟖 −𝟏𝟓. 𝟎𝟗 𝟕. 𝟗𝟓
𝟖. 𝟎𝟗 𝟕. 𝟗𝟓 −𝟏𝟒. 𝟑𝟓

] 
(28)  

After applying the mentioned values to the observer and the 

error dynamics in Equations (21) and (11), the estimates of the 

states 𝒙𝟏(𝒕), 𝒙𝟐(𝒕) and 𝒙𝟑(𝒕)of the microbial fuel cell system 

are obtained, as displayed in Figures 2 to 4. Figure 2 displays 

the trajectory of 𝒙𝟏(𝒕) and its estimation, whereas Figures 3 

and 4 display the trajectories of 𝒙𝟐(𝒕)  and 𝒙𝟑(𝒕)  and their 

estimations, respectively. Figure 5 displays the quantity of 

error among the states and their estimations. It is obvious from 

the simulation results that in faultless periods, the planned 

observer is capable to precisely follow the fuel cell system 

states and the estimation error level is nearly zero. But after 

the error occurs, the estimation error increases which is 

obvious in Figure 5. As shown in Figure 6, the high speed of 

fault detection is another desirable feature for the planned 

unknown input observer. 

 
Figure 2. Trajectory of 𝒙𝟏(𝒕) 
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Figure 3. Trajectory of 𝒙𝟐(𝒕) 

 
Figure 4. Trajectory of 𝒙𝟑(𝒕) 

 
Figure 5. Observer error 𝒆𝟏(𝒕), 𝒆𝟐(𝒕), 𝒆𝟑(𝒕) 

 
Figure 6. Fault signal and its estimation 

 

5. CONCLUSION 

In this paper, a new scheme presented for fault diagnosis in 

a microbial fuel cell system. First, a nonlinear model of a fuel 

cell system was considered with first-order differential 

equations, in which both parametric uncertainties and 

nonlinear dynamics were embedded, and then a novel robust 

technique was designed for fault detection based on an 

unknown input observer. In the planned hybrid scheme, the 

adaptive technique and the linear matrix inequality approach 

were used simultaneously to ensure the stability of the 

observer error dynamics. By establishing Lipshitz conditions 

on the nonlinear dynamics of the microbial fuel cell system, 

even without knowing the uncertainty upper limit, the 

designed observer was able to quickly and accurately detect a 

fault in the system. The results of the numerical simulation in 

MATLAB software also established the the ability of the 

planned fault detection scheme. Fault detection in the 

presence of disturbances along with controlling its effects can 

be a good way for future studies in the field of microbial fuel 

cell system defects. 
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