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The Independent Component Analysis (ICA) method has been demonstrated as an 

effective tool for separating desired signals and artifacts in the processing of biomedical 

signals, particularly in electrocardiogram (ECG) recordings through blind source 

separation (BSS). Unwanted components, which propagate through the body to the 

electrodes and mix with the recorded signal, are analyzed into independent components 

(ICs). However, the unwanted ICs identified as artifacts may also contain valuable 

information, resulting in a loss of information if these ICs are removed entirely. To 

address this issue, a combined solution of wavelet decomposition and ICA is proposed. 

Wavelet decompositions are performed on the unwanted ICs, and the application of a 

threshold level to the wavelet coefficients minimizes the loss of information in the 

received signal. A proposed solution utilizing the wavelet-based ICA (wICA) algorithm 

effectively removes artifacts, reducing distortion in the amplitude and phase of the ECG 

signal. Consequently, the resulting electrocardiogram closely corresponds to the 

patient's actual heart electrical signal variations, aiding in accurate clinical diagnoses. 

ECG signals are affected by various artifact components, including highly influential 

EMG or motion artifacts, which can manifest simultaneously, randomly, or 

intermittently. An inflexible threshold level is not entirely appropriate for these cases. 

In this study, a solution integrating the wICA system with an adaptive filter model is 

proposed to overcome the limitation of a fixed threshold level. This combined system 

can provide the best prediction of artifact impacts to establish adaptive threshold values. 

Experimental results have shown that this new approach significantly improves the 

ability to remove artifacts from ECG records, with a correlation value of 0.9832 

compared to the reference clean signal. 
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1. INTRODUCTION

Electrocardiogram (ECG) signals are variable electrical 

signals generated during heart contractions. Pathological 

conditions often alter ECG values in terms of shape, 

amplitude, and frequency, making the accurate acquisition of 

ECG signals crucial for patient healthcare and clinical 

diagnosis. Consequently, research focusing on high-accuracy 

ECG signal acquisition has become a promising area of 

application, fostering the development of automated devices 

for clinical diagnosis. 

ECG signals are frequently affected by various interference 

components, including electromechanical components, 

electroencephalograms, and white noise, which cause 

abnormal variations in the recorded ECG signal's frequency 

and amplitude [1]. These disturbances arise because the 

electrodes record not only the electrical signals emitted from 

the patient's heart but also those from various sources within 

the body and the environment. The primary electrical 

components in the captured signal comprise signals from the 

myocardium, muscles, skin-electrode interfaces, and external 

noise sources. Some fundamental components in a recorded 

ECG signal exhibit frequency ranges as follows [2]: heart rate 

(0.67 – 5 Hz or 40 – 300 bpm); P-wave frequency (0.67 – 5 

Hz, corresponding to cardiac rhythm); QRS wave frequency 

(10 – 50 Hz); T-wave frequency (1 – 7 Hz); and high-

frequency potentials (100 – 500 Hz). 

The frequencies of components participating in the ECG 

recording signal include muscle artifacts (5 – 50 Hz), 

respiratory artifacts (0.12 – 0.5 Hz), electrooculogram (EOG) 

artifacts (0.1 – 20 Hz, corresponding to 8 – 30 bpm), power 

line artifacts (50 or 60 Hz), and other electrical sources, 

typically greater than 10 Hz (e.g., muscle stimulators, strong 

magnetic fields, and pacemakers with impedance monitoring) 

[3, 4]. The electrode-skin interface warrants particular 

attention as it constitutes the most significant source of 

interference, producing a DC component of approximately 

200-300 mV [5, 6]. Comparing the noise amplitude with the

patient's heart electrical activity (typically between 0.1 and 2

mV) reveals that noise from this component is amplified

through body movements or changes in the patient's position

or respiration [7]. The relative amplitude-frequency graph of

the QRS complex, P-T wave, muscle artifacts, motion

artifacts, and ECG signal's frequency distribution is depicted

in Figure 1.

Relative power spectra of QRS complex, P and T wave, 

muscle and motion artifacts based on an average value of 150 

heart beats. 
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Normally, the interference filtering system on the ECG 

recording signal is performed 4 times: high-pass filtering, low-

pass filtering, notch filtering and common mode filter. High 

pass filter to remove low frequency signals (i.e., only higher 

frequencies can pass) and low pass filter to remove high 

frequency signals. 

Out of the basic interference components as described 

above, the ECG recording signal also exhibits many other 

abnormal patterns, those are samples that have a sudden 

change in amplitude and frequency due to the impact from 

unwanted ingredients [8]. Furthermore, each electrode is also 

affected by other biomedical signal components during signal 

acquisition, such as electromyogram, electroencephalogram, 

and Electrooculogram..., especially the motion artifacts that 

occurs with voluntary or involuntary patient movement during 

ECG recording. 

 

 
 

Figure 1. Amplitude-frequency distribution graph in ECG 

recording signal 

 

Many studies have focused on eliminating artifact on ECG 

recording signals with different approaches such as Motion 

artifact removal (MR); QRS detection based Motion Artifact 

Removal algorithm (QRSMR) [9]; Stationary Wavelet 

Movement Artifact Reduction (SWMAR); Normalized Least 

Mean Square Adaptive Filter technique (NLMSAF) [10]; 

moving average filtering, and wavelet transform have been 

used to reduce the motion ECG artefact [11, 12]; removing 
such ECG artifacts from local field potentials (LFPs) recorded 

by a sensing-enabled neurostimulato [13]; ECG Artifact 

Removal from Single-Channel Surface EMG Using Fully 

Convolutional Networks [14], Channel-Wise Average Pooling 

and 1D Pixel-Shuffle Denoising Autoencoder for Electrode 

Motion Artifact Removal in ECG [15], Removing Cardiac 

Artifacts From Single-Channel Respiratory Electromyograms 

[16].  

The ECG signal recorded at the electrodes is a complex 

mixture of many components that come from different sources 

and are difficult to isolate. Using Independent Component 

Analysis (ICA) can help separate these sources into 

independent components (ICs), making it possible to remove 

unwanted components. 

However, the accuracy of ICA is highly dependent on the 

size of the analytical database [16], usually the number of 

signal sources in the body always exceeds the number of data  

recording channels; and in this case, ICA will not be able to 

separate the interference from the remaining components, or 

the components that are considered as artifacts, when removed 

still contain useful information, so the artifact cancellation will 

cause information loss. 

An effective technique used in signal analysis is the wavelet 

transform (WT), which allows multi-resolution decompostion 

on different scales based on the wavelet coefficients, from 

which We can determine exactly the signal frequency over 

time. Because interference components are often concentrated 

on certain frequency bands, eliminating artifact on each 

coefficient of wavelets will be a good solution to overcome the 

disadvantages of ICA. In combination with ICA, WT allows 

ICs to continue to decompose more level on multiple scales 

from the coefficients of the wavelet, artifact suppression 

performed on every coefficient of the wavelet has enhanced 

the ability of the system, and it is also known as Wavelet 

enhanced ICA (wICA). Artifact suppression will be achieved 

by setting a hard threshold on each wavelet coefficient 

according to the formula:  

 

2log( )T k=  (1) 

 

with 2 ( ) /ijmedian a c = . 

For (aij) are the wavelet coefficients, k is the length of the 

data segment to be processed and c is a constant [15]. 

wICA is widely applied in recent years based on its 

advantages; however, the wICA tool still has limitations when 

it comes to noise components that change dramatically in 

amplitude, then changing the threshold value based on 

changing the mean value (aij) is not enough to remove this 

artifact componence. As such, flexible threshold values are 

needed in order to obtain optimal ECG signals at the output. 

From analysis of the above, a new solution was proposed, that 

is a combination of wICA and adaptive filters (wICAAF) is 

developed in this research. Based on this new way, threshold 

T will continuously update at the time t, t+1, t+2 ... after each 

input epoch, so the threshold values would be adjusted 

adaptively to suit the appearance of artifacts. The wICAAF 

solution has shown superior experimental results in removing 

artifacts from ECG recordings compared to the previous 

method; The correlation coefficient of the signal after noise 

cancellation compared to the reference signal of the new 

solution has reached 0.9832 compared to the coefficient of 

0.9690 of the wICA system. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Experimental database 

 

Experiments in the study used ECG data from PhysioBank 

Database, which's available at www.physionet.org. ECG 

recordings were selected randomly from 25 patients (10 

females and 15 males) of the 92-person dataset in the data bank; 

all subjects had a history of cardiovascular disease. Each 

subject's data was recorded on traditional ECG signal channels, 

which included nine true unipolar leads: three limb potentials 

(LA, RA, LL) and six unipolar precordial leads (UV1: UV6); 

the sampling frequency of the signal is 800Hz. The Data is 

preprocessed through a bandpass filter with a cutoff frequency 

from 0.5 to 150Hz before being used in artifact suppression 

experiments. Each subject was allowed to use 02 data records; 

one raw data used for experiments and 01 clean data system 

(removed interference components) used as a reference base 

to evaluate the system's artifact suppression ability. 

Each record is segmented into 10-second data segments (an 
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epoch). Since the duration of data recorded on each subject in 

the data bank is different, the author selected 40 random signal 

epochs on consecutively each subject; thus, the total number 

of data participating in the experiment is 1000 epochs (10-

second segments). The subjects participating in the experiment 

were between 20 and 60 years old with an average age of 42.88 

years; all of whom are being treated in the hospital. 

 

2.2 ICA and interference suppression operation 

 

The operation of the ICA is based on factors such as: the 

analytical data must be a stable combination of biomedical 

signals and other interference sources; the recording signals 

originate from different sources on the body and are linear at 

the electrodes, the delay time of the signal from the source to 

the electrodes is negligible; the number of signal sources 

should not exceed the number of electrodes too much [15, 17]. 

From here, the analysis of the ICA method will be based on 

the principle as shown in the Figure 2. 

 

 
 

Figure 2. The recording signal is a combination of different 

sources at the electrodes and the ICA's separation of sources 

 

For s1, s2, …, sn: different signal sources; electtrodes 1~ n: 

electrodes that record the received signals; x1, x2, …, xn: the 

recording signals; Aij: signal mixing coefficients; Wij is the 

coefficients of the matrix W (W: the inverse of the A matrix). 

The signal recorded at the electrodes can be considered as a 

linear combination of signals from different sources, they must 

have a statistically independent and non-Gaussian distribution 

according to the formula x=A.s; (n signal source must 

correspond to n electrodes), so A will be an n x n matrix where 

Aij are the coefficients corresponding to the mixing of 

independent signals from n different sources; and so only the 

recording signal 'x' can be observed. With the task of ICA is to 

analyze the sources s, so the value of source s is calculated by 

the formula: s=W.x with W=A−1. However, we can't determine 

the value of A−1 directly because we don't really know about 

the coefficients 'Aij' and value of the signal emitted from the 

source s.  

The ICA model imposes a limitation that the independent 

components must be non-Gaussian, it's mean that the 

probability density function must have non-Gausian 

distribution. Thus, Gaussian random variables are determined 

entirely by first-order statistics (mean) and quadratic statistics 

(variance), the higher-order statistics being zero. The ICA 

model needs higher order statistics of the independent 

components to perform the independent component estimation. 

Thus, nonlinearity, non-Gaussianity leads to statistical 

independence. Signal sources "si" need to contain the least 

Gaussian components, so the Non-Gaussian maximization 

measurement is the key to evaluating the matrix weights A or 

independent components. 

To estimate one of the independent components, we 

consider a linear combination of the xi; let us denote this by 

y=wTx=∑wixi, where w is a vector to be determined. If w were 

one of the rows of the inverse of A, 

To solve the problem of ICA estimation, we need to 

"maximize non-Gaussianity" (nongaussianity). An important 

parameter used to measure non-Gaussiness is negentropy, 

which is used to maximize non-Gaussianity, leading to the 

development of fast computation algorithm "FastICA". 

Negentropy J(Y) is used as a measure of Non-Gaussian 

Maximization, which is an information theory-based quantity 

called differential entropy. 

 

( ) ( ) ( )gaussJ Y H Y H Y= −  (2) 

 

For Y is a random variable, H(Ygauss) is the entropy value 

of a Gaussian variable which correspond to Y matrix.  

An approximation method has been developed: 

 

  
2

( ) ( ) ( )gaussJ y E G Y E G Y = −    (3) 

 

The FastICA Algorithm:  

The FastICA is based on a fixed-point iteration scheme for 

finding a maximum of the nongaussianity of wTx, it can be also 

derived as an approximative Newton iteration. Denote by g the 

derivative of the nonquadratic function G is: 

The nonlinear function G(.) can be selected according to one 

of the following two expressions:  

 

2

2

1
( ) logcos ;(1 2)

(

 

)

u

G u au a
a

G u e
−


=  



 = −

   (4) 

 

g(.) is the derivative of functions G(.); corresponding to:  

 

2

2

h ( ) tan ( )

( )

u

g u au

g u ue
−

=



=

   (5) 

 

where, 1≤a≤2 is some suitable constant, often taken as a=1. 

The basic form of the FastICA algorithm is as follows: 
 

1. Choose an initial weight vector w 

2. Let 𝑤+ = 𝐸{𝑥𝑔(𝑤𝑇𝑥)}-E{𝑔′(𝑤𝑇𝑥)}w 

3. Let 𝑤 = 𝑤+/‖𝑤+‖ 

4. If not converged, go back to 2 
 

The one-unit algorithm of the preceding subsection 

estimates just one of the independent components, or one 

projection pursuit direction. To estimate several independent 

components, we need to run the one-unit FastICA algorithm 

using several units (e.g., neurons) with weight vectors w1, 

w2, ..., wn. 

With matrix W (vectors w1, w2, ..., wn), we can separate n 

independent components, the next job is to evaluate which 

independent components are unwanted components to 

remove. The interference cancellation is the setting of 0 values 

for the unwanted components, so after recombining the 
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independent components (ICA inverse), we will get a clean 

signal. The model of interference cancellation by ICA is 

shown in Figure 3. 

 

 
 

Figure 3. Interference suppression model based on the ICA 

method 

 

2.3 Model of combining ICA and wavelet transform in 

artifact suppression 

 

As analyzed above, the operation of the ICA is based on the 

analysis of independent sources; next step, the artifact 

suppression work will be removing the analyzed independent 

components (ICs) that are evaluated as interference. However, 

if the removed independent component still contains useful 

information (signal components originating from the patient's 

heart), this may result in a loss of information useful for 

clinical diagnosis. To overcome this problem, the solution is 

to perform artifact suppression only in certain frequency 

ranges. Thus, each independent component will be 

decomposed into sub-bands. The subband analysis will be 

based on the spectrum of the important and prominent 

components in the ECG recording signal. 

 

2.3.1 Spectral range of the main components in the received 

signal 

There are many components in the ECG recording signal, 

their frequency distribution will depend on different 

pathological states. However, the power spectrum of the 

ECG's principal component is in the ranges of 1 ~ 20 Hz, 

signal amplitude will decrease as frequency increases and 

quickly disappear in the frequency range above 12 Hz; thus, 

the frequency component from 1 to 12 Hz will be selected to 

recognize as many ECG rhythms as possible. These spectra are 

not affected by high frequency components above 20 Hz such 

as power line interference (50/60 Hz), some forms of muscle 

artifacts; and are also not affected by interference of very low 

frequency components (<0.5 Hz) such as baseline drift and 

respiratory [18, 19]. Heart rate and P waves appear in the 

frequency range of 0.67~5 Hz, T waves in the frequency range 

1~7 Hz, QRS components in the frequency range: 10-50 Hz. 

therefore, the muscle artifact component (EMG), 

Electrooculogram artifacts (EOG) are in the frequency range 

of 5~50Hz is the factors that greatly affects the ECG recording 

signal. In addition, there are many other components involved 

in the recording signal (the components that their 

frequencies>10Hz) such as muscle stimulator, strong 

magnetic field interference, pacemaker with impedance 

monitoring etc. also have also significantly affect the 

amplitude - frequency of the ECG signal. Through the above 

analysis, we will decompose each ICs into some subbands to 

conveniently remove artifacts and unwanted effects. 

 

2.3.2 Subband decomposition using Discrete Wavelet 

Transform 

There are different methods to decompose a signal into 

several subbands; with traditional methods, the researchers 

often apply the short time Fourier transform (STFT), this 

method use a window function during so short time enough 

that the signal segment is considered as stationary signal, then 

Fourier transform will perform frequency analysis; thus, it is 

considered that we have located the signal frequency over time. 

However, the size of the window is a problem posed; 

because in order to achieve high accuracy when analyzing 

frequency components, the window size must vary flexibly 

according to the occurrence of each frequency. 

To solve this windowing problem, wavelet transform is 

used to overcome the limitation of fourier transform. Wavelet 

transform allows flexible use of 'windows’ sizes according to 

multi-resolution analysis; the large 'windows' for low 

frequency signals; and short windows, and small 'window' for 

high frequency signals. In other words, it adjusts the size of 

the window to accommodate every frequency [20, 21]. 

x[n] is input signal, g[n] is the high-pass filter, h[n] is the 

low-pass filter, and C is coefficient matrix which is 

decomposition of wavelet coefficients 

The Discrete Wavelet Transform (DWT) uses filter banks 

to create the multiresolution time-frequency domain, they're 

special wavelet filters for the decomposition and 

reconstruction of signals; Sub-band decomposition of Discrete 

Wavelet Transform (DWT) is implemented as the Figure 4. 

 

 
 

Figure 4. DWT decomposition 

 

The outputs of high-pass filter give the detail coefficients 

and low-pass filter give approximation coefficients (two filters 

are related to each other and called as a quadrature mirror 

filter). Because half the frequencies of the signal have now 

been removed, half the samples can be discarded according to 

Nyquist’s rule. The filter output of the filter is then subsampled 

by 2. 

 

 
 

Figure 5. Discrete Wavelet Transform at level 5 and 

obtained subbands 

 

With the pre-processing ECG frequency in the range 0.5 to 

150Hz, discrete wavelet decomposition will be performed at 

level 5; thus, subband analysis can obtain wavelet coefficients 

(aij) corresponding to the important bands of the ECG signal, 

such as T-wave, P-wave, QRS complex, and isolate some 

interference components etc., in order to eliminate the artifact 

concentrated in each area, increasing the system's efficiency. 

The decomposition diagram in the level 5 with obtained 

subband is shown in Figure 5. 
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Table 1. The wavelet coefficients 

 

No. Wavelet coefficients Frequency ranges 

1 Band a1 0.5~4.7Hz 

2 Band a2 4.7 ~9.4Hz 

3 Band a3 9.4~18.8 Hz 

4 Band a4 18.8~37.5 Hz 

5 Band a5 37.5~75Hz 

6 Band a6 75~150Hz 

 

Thus, the input signal 'ECG' passes through the ICA system 

and is analyzed into independent components; these 

components will be further decomposed into wavelet 

coefficients (aij) in Table 1; the soft threshold values will be 

set on each coefficient (aij).  

The threshold value is calculated according to the formula: 

 

2log( )T k=    (6) 

 

for k is the length of the analyzed data segment and σ is defined 

as: 

 

( )ij2
mean a

c
 =  (7) 

 

with c is set to 0.858.  

With a sampling frequency of 800Hz, the value of k is set to 

8000 (an epoch); 

 

2log( ) ~ 2.79T k =    (8) 

 

Thus, it is easy to see that the threshold T will change 

corresponding to the value of the coefficients aij.  

The artifact removal algorithm with the threshold solution 

T is as follows: 

 

( )( )
ˆ

ij ij ij

ij

ij ij

sign a a T if a T
a

a if a T

 − 
= 



   (9) 

 

After removing artifact components on the wavelet 

coefficients, the next step will be the inverse wavelet 

transform (IWT) to obtain the clean IC components; at the end, 

the inverse ICA transform will give us a clean signal 'ECG' 

with artifact components removed. This model has overcome 

some inherent limitations of ICA as analyzed above, so it is 

also known as wavelet enhanced ICA or wICA. 

 

2.4 Model of combining wICA and adaptive filter in 

artifact suppression 

 

Adaptive filter: The ability of an adaptive filter to work 

effectively in an unknown or constantly fluctuating 

environment and track time variations of input statistics makes 

the adaptive filter a powerful device for signal processing and 

control application. 

Adaptive filters have been successfully applied in fields as 

diverse as communications, radar or biomedical engineering. 

Although the applications are quite different in nature, but they 

have one basic common feature: An input vector and a desired 

response are used to calculate the estimation error (which used 

to control the values of a set of adjustable filter coefficients) 

[22, 23]. The adjustable coefficients can be in the many 

different forms depending on the filter construction used. 

However, the fundamental difference between different 

applications of adaptive filtering arises in the manner in which 

the desired response is extracted. In the requirement to 

eliminate the artifact of the ECG signal, the adaptive filter 

model applied in interference suppression as shown in Figure 

6 is used; this model will be coordinated with the wICA system 

to improve the artifact suppression efficiency. 

 

 
 

Figure 6. Adaptive filter model - the type of interference 

cancellation 

 

y=output of the adaptive filter. 

d=desired response. 

u=input signal applied to the adaptive filter. 

The estimation error: 

 

e=d–y (10) 

 

In this model, the primary signal serves as the desired 

response for the adaptive filter; a reference signal is employed 

as the input to the filter; the reference signal is derived from a 

sensor or a set of sensors located such that it supplies the 

primary signal in a way that the information-bearing signal 

component is weak or essentially undetectable [22]. 

 

2.5 Combination of wICA and adaptive filtering model  

 

Although ICA is able to detect and remove interlaced 

components not originating from the patient's heart, however 

they are often suspected to remove some of the useful signals 

from the myocardium. To solve this problem, wavelet 

decomposition is applied to analyze each independent 

component (IC) into smaller components; The generated noise 

removal is performed on each coefficient of the wavelet (aij) 

to obtain clean ICs without information loss. However, the 

survey results show that the effectiveness of the generated 

interference cancellation will be reduced when appearing 

some artifacts with the amplitude of continuous change in a 

narrow range; the reason is caused by the flexibility of the 

threshold value that has not kept up with the rapid & 

continuous changes in the amplitude of the artifact. 

From (6), it is easy to see that the threshold value (T) is 

related to both parameters, that is the average amplitude value 

of the wavelet coefficients (aij) and the length of the data 

segment (k), but the change of segment 'k' does not have much 

effect on the threshold value (T); the parameter that mainly 

affects the T value is aij's amplitude (If aij's components that 

are mainly artifacts, then the change of the average artifact 

amplitude will be main factor to changes T value 

significantly). Because as explained above, 𝑇 =

𝜎√2 𝑙𝑜𝑔( 𝑘) ∼ 2.79𝜎  and 𝜎2 =
𝑚𝑒𝑎𝑛(|𝑎ij|)

𝑐
, so the threshold 

level will be closely related to the average energy of the signal. 
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Thus, in some cases, when the ECG recording signal is 

contaminated with many artifact components with rapidly and 

continuously varying amplitudes in a narrow range, the soft 

threshold level (T) will change suddenly, causing signal 

distortion after noise cancellation; in other words the threshold 

will not be flexible enough to eliminate the artifacts 

effectively. 

The proposed model is as shown in Figure 7. 

 

 
 

Figure 7. Model of combining wICA and adaptive filter in 

artifact suppression (wICAAF) 

 

Based on the wICAAF model, the threshold values 'T 

values' will be adjusted to suit the variation of the artifact. The 

desired response inputs (d1~d9) are applied to evaluate the 

estimation errors (e) of the output signal from the system (after 

denoising); e value is the basic parameter used to adjust the 

threshold T according to the principle: the next T value tends 

to reduce 'e value' to zero. 

The threshold level T will limit the amplitude values on each 

wavelet coefficients (aij) according to the formula (**); where 

e1, …, e9 are estimation errors of 9 channels and calculated by 

difference of (di–yi); emean: the mean of estimation errors on 9 

channels, C1, …, C9: ECG channels, y1….y9: 09 channels after 

denoising, d1, …, d9: desired response for 9 ECG channels; m 

is the number of wavelet coefficient (in our study, m=6)  

'Estimation error - e' is calculated by the mean of the error 

function over the output channels:  

 

( )

( )

i

i
i

e

e mean e
n

= =


 for i {1...n} with n=9 

(11) 

 

The estimation error ei will be applied to each adaptive filter 

on the system, and the adaptive filters is considered as nominal 

filters. The value of e also can be used to evaluate the 

efficiency of the whole system in the case of combining and 

uncombing with adaptive filtering model. 

From the wICA system, the research team has developed an 

algorithm for the wICAAF system, the method of removing 

artifacts on the wavelet coefficient is implemented according 

to the formula below. 

 

[ ( )][ ( ) ( )]  ( ) ( )
ˆ ( )

( )  ( ) ( )

ij ij ij ij ij

ij

ij ij ij

sign a t a t T t if a t T t
a t

a t if a t T t

 − 
= 



 (12) 

 

With �̂�𝑖𝑗(𝑡) are the signal components after removing the 

artifacts at time t; aij(t) are wavelet coefficients at time t for 

i{1…9) and j{1…m}, in our study m=6; Tij(t) is the threshold 

level at time t in the ith independent component, the jth wavelet 

coefficient. 

Because there are some types of artifact, which converge on 

only a few bands, but their amplitude varies rapidly and 

continuously, thereby reducing the ability of the system to 

eliminate artifacts; this is also the main cause of the estimation 

error (ei) or the deviation between the output signal and the 

desired response. With wavelet coefficients that wasn't 

affected by artifacts, aij's amplitude value would be relatively 

stable; the estimated error (ei) would be close to zero. With the 

above analysis, we set up the formula for threshold T:  

Following formula (8), 

 

,2log 79( 2) ~T k = ; 2
( )jkmean a

c
 =  

 

( ))
1

1

ij t
t

t

meab a e

c
 +

+

+
=  (13) 

 

1 1 2logt tT k+ +=  (14) 

 

For et is the mean of the estimation error at time t, 

( )
1

ij
t

mean a
+

is the mean absolute value of the wavelet 

coefficients at time (t+1) and 1tT +  is a threshold value at time 

(t+1); ei=mean(di)–mean(yi). 

With some ICs that was not affected by artifacts at time t, 

the estimation error at time t (et) will correspond to zero; so at 

time t+1, the threshold value T would have no the correction. 

Thus, the threshold value is only corrected at the time of the 

impact of the anomalous artifact. 

Advantage: methods using soft threshold T in artifact 

suppression for better signal quality, especially they retain 

detailed and useful information of cardiac activity to support 

diagnostic jobs for pathological phenomenons. 

Disadvantage: The artifact removal is also approximate; 

moreover, this adaptive threshold value would be changed 

only when the impact of the artifact caused appearing the 

estimation error value at the output. Thus, the change in 

threshold values wasn't really timely and optimal. 

 

 

3. EXPERIMENTS AND DISCUSSION 

 

Experimental data from the data bank, available at 

www.physionet.org were obtained from 25 subjects 

participating in our experiment, evaluation data were selected 

40 random signal segments on consecutively each subject. The 

database system on each subject is segmented into epochs, a 

10-second data segment with a sampling rate of 800Hz, the 

subjects participating in the experiment all had a history of 

heart disease, and are currently being monitored and treated at 

Campbelltown hospital - Australia [24].  

Before using the data in the artifact suppression and 

evaluation experiments, the data is preprocessed through a 

bandpass filter with a cutoff frequency from 0.5 ~ 150Hz to 

remove some basic noise which are out-of-band frequency of 

the useful signal components, so that the system can mainly 

focus on eliminating the complex interference components 

that mix in the recorded signal. 

A correlation coefficient is a numerical measure of some 

type of correlation, meaning a statistical relationship between 
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two variables. In our study, the correlation value will be used 

to evaluate the correspondence of the signal after artifact 

suppression and the reference signal. 

Some clean epochs were extracted manually by technical 

experts on the total of 09 channels for every subject what were 

used as desired response of the adaptive filter system. The 

effectiveness of the artifact suppression process will be 

analyzed and evaluated based on the correlation coefficient R 

between the output signal of the wICAAF system and the 

reference signal (Rmax=1). The window width k is set to 800 

corresponding to 01 second of data and the wavelet function 

used is Daubechies. 

The effectiveness of the new artifact suppression method 

will be evaluated based on the comparison of the wICAAF 

system with previous methods such as ICA, wICA. The 

correlation coefficient between the signal after denoising and 

the reference signal (desired response) of all three methods 

ICA, wICA, wICAAF is performed on all 9 channels as 

described in Table 2. 

Table 2. The comparison table of r value in artifact removal 

between wICA & wICAAF method 

No Unipolar leads 
R value 

ICA wICA wICAAF 

1 I 0.9195 0.9595 0.9708 

2 II 0.9266 0.9636 0.9786 

3 III 0.9182 0.9762 0.9818 

4 V1 0.9249 0.9549 0.9841 

5 V2 0.931 0.9697 0.9933 

6 V3 0.9208 0.9796 0.9855 

7 V4 0.9038 0.9812 0.9817 

8 V5 0.9105 0.9573 0.9796 

9 V6 0.9094 0.9794 0.9934 

Mean 0.9183 0.9690 0.9832 

The correlation coefficients were calculated by 𝑅 =
𝐶𝑥𝑦

𝜎𝑥𝜎𝑦

(Cxy is the co-variance of x and y, and R≤1) for 𝐶𝑥𝑦 =

𝐸{(𝑥 − 𝜂𝑥)(𝑦 − 𝜂𝑦)} , 𝐸{𝑥} = 𝜂𝑥 , 𝐸{𝑦} = 𝜂𝑦 , 𝜎𝑥 =

√𝐸{(𝑥 − 𝜂𝑥)2} and 𝜎𝑦 = √𝐸{(𝑦 − 𝜂𝑦)2} [25].

With x is the reference signal (which is manually cleaned by

experts and used as a desired response); y is the signal after 

going through the wICAAF system; ⋮ 𝜂𝑥 =  �̅� {the mean of

x(i)}; 𝜂𝑦 =  �̅�  {the mean of y(i)}; 𝐶𝑥𝑦 = 𝐸{(𝑥 − 𝜂𝑥)(𝑦 −

𝜂𝑦)} is caculate by the fomular 𝐶𝑥𝑦 = 𝐶𝑜𝑣(𝑥, 𝑦) =
∑(𝑥−�̅�)((𝑦−�̅�)

𝑛−1
and 𝜎𝑥

2 =
∑(𝑥−�̅�)2

𝑛−1
; 𝜎𝑦

2 =
∑(𝑦−�̅�)2

𝑛−1
 with (n-1) is the 

number of samples in each epoch that removed artifact. 

The correlation coefficient will evaluate the similarity 

between the signal after noise suppression and the desired 

response; As a result, the mean value of the correlation 

coefficient on a total of 09 channels showed that the quality of 

artifact cancellation of the wICAAF system was improved 

significantly since the R mean value reached 0.9832, while the 

R value of the system ICA system only achieved 0.9183 and 

wICA system also achieved 0.9690. 

The green line below is the signal after denoising by wICA 

and the red line above is the signal after going through the 

wICAAF system. 
Completely removing unwanted independent components 

(ICs) can cause information loss, however setting a threshold 

level with low flexibility as described in the wICA method can 

still cause useful information loss from the recording signal. 

The adaptive thresholding solution on wavelet coefficients has 

shown positive results compared to the traditional method, 

both improving the artifact suppression of the system and 

allowing to reduce distortion of the recorded signal as showed 

on Figure 8. 

Figure 8. Artifact suppression and signal distortion by the 

wICA and wICA combined adaptive filter (wICAAF) model 

4. CONCLUSION

In this study, the author has proposed the wICAAF model, 

a solution that combines wICA with adaptive filtering in 

artifact suppression, the proposed model has overcome the 

inherent limitation of wICA that is reduced efficiency when 

appearing abnormal artifact components, rapidly changing in 

both amplitude and frequency, especially EMG components. 

The proposed method has proved to have many advantages 

over the previously used methods based on the positive data of 

experimental results. This interference cancellation model can 

be effectively applied to the artifact cancellation of the ECG 

signal in particular, or the biomedical signal in general; It is 

also effective in applying interference suppression to 

acquiring the data on the multi - channels system similarly. 
However, the processing data are only taken from the 

biomedical data bank to apply in our experiments, many 

specific pathological states of cardiovascular problems have 

not been mentioned. In fact, there are many different 

cardiovascular conditions that greatly influence the recording 

of ECG signals. So a more comprehensive assessment will be 

the task of research team in the future; the number of 

participants and the epoch number on each subject also 

increasing significantly in the next author's experiments. 
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