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Image similarity assessment is a fundamental aspect of real-world applications and 

plays a crucial role in image processing. The structural similarity index (SSIM), which 

relies on statistical properties between two digital images, has been widely adopted. 

However, it struggles to detect or measure similarity at low peak signal-to-noise ratios 

(PSNR). In this study, a novel approach to image similarity for evaluating gray image 

quality is presented, termed Binary Relation Fuzzy Soft Matrix Image Similarity 

Measure (BR-FS-ISM). This method utilizes a fuzzy soft matrix-theoretic technique 

based on a new binary relation fuzzy soft matrix. The proposed BR-FS-ISM approach 

was tested under Gaussian noise conditions. Simulation results demonstrate that the 

novel BR-FS-ISM method outperforms the well-established SSIM metric, exhibiting 

the ability to detect and measure similarity at very low PSNR levels, with an average 

difference of approximately 10 dB. This paper suggests that the BR-FS-ISM approach 

offers a promising alternative to conventional statistical similarity measures for image 

quality assessment. 
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1. INTRODUCTION

Traditional mathematical methods have proven insufficient 

for addressing numerous real-world problems across various 

fields. In 1965, Zadeh [1] introduced the groundbreaking 

theory of fuzziness, which paved the way for other well-

known set theories, such as intuitionistic fuzzy, vague, rough, 

and interval mathematics. Subsequently, in 1999, Molodtsov 

[2] proposed the soft set theory as a novel tool for dealing with

uncertainty. Possible practical applications of soft sets in

various problems have been explored by Molodtsov [2] and

other researchers [3-5]. Aktaş and Çağman [6] demonstrated

that every fuzzy set could be considered a soft set, suggesting

that this theory is more general in nature.

In many instances, it is essential to compare two sets, which 

may be fuzzy, soft, vague, etc. Researchers often aim to 

determine whether two images or patterns are identical 

(similar), approximately identical (similar), or at least the 

degree to which they are identical (similar). Several 

researchers, including Chen et al. [7-9], Hong and Kim [10], 

Li and Xu [11], Pappis [12], Pappis and Karacapilidis [13], 

and others [14, 15], have investigated and resolved the 

problem of similarity measurement between fuzzy numbers, 

fuzzy sets, and vague sets. Recently, Majumdar and Samanta 

[16] and Williams and Steele [17] have introduced the study

of similarity measures for soft sets and intuitionistic fuzzy soft

sets. Similarity measures have extensive applications in

various fields, such as pattern recognition, image processing,

region extraction, coding theory, psychology, handwriting

recognition, and decision-making.

Image similarity assessment is a critical aspect of practical 

applications. Image quality measurements play a significant 

role in image processing, as they can be employed to adjust or 

modify image quality and improve parameters in numerous 

image processing applications, such as image compression, 

image restoration, and image enhancement. Machine quality 

assessment aims to develop methods for objective quality 

assessment in comparison to subjective human image quality 

assessment [18]. 

A straightforward method to measure the similarity between 

two images (the original and the noisy version) is to calculate 

the mean squared error (MSE). Although easy to compute, 

MSE exhibits weak performance in pattern recognition [19]. 

The first notable objective measure was proposed by Wang 

and Bovik [20] in 2004, wherein image distortion was 

measured as a combination of three types of distortion: 

contrast, luminance, and correlation. 

The above statistical measure called, (SSIM), used distance 

covariance to measure the similarity based on statistical 

properties or measurements such as mean and standard 

deviation as; 

ρ(x, y) =
(2−μx−μy+C1)(2σxy+C2)

(μx
2+μy

2+C1)(σx
2+σy

2+C2)
(1) 

where, ρ(x,y) is the (SSIM) between two images x and y 

(original image and corrupted image), μx,μy are the statistical

means, and σx
2 , σy

2  statistical variances of pixel values in

images x and y resp., σxy is the statistical covariance between

two images, while the constants are given by C1 = (K1L)2 and

C2 = (K2L)2, and where K1 and K2 are small constants, L is

the maximum value of pixel (=255). 

(SSIM) gives high image-similarity for noise free condition 

while it fails when noise begin increases.  

The main motivation of this study is to associate and apply 

an important and well-known theory (fuzzy soft matrix theory) 
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in mathematics with an important topic in image-processing 

(measurement of image- similarity). In addition to the need for 

a more efficient image- similarity measure. 

There are many image- similarity measures in this manner, 

such as, information theoretic (HSSIM) [21], a hybrid 

(statistical and information theoretic ITSM [22], etc. 

The above- similarity measures are depended on statistical 

or (and) information theoretical properties.  

Now,  we utilize a new scale measurement in this paper, 

(Fuzzy Soft Matrix-Theoretic Approach) to test similarity. 

Which we named it (Binary Relation Fuzzy Soft-Matrix-

Theoretic), and show excellent results (i.e., its superior 

performance versus the classical statistical-similarity measure 

(SSIM) under additive Gaussian noise with several ratios of 

signal to noise. by ability to detect or measure similarity under 

very low PSNR. The average difference between the two 

image- similarity measurement is about 10dB. 

In Section 2 of this article, we mention main definition and 

concept of Binary Relation-Fuzzy Soft Matrix and then we 

introduce our new measure in detail with algorithm. In Section 

3, we explain a test environment of the proposed BR-FS-SM 

measure. Section 4 presents the main results and discussion. 

Section 5 shows the performance under Gaussian noise, and 

section 6 contains the conclusions of our new measure with 

illustrative figures.  

 

1.1 Related work 

 

Application of fuzzy soft (set) matrix-theory in image-

processing is possible, when assuming that we can treat 

images as Binary Relation-Fuzzy Soft Set (Matrix). 

There are some works in image-processing used definitions 

of fuzzy, and fuzzy soft sets or some types of them (i.e., treat 

images as fuzzy, and fuzzy soft sets or some types of them). In 

the following, some of them are mentioned;  

Using the fuzzy set for edge detection is proposed in the 

study [23], an image is considered or taken as a fuzzy set and 

pixels are considered as elements of fuzzy set. That proposed 

measure converted the color images to a partially segmented 

images; finally, an edges detector is convolved over the 

partially segmented images to obtain an edged image. Also, an 

image segmentation measure using intuitionistic fuzzy and a 

new membership function is proposed in the study [24] by 

using restricted equivalence mapping, for finding the 

membership values of the image pixels. 

In the study [25], in intuitionistic fuzzy sets, the information 

carried by the degree of membership and the degree of non-

membership as a vector representation with the two elements, 

a cosine similarity approach between two intuitionistic fuzzy 

sets is proposed, it applied to pattern- recognition in image-

processing. And in the study [26], A new Texture Image-

Segmentation approach using Fuzzy Color Aura Matrices. 

Also, a new technique has been employed for the development 

of an optimum edge detection algorithm using fuzzy soft sets 

by using fuzzy soft relations [27].  

Most of the previous work researchers used the definition 

of the fuzzy set (or fuzzy soft), and it does not fully correspond 

to the mathematical definition of a digital image (digital image 

is a binary function). Therefore, we have introduced a new 

definition that is more compatible with the definition of a 

digital image [28]. Which we will use as a basic idea in this 

research. 

In this paper, we present Binary Relation-Fuzzy Soft Matrix 

theoretic image-similarity measure and show superior 

performance vs. the classical (statistical) similarity (SSIM) at 

Gaussian noise with deferent and various ratios of signal to 

noise.  

 

 

2. BINARY RELATION-FUZZY SOFT MATRIX- 

THEORETIC MEASURE 

 

First, we review the definitions given by us in the studies [2, 

28], that was relied upon in designing the new Image- 

similarity measure. 

 

2.1 Binary relation-fuzzy soft matrix 

 

Let 𝔄 be an initial universe set and ℰ1, ℰ2 be two different 

sets of parameters. Let 𝒫(𝔄) denotes the power set of 𝔛. A 

binary relation fuzzy soft set over 𝔄 , denoted by 𝒷𝒻𝓈  is 

representing by a composite of membership function of fuzzy 

set w.r.t. power set #𝒻: 𝒫(𝔄) → I ; I=[0,1], with binary 

relation soft set 𝓈: ℰ1 × ℰ2 → 𝒫(𝔛), Then #𝒷𝒻𝓈: ℰ1 × ℰ2 → I, 
is a membership function of binary relation fuzzy soft set 

where;  

 

#𝒷𝒻𝓈(ei, ej) = (#𝒻o𝓈)(ℶi, 𝔭j) , ∀ (ℶi, 𝔭j)  

∈ ℰ1 × ℰ2, where ℶi ∈ ℰ1 and 𝔭j ∈ ℰ2,

i = 1, … , m ;  j = 1, … , h  
 

i.e., 𝒷𝒻𝓈 = {((ℶi, 𝔭j), (#𝒻o𝓈)(ℶi, 𝔭j)) , for all (ℶi, 𝔭j) ∈ ℰ1 ×

ℰ2, s. t. ℶi ∈ ℰ1 and 𝔭j ∈ ℰ2, i = 1, … , m;  j = 1, … , h } 

Then binary relation fuzzy soft matrix (also proposed by 

Abd Alhussain and Hassan [28]) denoted by ℳ𝒷𝒻𝓈 such that 

its membership function is # ℳ𝒷𝒻𝓈 ∶  ℰ1 × ℰ2 → I. (i.e., the 

Binary Relation-Fuzzy Soft Matrix ℳ𝒷𝒻𝓈 can be represented 

as the Table 1: 

 

Table 1. The binary relation-fuzzy soft matrix ℳ𝒷𝒻𝓈 

 

𝓜𝓫𝓯𝓼 (ℶ𝐢 ∈ 𝓔𝟏) Columns 

(𝖕𝐣 ∈ 𝓔𝟐) 

Rows 

#ℳ𝒷𝒻𝓈(ℶi, 𝔭j) = 𝓇, for all (ℶi, 𝔭j) ∈

ℰ1 × ℰ2s.t. ℶi ∈ ℰ1 and 𝔭j ∈ ℰ2, i =

1, … , m;  j = 1, … , h, where h and j are 

finite, and 𝓇 ∈ I , I=[0,1] 

 

The set of parameters ℰ1 represent the columns of binary 

relation fuzzy soft matrix, i.e., ℶ1 represents the first column, 

ℶ2  represents the second column, …, and ℶm  represents the 

last column. 

And the set of parameters ℰ2 represent the rows of binary 

relation fuzzy soft matrix, i.e. 

𝔭1 represents the first row, 𝔭2 represents the second row, …, 

and 𝔭h represents the last row.  

Based on the above definition, we will design a novel 

image- similarity approach as follows. 

 

2.2 Rationale 

 

We noticed that (SSIM) which introduced in the study [2] 

gives good results of similarity; however, (SSIM) fails at low 

PSNR. So, we need an improver approach that can perform 

well at low (PSNR). We utilized the Binary-Relation fuzzy 

soft matrix to get the enhanced image-similarity measure (BR-

FS-ISM); also, we tested the two measures (SSIM) and (BR-
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FS-ISM) at disruptive conditions such as Gaussian noise. 

 

2.3 The proposed binary relation-fuzzy soft- image- 

similarity measure 

 

The design of the similarity approach (SSIM) was depended 

on statistical concepts on images. In this work we focus on 

Fuzzy Soft - theoretic concepts, specifically the Binary 

Relation-Fuzzy Soft Matrix, and propose the following Binary 

Relation-Fuzzy Soft Matrix - dependent approach.  

Firstly, we propose an error estimate between a Binary 

Relation-Fuzzy Soft Matrix of original image x and a Binary 

Relation-Fuzzy Soft Matrix of noisy version y of it.  

The Binary Relation-Fuzzy Soft Matrix - theoretic (BR-FS) 

measure can be designed as the following algorithm: 
 

Algorithm 

 

Step 1: Input the original Image x, convert it to the Binary 

Relation- fuzzy soft matrix (ℳ𝒷𝒻𝓈(x)), then induce the noisy 

version (ℳ𝒷𝒻𝓈(y)) from (ℳ𝒷𝒻𝓈(x)). 

Step 2: Compute the Binary Relation- Fuzzy Soft 

complement for ℳ𝒷𝒻𝓈(x) , ℳ𝒷𝒻𝓈(y)  (i.e., [ℳ𝒷𝒻𝓈(x)]c , 

[ℳ𝒷𝒻𝓈(y)]c) respectively. 

Step 3: Compute ℳ𝒷𝒻𝓈(x) ∗  ℳ𝒷𝒻𝓈(y)  and 

[ℳ𝒷𝒻𝓈(x)]c ∗ [ ℳ𝒷𝒻𝓈(y)]c , where * is the matrix multiply. 

Step 4: Find the maximum of (ℳ𝒷𝒻𝓈(x) ∗  ℳ𝒷𝒻𝓈(y)) 

and ([ℳ𝒷𝒻𝓈(x)]c ∗ [ℳ𝒷𝒻𝓈(y)]c). 

Step 5: Subtract the maximum value of 1(i.e., subtract 1). 

Step 6: Divide the result above by the square of minimum 

value of (ℳ𝒷𝒻𝓈(x) + ℳ𝒷𝒻𝓈(y) + c) and ([ℳ𝒷𝒻𝓈(x)]c +
[ℳ𝒷𝒻𝓈(y)]c + c), where c is a very small positive constant. 

(The six above steps is to find the error E). 

Step 6: B=mean (E), computes the mean of the values in E. 

Step 7: (BR-FS-ISM)=(B -min(B))/(max(B)-min(B)). 

Step 8: Compute Statistical Measure (SSIM) for Binary 

Relation- fuzzy soft matrix of original image ℳ𝒷𝒻𝓈(X) and 

the noisy version ℳ𝒷𝒻𝓈(Y).  

Step 9: Compare (SSIM) with (BR-FS-ISM). (To deferent 

and same images). 

Now, the Binary Relation-Fuzzy Soft Matrix - theoretic 

(BR-FS) error estimate can be designed as the following: 

 

E( ℳ𝒷𝒻𝓈(x), ℳ𝒷𝒻𝓈(y)) =
[max  ((# ℳ𝒷𝒻𝓈(x)∗# ℳ𝒷𝒻𝓈(y)) ,([# ℳ𝒷𝒻𝓈(x)]c∗[# ℳ𝒷𝒻𝓈(y)]c)]−1

[min  ((#ℳ𝒷𝒻𝓈(x)+#ℳ𝒷𝒻𝓈(y)+c),([#ℳ𝒷𝒻𝓈(x)]c+[# ℳ𝒷𝒻𝓈(y)]c+c))]2  (2) 

 

where, # ℳ𝒷𝒻𝓈(x)  and # ℳ𝒷𝒻𝓈(y)  are a membership 

function of Binary Relation- fuzzy soft matrix of original 

image and the noisy version resp., [# ℳ𝒷𝒻𝓈(x)]c  and 

[#ℳ𝒷𝒻𝓈(y)]c are the complement of them. And c is a very 

small positive constant equal to 1e-6(c=1e-6=1×10-

6=0.000001=1u (micro)), inserted to avoid division by zero. 

Note that computes the mean of the values in E. 

 

Ω(ℳ𝒷𝒻𝓈(x), ℳ𝒷𝒻𝓈(y)) =

 mean (E( ℳ𝒷𝒻𝓈(x), ℳ𝒷𝒻𝓈(y)))  
(3) 

 
Based on the above error estimate a Binary Relation-Fuzzy 

Soft -theoretic similarity measure λ(ℳ𝒷𝒻𝓈(x), ℳ𝒷𝒻𝓈(y)) 

(which we name as (BR-FS-ISM)) can be calculated as follows: 

 

λ( ℳ𝒷𝒻𝓈(x), ℳ𝒷𝒻𝓈(y)) =
Ω−min(Ω)

max(Ω)−min(Ω)
  (4) 

 

where: 

 

0 ≤ λ( ℳ𝒷𝒻𝓈(x), ℳ𝒷𝒻𝓈(y)) ≤ 1 (5) 

 

As in the measure (SSIM), (BR-FS-ISM) ranges between 0 

(dissimilar case) and 1 (identical case). If we denote (SSIM) 

by ρ( ℳ𝒷𝒻𝓈(x), ℳ𝒷𝒻𝓈(y)), then: 

 

0 ≤ ρ( ℳ𝒷𝒻𝓈(x), ℳ𝒷𝒻𝓈(y)) ≤ 1 (6) 

 

 

3. THE TEST ENVIRONMENT 

 

The proposed BR-FS-SM have been tested under effect of 

noise (Gaussian type), which is the most important source of 

noise in many image-similarity systems.  

Different types of images have been used (tested) like; a 

(geometric shape), a (human face), and a (landscape). 

 

 

4. RESULTS AND DISCUSSION 

 

The above algorithm has been simulated using MATLAB. 

Figures 1 to 3 show performance of (SSIM) (ρ(ℳ𝒷𝒻𝓈(x),

ℳ𝒷𝒻𝓈(y))) and (BR-FS-ISM) (λ(ℳ𝒷𝒻𝓈(x), ℳ𝒷𝒻𝓈(y))) 

using similar images at effect of Gaussian noise. Note;0 ≤

λ(ℳ𝒷𝒻𝓈(x), ℳ𝒷𝒻𝓈(y)), ρ(ℳ𝒷𝒻𝓈(x), ℳ𝒷𝒻𝓈(y)) ≤ 1.  

For completely similar (identical) images we have 

λ(ℳ𝒷𝒻𝓈(x), ℳ𝒷𝒻𝓈(y)) = ρ(ℳ𝒷𝒻𝓈(x), ℳ𝒷𝒻𝓈(y)) = 1;  

while for totally different (dissimilar) images we have 

λ(ℳ𝒷𝒻𝓈(x), ℳ𝒷𝒻𝓈(y)) = ρ(ℳ𝒷𝒻𝓈(x), ℳ𝒷𝒻𝓈(y)) = 0.  

We also implemented the Binary Relation-Fuzzy Soft-

Theoretic based measure ((BR-FS-ISM)) as per equation 

(3). Ω(ℳ𝒷𝒻𝓈(X), ℳ𝒷𝒻𝓈(Y)) is calculated under PSNR=-50 

dB (total noise). 

 

 

5. PERFORMANCE UNDER GAUSSIAN NOISE 

 

After we implemented the Binary Relation-Fuzzy Soft-

Theoretic based measure (BR-FS-ISM) as in the Eq. (4) and 

(SSIM) as in the Eq. (1), their performance of measure 

similarity is tested at noisy conditions, especially, when the 

second image is corrupted with the noise. Peak signal to noise 

ratio was used in this implementation as the following: 

 

PSNR =  
L2

pn

 

 

where, L=1, and pn is the Gaussian noise variance (power).  

A maximal error can be taken or considered when noise 

power is very high (PSNR=-50 dB). 

The result when using two similar images (an original 

image and a noisy version of it) is shown in Figures 1-3 for 

different and various types of images: Human face, landscape, 

and geometric shape. We used the different images "coins" and 

"cameraman" from MATLAB, and a human face from the 
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famous face database AT&T [28]. 

 

 
(a) 

 

 
(b) 

 

Figure 1. Performance of (BR-FS-ISM) and (SSIM) at 

landscape image with Gaussian noise: (a) The two test 

images (MATLAB Cameraman); (b) Similarity versus 

PSNR(dB) 
Note: Clear that (BR-FS-ISM) outperforms (SSIM) by its ability to measure 

similarity at low PSNR (almost the difference is 10 dB). 

 

 
(a) 

 

 
(b) 

 

Figure 2. Performance of (BR-FS-ISM) and (SSIM) at 

geometric images (also from MATLAB) 
Note: Clear that (BR-FS-ISM) still outperforms (SSIM) by its ability to 

measure similarity under low PSNR (almost the difference is 10 dB). Note 
and compare with Figure 1. 

 

The performance of (BR-FS-ISM) as compared to the well-

known (SSIM) shown in Figures 1-3, which consists of a test 

at Gaussian noise. These results show about 10 dB difference 

of ability for (BR-FS-ISM) over (SSIM) to detect and measure 

similarity at very low PSNR. 
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(a) 

 

 
(b) 

 

Figure 3. Performance of (BR-FS-ISM) and (SSIM) at a 

human face pose from (AT&T Database) 
Note: Also Clear that (BR-FS-ISM) still outperforms (SSIM) by its ability to 

measure similarity under low PSNR (almost the difference is 10 dB). Note 

and compare with Figures 1 and 2. 

 

 

6. CONCLUSIONS 

 

We are managed and succeeded to associate and apply an 

important and well-known theory (fuzzy soft matrix theory) in 

mathematics with an important topic in image-processing 

(measurement of image- similarity). In addition, a novel 

Binary Relation- fuzzy soft matrix - theoretic, image-quality 

assessment approach has been proposed and tested vs. the 

most popular similarity measure (SSIM) at the effect of 

Gaussian noise. The approach is depended on Binary Relation-

Fuzzy Soft-Matrix it is shown that the proposed approach (BR-

FS-ISM) outperforms the (SSIM) by almost 10 dB of PSNR in 

Gaussian noisy environments for various and deferent types of 

images. 

As a future work we can apply our new measure in face 

recognition, also we can propose another method for image- 

similarity with bipolar fuzzy soft environment or based on 

Binary-Relation-Multi-Fuzzy-Soft-Matrix which works for 

color images. 
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