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In this study, we introduce a novel subclass of bi-univalent functions, which are of
considerable interest in various fields of mathematics, including complex analysis and
geometric function theory. By employing the property of subordination, we define these
bi-univalent functions as R(t, ¥, 1) and impose constraints on the coefficients |a,,|. Our
investigation provides the upper bounds for the bi-univalent functions in this newly
developed subclass, specifically for n=2, 3, 4, and 5. We then derive the third Hankel

determinant for this particular class, which reveals several intriguing scenarios. These
findings contribute to the broader understanding of bi-univalent functions and their
potential applications in diverse mathematical contexts. Notably, the results obtained
may serve as a foundation for future investigations into the properties and applications
of bi-univalent functions and their subclasses.

1. INTRODUCTION

Let N refers to the collection of functions f analytic in the
open unit disk U ={z:zeCand |z| < 1}. An analytic
function feN has Taylor series expansion of the form:

f(z)=z+Zajzj, (zeUl). (1)
=

The class of all functions in N refers by Ny which are
univalent in U. The Koebe One-Quarter Theorem [1] ensures
that the image of U under each feN, has a disk of radius Y.
Obviously, each fe N, contains an inverse function ! is

satisfying  f'(f@)=z and f(fw))=w,((wl <
r(.1o(f) = 1/,), where,
gw) = f71w) =w — a,w? + (2a2 — az)w?

— (5d3 — 5aa; + al))w* + -+,
(w e U).

2

For two f and & be analytic functions, f is told to be
subordinate to @ in U and written as f(z) < ®(z), if there
exists a Schwarz function w be analytic such that f(z)= @(w(z))
with w(0)=0 and |w(z)|<1, (zeU). A function f€X'is said to be
bi- univalent in U if both f(z) and f*(z) are univalent in U.

In 1967, Lewin [2], for all function fer” of the form (1), and
let T refer to the class of bi-univalent functions in U. The
second coefficient of f satisfyies the estimate |a,|<1.51. In
1967, Brannan and Clunie [3] conjectured that |a,| < /2 for
ferl. After that Al-Shags [4] proved that |a,| = 4/3. In 1985
it was stated that Brannan-Clunie conject for bi-starlike
function [5]. Brannan and Taha [6] gained evaluation
estimates on the initial coefficients |a,| as well as |as| for
functions in the classes of bi- starlike functions of order p
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denoted EG(p) and bi-convex functions of order p symbol
Ya(p). For all of the function classes E;(p) and Yo(p), non-
sharp estimates on the first two Taylor-Maclaurin coefficients
were found in studies [6-10]. Many researchers [10-15] have
studied numerous curious subclasses of the bi-univalent
function class © and observed non-sharp bounds on the first
two Taylor-Maclaurin coefficient. As well as the coefficient
problem for all of the Taylor-Maclaurin coefficient |a,|,
n=3,4,... is as yet an open problem [2, 16].

Noonan and Thomas [3] defined g™ Hankel determinant of
f, in 1976 for n>1 and g>1 by:

an An+1 - Anig-1
An+1 A2 - An+q

H,(n) = . . ,(a; = 1).
An+q-1 Qn+q -+ OAni2q-2

For g=2 and n=1, we know that the function H,(1) = a5 —
a3 .The second Hankel determinant Hx(2) is given through
|H,(2)| = |aya, — a?| for the classes of bi- starlike and bi-
convex [17, 18] and third Hankel determinant, this functions
are studied by Babalola [19] functional given by:

a, a4 as
H;(1) = |22 az a4 (a;=1) and (n=1,q = 3).
a; a, as

By applying triangle inequality for Hs(1) we have:

[Hy (D] < |asllazas — az?| — |asllas — azas] 3)
+ las|las — ay?|.

The Chebyshev polynomials are divided into four kinds.
Chebyshev polynomials, which we include in this idea, play
an important role in numerical analysis and mathematical
physics. The majority of research papers on real orthogonal
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polynomials of the Chebyshev family include primarily
findings of Chebyshev polynomials of the first and second
kinds, Tn(x) and Un(x), as well as their numerous uses in
diverse applications [20, 21]. Known widely sundry of the
Chebyshev polynomials are the first and second kinds. In the
case of real variable x on (1), the first and second kinds of
Chebyshev polynomials that you are familiar with are:
Tn(X)=cos(n arccosx),

n[(n+1)arccos x] __ sin[(n+1)arccos x|
J1-x2

Up(x) =2

sin(arccos x)

The function stated below was taken into consider ion in this
work: N(t,z) = ——— t € (% 1),z ev.

1-2tz+z2’
It is familiar that if r=cos p, p € (o,g). Then N(t,z) = 1 +
w Sin[(n+1)p] ,

Z"=1 sinp z

(8cos3p — 4cosp)z® + -+, z € U, that is:

=1+ 2cospz + (3cos?p — sin?p)z? +

N(t,z) =1+ U (t) z + Uy (£)22% + U3 (t) 23 + Uy(t)z*

1
poce(ia)oen, “@
where,
Un(t) _ sin[(n+1)arccos t] neN 7

J1-t2 '

where, Uy(t) are the second kind Chebyshev polynomials. It is
understood from the concept of the second kind Chebyshev
polynomials that U, (t) = 2tU, (t) — U,_,(t).

We get that

U (t) = 2t, Uy(t) = 4t2 — 1, U3 (t) = 8t3 — 4¢, )
(for each n € N).

Lemma 1:[1] If P be a class of all analytic functions p(z) of
the form:

pE =1+ ) pa”, ©)
n=1
with p(0)=1 and Re{ p(z)} > 0 for all zeU. Then |p,,| < 2,
for every (n=1,2,3,...). This disparity is sharp for each n.
Lemma 2: [22] If peP, then
2p2 =pi+ (@ -pdx,
D(tl 2 _);
AP
a,a, — az’| < e (7 +202" ,
2%4 3 == 4]/2t2
(7 +22)2
max {D (tl TO)I D(tl 2 _)}r
where
_ 4rit? AED+CED
D2 _)_(7+22)2 T2GB+A)*(7+27)2(13+34)
D(t,7y) = 4y?t? C2(&L)

(7422)2 - 8A(E,6)(3+1)*(7+21)2(13+31)’
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4p; = pi +2(4 = pPpix — (4 — pPpx*+2(4 — pH (A — [x[*)z,
for some x, z, with |x| < 1, |z]| < 1.

The aim of this idea is to evaluate the third Hankel
determinant for class of bi-univalent functions.

2. MAIN RESULTS

Definition 1: A function f €%, given by (1) is said to be in the
class R(t,y, 4), if the following conditions are satisfied holds:

1 f(2) , .
; (1—/1)7+/1f (2) +zf"(z2); < N(t, z),
and

A
14
where, y e C\ {0} and 1 > 1,z,w € Uand g = 1, where
the functional g is given by (2).

()

gw)

(1 — A) T + Ag’(W) + Wg”(W)} < N(t, W), (8)

Remark 1: A function f € X, given by (1) is said to be in the
class R(t,y,A) (A =1), if the following conditions are
satisfied holds:

1
]—/{f’(Z) +zf"(2)} < N(t, 2),
and
1
;{g’(W) +wg"(w)} < N(t,w).

Remark 2: A function f € X,, given by (1) is said to be in the
class R(t,y,A),(y = 1), if the following conditions are
satisfied holds:

{
{

Theorem 1: If f is given by (1) belongs to the subclass
R, 7,0, t € (% 1), then

f@)

a1-2 — + Af'(z) + zf”(z)} < N(t,2),

and

a-2a @ +Ag'(w) + wg”(w} < N(t,w).

ifA(§,t) = 0and C(¢,t) =0,

if A(¢, 0 and C(¢, 0,
ifA(§,t) > 0and C(¢,t) < )

if A(,t) <0and C(¢,t) <0,
if A(¢,t) < 0and C(¢,t) > 0,

_|—2e@ 0
INEGLE
A ) = 2y2t{4(3 + 1)3(7 + 22)%[4t3 + 4t% -3t — 1] +
2t(13 + 3)[2(3 + D* — 10t(3 + 1)?(7 +21)% —
8y2t2(7 + 22)?]},

To



CE ) =2y2tB + D24B + D(7 + 2% [t + 4t2 —1] +

2t(13 + 31)[10t — 4(3 + 1)?]}.
Proof: Since f € R(t,y,A). Then, we have

{(1 - )& +Af'(2) + Zf"(Z)} = N(t, m(2),

and
{(1 — A)M + g’ (w) + wg"(w} N(t,n(w)).

Let p, g €P is defined as by follows

p(z) = 1+5@ _ 4 + piz+ pyz?+ pyzd +-
1-8(2)
and
1+9(w) _
qlw) = T =1+qw+qgw?+qgswd +-

It follows that:

—(z) ! Z+l _p_12 72
p)+1 2P T 2\P2T

1 p3
+2 Pz —pip2 t z3+-

S(z) =

and

_(aw) -1
ow) = (q(w) n 1)

1 1 q?
=§‘I1W+§(Qz —71>W2

1 q3
+§<Q3 — 019z +Tl> w4 e

(10)

(11

(12)

(13)

From (12) and (13), we take into account (5), we can easy

to conclude

N(tS(2) =1+, z+[28 (p, - ’;i) +
0] 42 )
() L L
pi(; +2pip2 — Ps )) 9O (2 4 py (224
ipip + 2+ 2) -2 Ug(t)pl(pl +pip2) +
UL ©pi]| 2* +

Uz(t)

and

RN

N(t,9w)) = 1 +M w+ [M( 4 _q_) n
Ua(t)

Ui()
" q] 2+[1 (q3 0192 + 4)+
qr Us(t) 3 Uq(t) a3
2 ql(q:_7)+ 8 q] +[ (4 73+
3 Uy () 3
q1 %+ZCI1CI2_CI3)) ZT(CIZ Ch(%"‘
3 3
5 q142 + % + %) - §U3(t)CI1(Q13 +q1q2) +
U4(t)qf] w* + e,

WN

Uz(t)

From (10) and (14), we obtain that

(14)

(15)
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3+ U, (t)
— %= 12 P, (16)
7+ 24 U, (1) ANAG)
Y as = 12 (PZ_T1 +ZTP12 (17)
13 + 31 U, (t) p1
y Ay = 2 P3 —Pp1b2 t %
Uy (t) pi
+ 2TP1 P2 — ?1 (18)
Us(t)
+ 38 p3.
Also, from (11) and (15), we obtain that
3+4 U, (t)
- %= 12 91, (19)
2
2263 —a) =22 (0, - L) + 2207 Q0)
134+ 31
- (5a3 — 5aa; + a,)
U, () ‘h
= <Q3 q19; + T (21)
Us(8) at\ , Us(®)
+27q1<q2—71 +—5—ai.
From (16) and (19), we get
Uy (t —yU, (t
aZ:V1() YU (D) 4, 22)
23+ /1) 2(3 +21)
It follows that its
P1=-91- (23)
Subtracting (20) and (17) and considering (22), we get
y2Ui(@®) , . yUL(®)
= - q,). 24

Also, subtracting (21) from (18) and considering (22) and

(24), we find that

1

]—/[(16(13 +31)a, + 8(13 4+ 31))(5a3 — 5a,a;3)]
=4U;(t)(ps — q3)
+ 4(U,(®) = Uy (£))p1 (P2 + q2)
+ 2 ((Us(® = 20,() + U (®) ) p3,

then

0 = —_5(a3 ) 2yUs () (ps —
+Top e s 8(13 4+ 32)
2y(U,(0) — U, (D)
8(13 + 31) p:(p2 +9qz)

+ V(U1(t) =20, + U3(t))
8(13 + 31) Pa,

qs)




since

=5 3 5)’3U13(t) 3 5V3U13(t) 3
7 (@ we) = - 163+ )3 163+ )3
5202 ()p, (p, — a,)
16(3+1)(7+21)°

Thus

_ 572Uf(Op1(p2 — q2) | YU () (ps — q3)
=16+ (7 +20) 4(13 + 32)
U,(t) — U
—Y( 42((12, n 3/11§t)) p:1(p2 +q2) (25)
+ V(U1(t) =20, + Us(t)) 3
8(13 + 34) P1

Thus, form (22), (24) and (25), we get

5v3U3 (Dp3 (p2— 2Ui®pa(ps-
a,a, — as? = y*Ui(©pi(P2=9d2) | ¥*U1(p1(P3—ds)

32(3+2)2(7+241) 8(3+1)(13+341)
y2U1 ©(U2(0-U1(0) _» _ Y2U2(0)(p2—q3)?
8(3+1)(13+31) pi(pz +d2) 16(7+221)2 (26)

Y201 (D)
woiasnn PHULO — 2020 + Us;(0) 3 +

)% —y2U (13 + 31)].
According to Lemma (2) we get
2p,=pf + (4 —pHx and2q, = qf + (4 —q})y, (27)

and

4py = pi +2(4 —p)p1x — (4 —pHpix? (28)
+2(4 —pH(A - [x[*)z,

and

4q; = ¢ +2(4 - qDary — (4 — qP)a1y* +2(4 —
a)(A = ly>)w,
forx,yzwwith x| < 1, |y| < 1,|z| < 1, |w| < 1.
Since (23) p1=_q,, from (27) and (28) we get

4—p? 4—p?
P2 =0z =2 (x =), P2 + Qepf + 2 (x +y),  (29)
and

3 _n2 _p2
P33 —Qqz = pjl + (a=pies 1;1)p1 (x+y)— (a-pi)es 1;1)1)1 (x* +

4p? (30)
y2) + (A - 22z - (1 - lyPw].
According to Lemma (2), we can draw assumptions without
any restrictions that t € [0,2], where T = |p,|.
Thus, substituting the expressions (29) and (30) in (26) and
utilize triangle inequality, letting |x| =7, |y] =Y, we can
easily obtain that

laya, — as?| < by(t,T)(T + Y)?+by(t,7) (3% + 31
Y2)+ by(t, 1)( T 4 Y)+ by (t, D)= F(7,Y), OV

where,

_ Yuim(e-r?)* _ YU tt-2)(4-t?)
by(t,7) = 64(7+22)2 2 0,b,(t,7) = 32(3+A)(13+31) =0,
_573u©t2(4-t2) , y2U; (DU, (Dt2 (4-t3)
= + >
bs(t, 7) 64(3+1)2(7+21) 16(3+A)(13+31) 0,
b4_(t, T) =
YU OB+ Us0-UF () a3+3] t* | y2UR® t(a—t?) 0te
16(3+1)4(13+32) 8(3+0)(13+31) — '

(%,1),1 € [0,2].

Therefore, we must maximize the function. F(J + Y) on the
closed square.

Y={T+Y):7,Ye[01]} for t € [0,2]. Since the
coefficients of the function F( 7,Y) is dependent to variable t
for fixed value of t, we must investigate the maximum of
F(3,Y) respect to t taking account these cases 1=0, t=2 and
1€(0,2).

Let t=0. Then, we write

2112
F(7,Y) = b, (¢t,0) = 2219 (7 4 )2,

4(7+221)2

It is obvious that the maximum of the function is F(7,Y)
occursat (7,Y) = (1,1), and

_ y2Ui(®
max{(F(3,Y):9,Y € [0A]}= F(1,1) = 25 (32)

Now, let =2. In this case, F(J,Y) is constant function as
follows:

F(7,Y) = b,(t,2)
_ YPGB + DPUs(t) - UF (0)(13 + 3)] (33)
B 3+ 1*(13 +32)

In the case T € (0,2), we will examine the maximum of the
function F(J + n) taking into account the sing of I'(7,Y) =
Fi7(0, V) F~(3,Y) — [F(3,Y)]%. We can easily see that by
simple computation, we can easily see that

[(7,Y) = 4b,(t, 7)[2b(t, T) + by (t, 7)].

Since b,(t,7) <0 for all te€ Gl) , T€[0,2] and

2b,(t,T) + b,(t,T) >0, we conclude that T'(7,Y)<O0.
Therefore, the function F cannot have a local maximum in
interior of the closed square I'. Let

ar ={(0,Y):Y€e [0,1]} u{(7,0):7 € [0,1]} u {(1,Y):Y €
[0,1]}u {(,1):7 € [0,1]}.

We may actually demonstrate that the function's
maximum F(J,Y) on the boundary oI of the square T value is
occurs at (7,Y) = (1,1), and

max {F(7,Y):(7,Y)€eodlr}=F(1,1) =
4b,(t, T)[2b,(t,7) + b3(t,T)] + by(t,T) , tE (34)
(% 1), 7 € (0,2).

Let us now define the function D: (0,2) — R as follows:
D(t,t) = 4b,(t,T)[2b,(t,T) + b3(t,T)] + by(t, T), (35)

for fixed value of t.
Substituting the value bj(z,7), j=1,2,3,4 in the (35), we get



852U (1)
(7421)2"°

A OTH+4C(§,0)T3
32(3+A)*(7+21)2(13+32)

D(t,T) =

where,

A, ) =20, (023 + 1)3(7 + 20)?[-U () + 20U, () +
U;(D]+U;(0(A3 +3D)[2B + D* =50, (DB + D37 +
20)% = 2y2UL () (7 + 2213,

CE, ) =y*U; (DB +D*{2@ + V(7 + 21)?[U; (D)
+ 2U,(v)]
+ U;(©)(13 + 3D)[5U, () — 4(3 + 1)?]3},
where,

Uns1(€) = 2tU, () — Up_2(0),
We get that,

U, (t) = 2t, U,(t) = 4t%2 — 1, U3(t) = 8t3 — 4t. Then
A, t) = 2y2t{4(B + 1)3(7 + 22)%[4t3 + 4% — 3t — 1] +
2t(13 4+ 3D)[23 + D)* — 10t(3 + D)?(7 + 21)? —
8y2t?(7 + 22)%1},

CEt) =2y2t3+ D2(4B + D) (7 + 2)?[t + 4t — 1] +
2t(13 + 32)[10t — 4(3 + 1)?]}.

Now, suppose that H(t,t) has maximum value in an interior
of t€[0,2], then

_ AE DT +C(EL)
T 8B+ (7+21)2(13+31)

D'(t, 1)

After some calculations, we take into account the following
cases:

Let A(B,t) =0 and C(B,t) = 0. Then D'(t,7) = 0 ,s0
D(t,7) is an increasing function. Therefore,

Max{D(¢t,7):T € (0,2)} = D(t,2 =) =
A, )+C(Et) y2Ui(b)
2(3+A)4(7+22)2(13+31) (74+224)%

(36)

That is, max  {max{F(7,Y):(3,Y) € [0,1]}:7 €

(0,2)}=H(t,2 -).

Let A(¢,t) > 0and C(§,t) <0.Thent, = "Zgi;) isa

critical point of the function D(t,7). We suppose that
70€(0,2). Since D"'(t,7) > 0, 1o is a local minimum point
of the function D(t, 7). That is the function D(t, 7) cannot
have a local maximum.

Let A(§,t) <0and C(¢,t) <0.Then D'(t,t) < 0. Thus,
D(t, 7) is a decreasing function on the interval (0,2).
Therefore,

max{D(¢t,7): 7 € (0,2)} = D(t, 0 +) = 4b, (t,0) =

y2Ui (0 (37)
(7+24)%

1. Let A(§,t) <0 and ¢(é,t) > 0. Then t, is a critical
point of the function D(t, 7).

2. We suppose that 7o€(0,2). Since D" (t,7) < 0, rpis a local

maximum of the function D(t, ) and maximum value
occurs at z=to. Therefore,

1091

max{D(¢t,7): 7 € (0,2)} = D(t, 7,), (38)

where
4%t c2(&p)
(7422)2  8A(E,6)(3+M)*(7+21)2(13+321)°

D(t,1y) =

Thus from (32) to (38), the proof of Theorem (1) is complete.

Theorem 2: If f is given by (1) belongs to the subclass
Rty 1), t € (g 1), then

la,a; — a,l

t3y3(13+31) —y(3+ 21)3(8t3 —8t2 -2t — 4) cr<2
<{ G+ 7013 + 30 =t (39)
< ty

[, L <Tt<

2(13 + 30) O<t<ow

where

d, + de +12(d; — d,)
3(ds —dy)
4= 14y2 y(4t? — 2t —1)
T716(B + D)(7 +22) 4(13+31) ¢
ty

w =

~8(13 + 32)
and

_ Y213 +30) —y(3 + 1)°(8t® — 8t% — 2t — 4)
B B+ )3(13 +32) '

ds

Proof: From (22), (24) and (25), we get

lazas — ayl
PPul A3 +31) —y(3 + D)3 (Uy (1) — 2U,(1) + Us(D)
- 8(3 + )3(13 +34)
7y2U2()p1(p2 — 92) . YU (D) (p3 —q3)
83+ ) (7 + 21 4(13 +32)
_7(U2(® — U, (D)
4(13 4+ 31)

p3

pi(pz + qz)|-

According to Lemma 2, we assume without any restriction
that 7 € [0,2], where 7 = |p,| thus for n, = |x| < 1,1, =
ly] <1, we get

laas — ay| < d;(ny + 1) +d, (1% +1,%) + ds
= R(M1,12),

where,

7y2U% () t(4 — 12

_7y 1(©t( T)ZO,dz

323+ A)(7 + 24)
>0,

U@ - )¢ - )

! 16(13 + 31)

ds
Y2ULA O3 +3) —y(3 + D3(U, () — 2U, (1) + Us (D)
8(3 + 1)3(13 + 31) t
y(U2(0) — U, () (4 — ) 1
N 4(13 + 30) 20, t(i‘ 1)‘T € [02].

3

By using the same method of Theorem 1, thus maximize
occur at n1=1 and n2=1 in closed square [0,2],



R(1) = 4d, + 2[d, + ds].
Substituting the value of di, dz, ds3 in R(z), we get that
R(t) =d;t(4 —1%) — dy(4 — %) + d3T3,
so that
R(t) = 4d;t— d v — 4d, + d,t* + dsT3,

where
YU
323+ N)(7 421

YU
27 16(13 4 31)

(U0 — U )

h 4(134+310)

YU (A3 +31) -y + D)3(U1 (1) — 2U5(1) + U3 (D)

d3 = 8(3 + 1)3(13 + 31) '
Since
Un+1(t) = ZtUn(t) - Un—z (t):
We get that,
Up(t) = 2t, Uy(t) = 4t* — 1, U5(t) = 8t> — 4t.
Then
4= 14y2 y(4t? — 2t —1)
L7163+ D)(7 +20) 413 +31) '
ty
d> = 8(13 + 31)
and

b = t3y3(13 +32) —y(3 + 1)3(8t3 —8t? — 2t — 4)

T (3 + )3(13 + 31) '
We obtain

R,(T) = 3(d3 - dl)‘tz + 2d2‘[ + 4d1,
= 6(d3 - dl)T + Zdz,

RII (T)

If d; —d; > 0, that is d; > d,, then we have R'(t) > 0.
Thus R(t) is an increasing function on the closed interval [0,2]
and so the function R(t) get the maximum value at t=2, that is

lazas — a,| < R(2)
Y213 +30) —y(3 + A)°(8t — 8t? — 2t — 4)
B (3+21)3(13 +321) '

Ifd; —d, <0,letR'(t) = 0, then we have

d, +\[d22 +12(d; — dy)

T=w= ,
3(d3 —d,)

when ®<t<2. Then we get R'(t) > 0, which means the
function on the closed interval [0,2], thus R(z) gets the
maximum value at R(2), which means the function R(z) is an

1092

increasing function the closed interval [0,2], thus R(z) gets the
maximum value at =0, we have

ty

—_ < = —

|a205 = aal < R(0) 2(13 +31)
The proof of Theorem 2 is complete.

Theorem 3: If f is given by (1) belongs to the subclass
Rty 1), t € (g 1), then

| 2| < N 40
az — a; ST 20 (40)
4t2)/2

<— 41
o1 < G (41)

Proof: By using (24) and Lemma 1, we get that

y2Ui(®
< 42
|a3| - (3 +/1)2l ( )
since

U, (8) = 2¢, (43)

substituting (43) in (42), we get (41).
The following Fekete-Szeg6 functional, for u € C, f €
R(t,y,A)

o, _Q-wy*ui®pt | yU© b — @)
G~ R = T3 ) 4(7 +22) P27 %2
_ YU [ - wyl@© , 1 1
T2 G+nz T+ T Tt

since Uy (t)=2t, then

z_yt[ 1 +sGOp? 1 ]
as — ua; =3 (7+2/1)p2 S\U)P1 (7+2/1)QZ'
where
S )=(1—u)2yt
K="
We conclude that
|a3—ua22| 1
>7
@rtls(l 561 2 5
<
B i 0<| ( )|<;
(7 +22) =WI=m1m

for u=1, we get (40).

Theorem 4: If f is given by (1) belongs to the subclass
Ry, A), t € (% 1), then

y(8t3 — 4t?2 — 5t + 2)

(13 +34) ’ “44)

las| <



las| From (10) and (14), we obtain that
6y [(B+)(4t3 —2t% —t) + (8t* — 8t3 — 2t2 — 2t)]

B+ 2(13+32) (45) @1+41) _U©®( pi  pl 3 )
4y[3(3 + )*(8t3 — 16t + 4) + 16yt(21 + 4/1)] —y BT \PT3 +p1( + 2P1P2 ~P3)
(3 +1)*(21+41) + Uzz(t) 3 o
. 3pi 3 P, D3
Proof: By (25), we have +p1< & toPpet st 2)
3
_ 5y2UF(®pi(p2 — q2) | YU (D (ps — q3) ~gUs(Op @ +pip2) + Us (0.
4= 6B+ (7 + 2 4(13 + 32)
y(U, (1) — U, (1) also, from (11) and (15), we have
Wpl(pZ +qz) o1 a4
y(U:(® - 2U0,() + U3 (D) f(14:124 +3a;? — 21a,%a; + 6aya, — as)
P1- Uy (t 3
Since 813 +34) = 12( )<q4—q72+q1(—+4q1q2
_q3))+ %0 g3 (47)
Un+1(t) = ZtUn(t) —Un_ (t):
3q7 3 4 q3
+q; ' +ZQ1QZ+2+2
we get that,

3
— g Va0 +¢142) + U (D1
U, (t) = 2t, U,(t) = 4t? — 1, U3(t) = 8t3 —

and Lemma 1, we get (44). Subtracting (47) from (46), we get that

0] (e —a) + 3y(3 + ) (13 + 31)(2U, (1) — Uy (1)) + 32U, (6) (21 + 4) (U, (6) — Ul(t))pl )
=21 rap) Pr 43 + D)(13 + 30 (21 + 42) 12
2y(13 +31) (21 + 40 (U, (6) — 2U, (1)) + 3y2(21 + 4D U, (D)p, 3yU3(t)p1
43 + )13 + 30 (21 + 42) (ps = 42) =357 4 37 P2 T 1)
63y3U,*(t)p? 3y2U,%(t)

1603 +/1)2(7+2,1)( 2= )+ 16(7+2/1)( 2~ @2)°
3y (B + DU, () (UL (1) — 2U,(t) + U3(1)) — 4y*(13 + 30U, *(0) ,
16(3 + 1)2(7 + 22) pi

Since U(t)=2t, Uy,(t)=4t>—1, Uz(t)=8t>—4t, and
Lemma 1, we get (45).
Uns1(®) = 2tU,(t) — Uy, (1),

Theorem 5: If f is given by (1) belongs to the subclass

we get that, R(t,y,2), t € (% 1),)/ € €\ {0}and A > 1, then we have
N(D(t,2 -)) = NyN, — N3N, if A(§,t) > 0and C(§,t) >0,
4y2t?
N (max {(7172” D(t,2 —)}) — N,N, — N5N, ,if A5, £) > 0and C(£, 1) < 0,
Hy(1) < by (48)
N<m>—N1N2 —N3N4_, lfA(E, t) < 0 and C(E, t) < 0,
N(max{D(t, t,),D(t,2 —=)}) — NN, — N3N, ,if A(¢,t) < 0and C(¢,t) > 0,
where, N, Ny, N,, N3, N, and (A(¢,t),C(&,t)) are given by [Hs (D) < lasllazay — az?| — laylla, — ayas] (49)
(41), (44), (39), (45), (40) and (9) respectively. + las||las — a5?|.
Proof: Since SUbStltUtmg (41), (44), (39), (45), (40) and (9) in (49), we
get (48).
H3(1) = az(aza, — ‘132) —ay(a, — aa3) + as(a; — . P
a,?), by applying the triangle inequality, we get Corollary 1: If1f is given by (1) belongs to the subclass
R(t,y,1),t e (E' 1) andy € C\ {0}, then we have
( N(D(t,2=)) — NyN, — N3N, if A(§,t) = 0and C(¢,t) >0,
4y°t? .
N (max {W,D(LZ —)}) — N;N, — N3N, , ifA(¢,t) > 0and C(,t) <0,

Hs(1) < - (50)

4y“t
_—) — — N i < <
N((7 21)2) NiN, — N3N,, ifA(§,t) <0and C(é,t) <0,

N(max {D(t,to),D(t,2 =)}) — NyN, — N3N, , ifA(¢,t) <0andC(¢,t) > 0,
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where, N,N;, N,, N3, N, and (A(§,t),C(&,t)) are given by
(41), (44), (39), (45), (40) and (9) respectively with (1=1).

3. CONCLUSIONS

This article presented a comprehensive investigation of the
third Hankel determinant H3(1) for a novel subclass of bi-
univalent functions, R(t,y, 4). This subclass is of significant
interest in various mathematical fields, including complex
analysis and geometric function theory. Utilizing the property
of subordination, we defined the bi-univalent functions
R(t,y,1) and imposed constraints on the coefficients |a,,|.
Our findings provided the upper bounds for the bi-univalent
functions in this newly developed subclass, specifically for
n=2,3, 4, and 5. Furthermore, we advanced the understanding
of these functions by deriving the third Hankel determinant for
this particular class, which revealed several intriguing
scenarios. This achievement led to the improvement of the
bound of the third Hankel determinant for the class of bi-
univalent functions R(t,y,4). Our study contributes to the
broader understanding of bi-univalent functions, their
subclasses, and their potential applications in diverse
mathematical contexts. The results obtained may serve as a
foundation for future investigations into the properties and
applications of bi-univalent functions and their subclasses.
Future research endeavors could explore further refinements
of the bounds, as well as examine other subclasses of bi-
univalent functions to uncover novel insights into their
characteristics and potential applications. Ultimately, this
study paves the way for a deeper exploration of the fascinating
world of bi-univalent functions and their role in the realm of
mathematics.
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