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Vibration analysis of vertically standing plates subject to gravitational forces is crucial 

for designing walls, panels, and windows in building structures. This paper investigates 

the fundamental frequency of a vertically oriented, heavy plate with simply-supported 

edges. A pseudospectral method, a robust numerical technique, is employed to solve 

the governing differential equation incorporating various boundary conditions. The 

study presents frequency parameter values for a range of weight and width parameters. 

Additionally, the numerical technique is extended to determine the frequencies of a 

plate on a Winkler foundation. Comparative assessments are conducted to validate the 

accuracy and reliability of the proposed method.  
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1. INTRODUCTION

Vertically-oriented plated structures are extensively 

employed in various engineering applications, including 

curtain facades, walls, panels, and windows of buildings, as 

well as in propelling missiles and rockets [1]. In these cases, 

the standing plate is subjected to its own weight, and 

accelerating mobile structures can generate body forces 

equivalent to gravity [2]. The body forces developed in the 

mid-plane of the plate, due to its weight or acceleration in its 

plane, influence the plate's stability and natural frequencies. 

Consequently, accounting for the effects of gravity on the 

vibration characteristics of these plates is crucial for designing 

such structures. 

Free vibration analysis of rectangular plates represents a 

classical structural mechanics problem that holds particular 

interest for professionals in mechanical, civil, and aerospace 

engineering fields. The free vibration characteristics of thin, 

uniform-thickness rectangular plates have been 

comprehensively reported by Leissa [3]. Nonetheless, the 

introduction of complicating effects and additional geometric 

or material parameters renders the vibration characteristics 

data virtually limitless [4]. While vibrations of rectangular 

plates with varying properties are well-studied, the vibration 

analysis of standing vertical plates remains relatively scarce [1, 

5]. 

Large standing plates with simply supported vertical sides 

are frequently utilized in walls and windows of buildings [5]. 

For heavy plates, the effect of gravity is a significant factor in 

their design. Moreover, accelerating mobile structures can 

generate body forces equivalent to gravity [6]. Therefore, 

investigating the vibration characteristics of heavy standing 

plates under their own weight can enhance the understanding 

and applicability of these structures in practical engineering 

designs [1]. 

Herrmann [7] is among the early references that employed 

an energy method to study specific cases related to the 

vibration of standing rectangular plates. Yu and Wang [5] used 

the semi-analytical Levy interpolation method to determine 

the fundamental frequency of standing plates with vertical 

simply supported edges. They applied the Levy separation 

method to reduce the governing equation to an ordinary 

differential equation with non-constant coefficients. The two-

point boundary value problem was subsequently transformed 

into two deterministic initial value problems. This method was 

further employed in study [8] to determine the fundamental 

frequencies of a standing plate with simply supported edges 

and weakened by a horizontal internal hinge. Lai and Xiang [1] 

adopted the Discrete Singular Convolution (DSC) method to 

examine the influence of body forces on the buckling and 

vibration behavior of elastically restrained vertical plates. 

Recently, Guguloth et al. [9] presented a free vibration 

analysis of simply supported rectangular plates using ANSYS 

software, although weight was neglected. 

This paper aims to apply the pseudospectral method for 

studying the vibration characteristics of a standing plate with 

simply supported vertical sides. Conventional spectral 

collocation methods that utilize differentiation matrices based 

on Lagrange interpolating polynomials encounter difficulties 

when imposing two boundary conditions at one node. Several 

approaches have been proposed by researchers to address this 

issue [10]. Numerous recursion codes and packages 

implementing spectral collocation methods exist [11-13]; 

however, incorporating general boundary conditions into the 

formulation remains challenging [14]. The proposed 

formulation overcomes the problem associated with the 

imposition of two boundary conditions at one node. The 

technique is first applied to study the free vibration of a heavy 

standing plate and subsequently employed to determine the 

frequencies of a plate on a Winkler foundation. The obtained 

results are compared with the semi-analytical method [5] and 

differential transform method [15]. The motivation for 

utilizing this approach lies in its numerical stability and 

flexible implementation for vibration analysis. 
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2. MATHEMATICAL MODELING

Consider an isotropic standing rectangular plate of height L 

and width aL and uniform thickness h, simply supported on 

the vertical sides with horizontal and vertical sides parallel to 

x,y axis respectively in the x-y plane as shown in Figure 1. 

Figure 1. A rectangular plate with simply supported 

vertical edges 

The bottom edge, bearing the total weight is clamped or 

simply supported and the top edge bearing no load is either 

free or simply supported. By simply supported, we mean a 

plate boundary that is prevented from deflecting but free to 

rotate about a line along the boundary edge. In other words, 

for a simply supported edge, the displacement is zero and the 

moment perpendicular to edge is also zero. A clamped edge in 

a plate is an edge wherein both the deflection and its slope are 

absent normally at an edge of a plate, a twisting moment, a 

bending moment and transverse shear force act. An edge for 

which all of these stress resultants vanish is considered to be a 

free edge. Adopting the classical plate theory and normalizing 

all lengths by the plate height L, the governing equation [16] 

is  
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where, 𝛻4  is the biharmonic differential operator. w is the

lateral deflection, ρ the mass per unit area, g the gravitational 

acceleration, γ the weight parameter, K the frequency 

parameter. 
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where, D is the flexural rigidity and Ω the frequency and υ is 

the Poisson’s ratio. As the vertical sides are simply supported, 

Levy separation of variables is used wherein 𝑤(𝑥, 𝑦) =
𝑠𝑖𝑛 𝛼 𝑥𝑌(𝑦). 

where ,
n

n
a


 =  an integer. Eq. (1) becomes 
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where, the primes denote derivatives with respect to y. The 

boundary conditions to be satisfied at the horizontal edges are: 

0
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The boundary value problem is difficult to solve, even 

numerically [5]. Here a novel pseudospectral method is 

employed to numerically solve the problem. Eq. (2) is to be 

solved with the boundary conditions at y=0 and y=1. When 

the weight is absent and the plate is resting on a Winkler 

foundation with Kw being the foundation modulus parameter, 

Eq. (2) becomes 

2 4 42 wY Y Y K Y K Y  − + + = (6) 

Plates on an elastic foundation are common structural 

elements that are widely employed in many civil engineering 

applications and Winkler model is supposed to be simplest 

model for an elastic foundation. The model assumed that the 

vertical displacement and pressure underneath it is linearly 

related to each other. The foundation reaction is included in 

the governing differential equation of the plate through the 

foundation parameter (Kw). The boundary value problems 

given by Eq. (2) and Eq. (6) are to be solved subject to the 

boundary conditions Eqns. (3)-(5) as required.  

The methodology of solving the boundary value problems 

using the proposed pseudospectral method is outlined in the 

next section. 

3. THE PSEUDOSPECTRAL METHOD

The pseudospectral method can be implemented using 

several approaches. In the literature, the approach of Fornberg 

[11] and the differentiation matrices approach [12, 13] are

generally employed. An analysis of the numerical instabilities

that may occur as the order of the derivative and the number

of nodes are increased has been presented by Sadiq and

Viswanath [17]. In addition, the difficulty in the incorporation

of different boundary conditions in these approaches have led

us to develop an approach of pseudospectral method that is

simple to use and efficient in implementation. The

methodology developed is particularly useful in solving

vibration problems of rods, beams and plates of different

geometries and configurations. The general steps in the

proposed method can be outlined as follows: The physical

domain 0≤y≤1 is first transformed to the computational

domain -1≤t≤1 using the transformation t=2y-1. With this

transformation, 𝐷𝑦
(𝑚)

= 2𝑚𝐷𝑡
(𝑚)

, 𝑚 = 1,2,3,4  where 𝐷𝑦
(𝑚)

 is

the differential operator with the subscript denoting the 

differentiation variable and super script in bracket denoting the 

order of differentiation. To apply the collocation technique, we 

assume 
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where, Tk(t), (k=0,1,2, …) are Chebyshev polynomials that can 

be described as  

 

( )1( ) cos cos , 1 1kT t k t t−= −    

( ) ( )coskT t k=  where 𝜃 = 𝑐𝑜𝑠−1 𝑡 

 

The transformation t=cosθ is exploited here to evaluate the 

derivative directly in terms of the cosine and sine. This change 

of coordinates trick can reduce the error for a given number of 

grid points [18]. The grid points chosen in the paper are the 

Chebyshev-Gauss-Lobatto (CGL) nodes whose Lebesgue 

constant is very close to the optimal. In solving boundary value 

problems, it is opined [19] that CGL nodes often yield the best 

results. In addition, in the implementation of derivatives of 

Chebyshev polynomials using recurrence relations, the 

trigonometric derivative formulas are simpler to use and 

require fewer loops. This is used in the present work. 

The derivatives are given by: 

For -1<t<1; 
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In the collocation framework, we select N-3 points in (0, π) 

and require Y(θ) to satisfy Eq. (2) at these N-3 points in 

addition to satisfying the boundary conditions at the end points. 

The internal points which are the extrema of TN(t) are given by: 

 

( )
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N
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that corresponds to the points 
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Substituting Eq. (7) in Eq. (2) and using Eqns. (8)-(11), an 

equivalent differential equation on 𝜃 ∈ [0, 𝜋] is obtained that 

is collocated at N-3 collocation points given by Eq. (14) 

yielding N-4 equations in N+1 unknowns ak. Imposing the 

boundary conditions, we get a system of four equations in N+1 

unknowns for each of the boundary conditions given by Eqns. 

(3)-(5). The resulting N+1 by N+1 system of equations is 

expressed as a matrix eigenvalue problem and solved using a 

standard eigensolver. There is different eigenvalue solver in 

different software that can be utilized to solve the generalized 

eigenvalue problem. The algorithms used for computing the 

eigenvalues are the Cholesky factorization method or the QZ 

algorithm which is based on the generalized Schur 

decomposition. In general, the two algorithms return the result. 

The QZ algorithm is found to be stable in problems involving 

ill-conditioned matrices and is the main algorithm in the 

eigenvalue solver. 

 

 

4. RESULTS AND DISCUSSIONS  

 

With the plate having vertical simply supported edges, we 

denote the boundary conditions using two letters with the first 

letter denoting the bottom condition and the second letter 

denoting the top condition. For example, if the letters C, S and 

F are used to denote clamped, simply supported and free 

conditions then a plate with clamped bottom and simply 

supported top is denoted by CS. In all the cases, 𝛼 =
𝜋

𝑎
(𝑛 = 1) 

and the Poisson's ration υ is 0.3. The proposed PS method is 

first applied to obtain the fundamental frequency of vibration 

of a rectangular plate under self-weight. The algebraic 

eigenvalue problem obtained is solved for the eigenvalues 

using the eigensolver of MATLAB. The program was run for 

different values of N until we get the frequency parameter 

values correct to six decimal places. The results of the PS 

method obtained for N=25 (26 collocation points) are 

presented. The frequency parameter (𝐾) for the CF, CS and 

SF plates are presented in Tables 1-3 respectively. The results 

obtained using the PS method are compared with the results 

obtained using the semi-analytic Levy-integration method [5]. 

In the tables γ=0 corresponds to the case when self-weight is 

absent. 

The weight parameter γ is varied over the values 0, 7, 20 

and 100 in Table 1; 0, 10, 50, 100, 200 in Table 2 and 0, 10, 

50 and 100 in Table 3 with the width parameter a varying over 

the values 0.2, 0.5, 1 and 2 in Table 1, Table 2 and an 

additional value of a=10 in Table 3. The variation in the 

frequency parameter with variation in 𝑎 and 𝛾 is reflected in 

the tables.  

It is observed that for fixed width as the weight increases, 

the frequency decreases until the plate buckles statically. In the 

tables, the frequency parameter values marked “-’’ means that 

the plate has already buckled. The results obtained using the 

PS method are almost same as those obtained using the semi 

analytic method. In the semi analytic method [5] the method 

of solution is tedious as two-point boundary value problem is 

first converted into two initial value problems and then the 

bisection algorithm was utilized to solve the resulting 
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nonlinear equations. In the present work, the PS method 

efficiently obtains the frequency values with relatively good 

accuracy that is comparable with the results of reference [5]. 

In the second instance, the PS method is used to analyze the 

free transverse vibration of a rectangular plate resting on a 

Winkler foundation. Here the weight is absent and the 

foundation parameter (Kw) takes the values 100, 300 with the 

ratio (𝑎) of width to height taking the values 1.0 and 2.0. The 

values of the frequency parameter (K2) obtained using the PS 

method with N=20 (21 collocation points) are given in Table 

4 for SC and SS plates. It is observed that the frequency 

parameter values are greater in SC plate case than in the SF 

plate case. Further it increases with the increasing value of the 

foundation modulus parameter and aspects ratio.  

The results obtained are compared with those obtained 

using the differential transform method [15]. A comparison of 

the results obtained using the PS method show that the 

formulation can provide highly accurate results in a simple and 

efficient manner. 

Table 1. Frequency parameter K for the CF plate 

γ 

0 7 20 100 

a Ref. [5] PS method Ref. [5] PS method Ref. [5] PS method Ref. [5] PS method 

0.2 15.740 15.739725 15.739 15.739034 15.738 15.737751 15.729 15.729818 

0.5 6.458 6.457703 6.448 6.447648 6.429 6.428792 6.306 6.306385 

1 3.562 3.561932 3.501 3.501093 3.378 3.378442 1.388 1.387723 

2 2.388 2.388276 2.158 2.158045 1.092 1.091664 - - 

Table 2. Frequency parameter K for the CS plate 

γ 

0 7 20 100 

a Ref. [5] PS method Ref. [5] PS method Ref. [5] PS method Ref. [5] PS method 

0.2 16.048 16.048178 16.045 16.045315 16.045 16.033734 16.014 16.018945 

0.5 7.189 7.188482 7.158 7.157805 7.027 7.026795 6.839 6.838520 

1 4.863 4.862748 4.764 4.764093 4.265 4.264998 2.901 2.901079 

2 4.163 4.163142 4.004 4.003524 2.933 2.932533 - - 

10 3.936 3.935991 3.745 3.745056 1.944 1.944364 - - 

Table 3. Frequency parameter K for the SF plate 

𝜸 

0 7 20 100 

a Ref. [5] PS method Ref. [5] PS method Ref. [5] PS method Ref. [5] PS method 

0.2 15.735 15.734484 15.734 15.733494 15.730 15.729524 15.714 15.714396 

0.5 6.419 6.418461 6.404 6.403488 6.341 6.340647 4.491 4.491206 

1 3.148 3.418265 3.316 3.315907 2.623 2.623214 - - 

2 2.008 2.008405 0.958 0.958176 - - - - 

Table 4. The first three frequency parameter values (K2) for plates on Winkler foundation 

SC Plate SF Plate 

Kw a=1 a=2 a=1 a=2 

Ref. [15] PSM Ref. [15] PSM Ref. [15] PSM Ref. [15] PSM 

100 

25.6739 25.673886 52.6330 52.632980 15.3795 15.379479 42.3930 42.392972 

59.4928 59.492822 86.7130 86.71300 29.5028 29.502790 59.9061 59.906048 

113.6690 113.668826 141.2000 141.200112 62.6637 62.663668 95.0114 9.011427 

300 

29.3112 29.311233 54.4998 54.499822 20.8933 20.893262 44.6897 44.689641 

61.1506 61.150600 87.8586 87.8586700 32.7172 32.717192 61.5527 61.552698 

114.5450 114.545196 141.9070 141.906559 64.2397 64.239671 96.0581 96.058166 

500 32.5446 

62.7646 

115.4150 

32.544561 

62.764607 

115.414913 

56.3048 

88.9896 

142.6100 

56.304801 

88.989583 

142.609507 

25.2295 

35.6429 

65.7779 

25.229514 

35.642876 

65.777924 

46.8739 

63.1564 

97.0936 

46.873917 

63.15643 

97.09362 

5. CONCLUSION

The pseudospectral method is employed to analyze the

vibration of a rectangular plate under self-weight and is also 

further used to analyze free transverse vibration of 

rectangular plates of uniform thickness resting on a Winkler 

foundation. The two opposite edges of the plate are assumed 

to be simply supported and different combinations of 
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clamped, free and simply supported conditions are taken on 

the other two edges. The accuracy of the method is confirmed 

via comparison studies and the results obtained show the 

effectiveness of the method for free vibration studies. 
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