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Addressing the global water depletion challenge, this study integrates five supervised 

machine learning algorithms (MLAs) with GIS-based techniques to assess groundwater 

potential. The employed MLAs include Ensemble Boosted Trees (logic-based learners), 

Naive Bayes (NB; statistical learning algorithms), Support Vector Machines (SVM), 

Multi-Layer Perceptron (MLP; Artificial Neural Networks), and k-Nearest Neighbors 

(kNN; instance-based learners). These MLAs were utilized to generate groundwater 

potential maps (GPMs) based on seven influential variables: aquifer unit types, 

transmissivity, lineament density, slope, soil type, land use/land cover, and drainage 

density. Classifier performance was evaluated using metrics such as True Positive Rates 

(TPR), False Negative Rates (FNR), Positive Predictive Values (PPV), False Discovery 

Rates (FDR), and the Area Under the Curve (AUC) of Receiver Operating 

Characteristic (ROC) curves. Results indicate that kNN-based learners outperformed 

other methods, achieving a validation accuracy of 90.70% and an AUC of 1, which 

corresponds to 100% accurate predictions. Ensemble Boosted Trees, MLP, SVM, and 

NB followed, with validation accuracies of 89.7%, 79.4%, 77.6%, and 75.7%, 

respectively. The methodology developed in this study can be applied to estimate and 

manage potential groundwater resources in regions facing water scarcity issues. 
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1. INTRODUCTION

Groundwater serves as a crucial resource in arid and semi-

arid regions, as aquifers offer a sustainable source of high-

quality water throughout the year when rainfall and surface 

water are scarce. Due to climate change, rainfall is anticipated 

to decrease, and droughts are expected to become more severe 

[1]. Generally, the term "groundwater potential" refers to the 

amount of groundwater available in an area and depends on 

various hydrologic and hydrogeological factors. From a 

hydrogeological perspective, this term can be defined as the 

probability of groundwater occurrence in an area or the 

prediction of where the highest borehole yields may be found. 

Proper assessment of groundwater potential can serve as a 

valuable guideline for decision-makers to identify appropriate 

groundwater strategies within an area and manage the aquifer 

system sustainably [2, 3]. 

Methods for mapping groundwater potential zones are 

classified into two categories: knowledge-driven techniques, 

such as the Analytical Hierarchy Process (AHP), which are 

based on expert experiences and thus influenced by specialist 

knowledge and subjectivity, and data-driven techniques, 

which involve probabilistic, statistical, and data mining 

approaches based on the empirical element of groundwater 

assessments [4-6]. Expert-based decision approaches have 

long been utilized, while machine learning is a comparatively 

newer method. A crucial difference between machine learning 

and expert techniques is that machine learning classification 

employs artificial intelligence capabilities to discover complex 

associations between explanatory factors that would otherwise 

remain unnoticed. Consequently, machine learning is well-

suited for mapping complicated, spatially distributed variables 

such as groundwater occurrence [7]. Machine learning (ML) 

uses algorithms that can learn and improve themselves based 

on the experience they gain from collected data to produce 

accurate predictions [8]. ML can be divided into two 

categories: supervised and unsupervised algorithms. In 

unsupervised learning, the algorithm derives patterns from 

data that have not been labeled or otherwise categorized, 

aiming to understand the fundamental structure of the data. 

Since the model does not have a reference for the expected 

output data format, it cannot carry out any training on the 

model. Instead, the model investigates the structure of the data 

so that valuable information may be extracted from it [9]. 

Supervised learning algorithms are the preferred method when 

both input and output variables are clearly labeled. The goal is 

to learn patterns and correlations between variables based on 

prior experience (training data) and then apply that 

information to generate predictions on data that has not been 

seen or is unknown (test data). In supervised learning, two 

subcategories of data can be modeled: classification, in which 

a model aims to predict categorical or class labels, and 

regression, in which the models attempt to predict a 

continuous output. Both classification and regression are 

examples of predictive modeling [10]. The Groundwater 

Potential Mapping (GPM) literature presents several 

supervised classification strategies. 

For instance, Ozdemir [11] employed a binary logistic 
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regression to generate a groundwater spring potential map 

GPM of the Sultan Mountains in central Turkey using a 

logistic regression technique integrated with the Geographic 

Information System (GIS) environment. An area value of 0.82 

was determined for the Receiver Operating Characteristic 

(ROC) curve model, indicating an accurate prediction of 

spring potential in the study region. Additionally, the existing 

groundwater spring test data and the created model were in 

close agreement. Nguyen et al. [12] utilized an advanced 

ensemble machine learning model (RABANN) that combines 

Artificial Neural Networks (ANN) with RealAdaBoost (RAB) 

ensemble approach to evaluate the groundwater potential of 

DakNong province, Vietnam. This work used twelve 

conditioning parameters and well-yield data to generate the 

training and testing datasets. The results indicate that the RAB 

ensemble approach improved the performance of the ANN 

model. With minor modifications to the input data, the 

ensemble-developed model could be applied to map the 

groundwater potential of other regions and countries to 

enhance water resource management. 

Sarkar et al. [13] developed ensemble machine learning 

(EML) algorithms for groundwater potentiality mapping 

(GPM) in Bangladesh's Teesta River basin. These algorithms 

include random forests (RF) and random subspaces (RSS). 

The GPM was verified using the Receiver Operating 

Characteristics (ROC) curve. The random subspaces machine 

learning (RSS) model, with an AUC of 0.892, was determined 

to be the most accurate representation model for groundwater 

potentiality modeling, followed by random forests with an 

AUC of 0.86. The RSS model outperforms the RF mode in 

terms of groundwater potentiality models since a higher AUC 

indicates more accurate predictions of the model's output. 

Phong et al. [14] proposed three unique ML hybrid models: 

modified RealAdaBoost (MRAB-FT), bagging (BA-FT), and 

rotation forest (RF-FT). All models are functional tree (FT) 

base classifiers capable of handling binary and multi-class 

target variables for GPM modeling in the DakLak region of 

Vietnam. This study employed a threshold value greater than 

2 L/s for selecting training and testing datasets for 

groundwater classification as groundwater and non-

groundwater.  Standard statistical methods assessed how well 

the created models performed (PPV, NPV, SST, SPC, Kappa, 

RMSE, and ROC). The analysis' findings demonstrated that all 

of the unique hybrid models that had been created had high 

predictive abilities, but the model MRAB-FT performed the 

best in terms of recognizing groundwater potential zones. 

Tamiru et al. [15] assessed the effectiveness of artificial 

intelligence (AI) in the Fincha catchment, Abay, Ethiopia, 

using geospatial analysis and GIS platforms to prospect 

possible groundwater zones. In this work, a Multi-Layer 

Perceptron (MLP) structure was used. The analysis' findings 

demonstrated that the AI models agreed with 96% of the 

identified groundwater potential zones and ground-truthing 

points, while the accuracy of the GIS platform model using the 

AHP method was 91%. Finally, it is stated that the ANN model 

is a valuable tool for defining potential groundwater zones 

where the cost of direct field investigation is not affordable. 

Consequently, the main objective of the present study is to 

construct a novel hybrid model for groundwater potentiality 

mapping (GPM) using the performance of supervised machine 

learning (ML)-based techniques integrated with knowledge-

driven technologies using an analytical hierarchy process 

(AHP) to evaluate the groundwater potential zones of 

Dammam confined aquifer that extended along the Najaf-

Muthanna governorates using supervised learning 

classification. 

2. RESEARCH METHODOLOGY

In the following sections, tools and technologies that have 

been used during the study will be described. Seven 

influencing factors on confined aquifers were considered; 

multi-influencing factor-knowledge-driven techniques (i.e., 

AHP method) were used to analyze their thematic maps using 

normalized weights. The developed thematic maps of 

influencing factors were then employed as input variables 

when training the ML models. The developed hybrid model 

can predict groundwater potentiality by analyzing the dynamic 

relationship between groundwater potentiality and influencing 

factors. The flowchart used in the current study is shown in 

Figure 1. 

Figure 1. Methodology for supervised ML classification 

It is probably reasonable to say that this study was the first 

to reveal the implementation of a novel hybrid-supervised 

classification model by applying five machine algorithms 

(MLAs) in Iraq: Ensemble Boosted Trees-logic-based learners, 

Naive Bayes (NB)-statistical learning algorithms, Support 

Vector Machines (SVM), Multi-Layer Perceptron (MLP)-

Artificial Neural Networks (ANN), and k-Nearest Neighbours 

(kNN)-instance-based learners to construct GPM that 

contribute in the development of strategies for the sustainable 

management of water resources. 
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2.1 Study area 

The study area of about 76732.71Km2 is located in Najaf 

and Muthanna governorates in the southern desert of Iraq. The 

geographic coordinates for the study area are between 

longitudes 44° 19 '07.68" to 46° 33' 26.55" East and between 

latitudes 29° 06 '15.74" to 32° 19 '55.97" North. The layout 

and topographic map for the study area is prepared using 

ArcGIS 10.7.1, as shown in Figure 2. The ground surface in 

the southern desert gradually increases from the southwest to 

the northeast by about 50m every 10-15km. The elevation of 

the surface increases from the Euphrates River in the east 

towards the south and southwest. The middle part is almost flat 

with many depressions [16]. The distribution and development 

of groundwater are primarily influenced by the various 

geologic formations and topographic features in which it 

occurs [17]. 

Figure 2. Maps of the study area: (a) layout map; (b) 

topographic map 

2.2 Groundwater effective factors preparation 

A range of field, documented, and remotely sensed data 

were collected from different government agencies to map 

suitable availability areas of groundwater. Seven parameters 

affecting the confined aquifers were considered: aquifer unit 

types, transmissivity, lineaments density, slope, soils, land use 

and land cover, and drainage density. Knowledge-driven 

technologies using the analytical hierarchy process (AHP) 

method were used to analyze their thematic maps using 

normalized weights to evaluate the potential groundwater 

zones. 

The hydrogeological units' thematic map was derived based 

on available data and a map of the main groundwater aquifers 

in Iraq using the spatial analysis tools in ArcGIS 10.7.1. There 

are four main types of aquifer units in the study area due to 

different geological formations. The highest static 

groundwater level is recorded in the SW part of the study area, 

while a low groundwater level categorizes in the NE part. The 

general groundwater flow direction is from the elevated area 

at SW of the studied area toward the lower elevation to the NE 

[18]. The hydrogeological units of the highest static water 

level had the highest rank, while the aquifer units of the lowest 

static water level were assigned the lowest rank. The 

Karstified Palaeogene aquifer represents Tayarat and 

Dammam aquifer with good availability groundwater, the 

Mio-Pliocene Sandstone/Dibdiba aquifer with moderate 

groundwater availability, Miocene Carbonate-Ghar/Euphrates 

and Zahra formation with poor groundwater availability, and 

finally Mesopotamia Plain Silt with very poor groundwater 

availability. Kriging interpolation was used to generate the 

spatial distribution map of transmissivity; the study area was 

classified into five classes since it exerts substantial control on 

drainage density, where high transmissivity results in low 

drainage density and vice versa [19]. In addition, the DEM of 

the SRTM type, with a resolution of 30 meters, was used in 

creating lineament density, slope, and drainage density 

thematic maps utilizing spatial analysis tools included in 

ArcGIS 10.7.1. 

The lineament density plays a significant role in 

groundwater availability and movement since it noticeably 

exists in the study area based on the tectonic map of Iraq. 

Generally, the lineament density of the studied area has ranged 

from less than 0.022km/Km2 to 0.19km/Km2. On the other 

hand, the study area is classified into five classes depending 

on the slope variety. The areas with flat topography and slope 

of (0.1-0.3)ᵒ considered advantageous for groundwater 

recharge since the movement of runoff downstream will be 

decreased. In contrast, higher runoff occurred at the steep 

sloop. 

The drainage density indirectly influences the groundwater 

availability due to its connection with the infiltration capacity 

and the permeability; higher drainage density reduces the 

infiltration, thus increasing the runoff; higher runoff indicates 

less groundwater potentiality. The study area was divided into 

five classes, generally ranging from less than 1km/Km2 to 

17.21km/Km2. 

The infiltration rate also affects groundwater availability 

and depends on soil grain size; coarse-textured soils have a 

greater infiltration rate and, thus, a high groundwater potential. 

In contrast, medium-textured soils have moderate to poor 

groundwater potentiality, while fine-textured soils have the 

lowest infiltration rate and, thus, very poor groundwater 

potentiality. 

Land use and land cover are essential in the area's existence 

and groundwater change. Consequently, the study area is 

divided into six classes: water, herbs wetland, herbaceous 

vegetation, cropland, and bare/sparse vegetation; each type has 

a weighted value representing the priority effect on 

groundwater accumulation. 

In the current study, the seven thematic layers' weights were 

assigned for each influenced factor to generate the seven 

thematic maps, as shown in Figure 3. 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) 

Figure 3. Data layers for groundwater potentiality conditioning factors: (a) aquifer units; (b) transmissivity; 

(c) lineament density; (d) slope; (e) soil classification; (f) LULC (g) drainage density
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After assigning weights to the respective parameters, 

individual ranks were given for sub-variables (subclasses) to 

calculate the final weight by multiplying each parameter's 

normalized weight with the rank of each sub-class in order to 

generate the groundwater potential zone map, as presented in 

Table 1. 

Table 1. Weights of groundwater control parameters 

Classes 
Normalize 

weight % 
Rank 

Potential 

index 

Final 

weight 

(1) Aquifer Units

Karstified Palaeogene 

38.567 

4 good 154.270 

Mio-Pliocene Sandstone 3 moderate 115.702 

Miocene Carbonate 2 poor 77.135 

Mesopotamia Plain Silt 1 very poor 38.567 

(2) Transmissivity (T) (m2/day)

9.474-12.089 

19.284 

1 very poor 19.284 

12.089-17.081 2 poor 38.567 

17.081-24.332 3 moderate 57.851 

24.332-32.414 4 good 77.135 

32.414-39.784 5 
very 

good 
96.419 

(3) Lineament Density (LD) (km/km)

0-0.022

12.856 

1 very poor 12.856 

0.022-0.054 2 poor 25.712 

0.054-0.079 3 moderate 38.567 

0.079-0.114 4 good 51.423 

0.114-0.185 5 
very 

good 
64.279 

(4) Slope (SLO) (Degree)

0-0.1

9.642 

5 
very 

good 
48.209 

0.1-0.2 4 good 38.567 

0.2-0.3 3 moderate 28.926 

0.3-0.5 2 poor 19.284 

>0.5 1 very poor 9.642 

(5) Soil (SL) according to FAO classification

Loam 

7.713 

2 poor 15.427 

Loamy Sand 3 moderate 23.140 

Sandy Loam 4 good 30.850 

Sandy 5 
very 

good 
38.567 

Clayey loam 1 very poor 7.713 

(6) Land Use Land Cover (LU/LC)

Water 

6.428 

5 
very 

good 
32.140 

Herbst wetland 5 
very 

good 
32.140 

Herbaceous Vegetation 4 good 25.712 

Cropland 3 moderate 19.284 

Bare/ Sparse Vegetation 2 poor 12.850 

Build up 1 6.428 

(7) Drainage Density (DD) (km/km)

0-1.754

5.510 

5 
very 

good 
27.548 

1.754-4.656 4 good 22.039 

4.656-7.354 3 moderate 16.529 

7.354-10.121 2 poor 11.019 

10.121-17.205 1 very poor 5.510 

2.3 Data pre-processing 

The set of influencing factors (seven thematic maps) 

requires pre-processing to be entered as input data to the 

MLAs. Typically, the first phase of data pre-processing is 

preparing accessible data, including input variables and target 

classes for supervised classification, for input into machine 

learning algorithms. When solving real-world problems using 

ML, the raw data often contains many inconsistencies that 

must be corrected before feeding the database to machine 

learning algorithms [20]. 

In image processing, data classification is often encountered 

under the constraints of two fundamental frames of reference, 

a real-valued matrix representing the area under investigation 

as the primary data structure of images. A group of matrices is 

used to store data (variables) on the data layers with values per 

cell (pixel). The seven layers were used to create features by 

converting the image data to a valued matrix according to the 

position (coordinates) of (349) wells and their pumping rate; 

the spatial distribution of pumping wells is shown in Figure 4. 

Figure 4. Well locations for machine learning model 

The main difference between image and remote sensing 

data is that remote sensing (raster data) is linked to a 

geographical reference frame, location on the earth's surface 

indicated by Lat. and Long. In contrast, the spatial coordinates 

of pixels indicate image data. Therefore, the next step in data 

pre-processing is to create an equation to convert well latitude 

and longitude coordinates into the pixel coordinates for images 

using polynomial curve fitting to create the database for the 

collected wells that contain the features of thematic maps and 

the classes of the pumping rate. Polyfit function used to find 

the coefficients of a polynomial that fits a set of data which is 

mathematically expressed in Eq. (1) [21]: 

p=Polyfit (x, y, n) (1) 

where, x and y are vectors containing the x and y coordinates 

of the data points, n is the degree of the polynomial to fit. After 

obtaining the polynomial for the fit line using the Polyfit 

function, the Polyval function can be used to evaluate the 

polynomial (p) at additional locations in (x), which is 

described as: 

y=Polyval (p, x) (2) 

The generated equations using Polyfit and Polyval functions 

are: 

x=-0.0017×y
1
+6.127e+03 (3) 

y=0.0017×x1-3.025e+02 (4) 

There were five classes of image targets identified based on 

833



the available data for wells' discharge rates: (very poor) for 

pumping rates below 3 l/sec, (poor) for pumping rates between 

4 and 6 l/sec, (moderate) for pumping rates between 7 and 9 

l/sec, (good) for pumping rate between 10 and 14 l/sec and 

(very good) for pumping rates above 14 l/sec. Each thematic 

map feature in the database was multiplied by its weight, as 

presented in Table 1, to create a hybrid model that could 

effectively forecast groundwater potential zones and improve 

their management efficiency. 

2.4 Classifier training 

To properly train and assess available data, it is essential to 

divide the database into independent groups: Training data is 

used to determine the best parameters and classification 

models. On the other hand, testing data is used to objectively 

evaluate the predictive capabilities of trained classifiers [22]. 

The ratio for splitting the datasets is 70:30; 70% of the 

database is used for training the classifier model, while 30% is 

used as testing data to check the model's accuracy. 

In geospatial data, it is common to find that closer 

observations have a stronger relationship than observations 

farther away [23]. MLAs are provided with the required 

information linking the location of the wells with the 

groundwater classes whenever spatial coordinates are used as 

input data for training and prediction. The combination of 

spatial values and a random distribution of samples over the 

whole study area will achieve an accurate machine-learning 

model when using testing data, according to Figure 5, which 

illustrates the distribution of water wells for the 70:30 splitting 

ratio. Hence, the total number of randomly selected wells was 

(242) and (107) for the training and validation process,

respectively. It can be seen that the training data points

sufficiently covered the study area.

Ultimately, the aim is to train a classification model that 

adequately fits the inputted training data and generalizes well 

to data that the MLA is unfamiliar with. One significant and 

non-trivial step in MLA classifier training is setting 

parameters appropriate for the particular task based on the 

available information [24]. 

2.5 Predictions evaluations 

Testing data should be independent of the data used for 

training the classification machine learning model, ensuring a 

direct and statistically accurate indicator of the predicted 

performance of an achieved trained classifier [20]. While the 

output of classification models is discrete, we want a 

comparative measure for discrete classes. Classification 

metrics evaluate a model's performance and reveal the 

classification's accuracy in several ways. Metrics are used to 

monitor and assess the performance of a model during training 

and testing [25]. In this study, the Positive Rates (TPR), False 

Negative Rates (FNR), Positive Predictive Values (PPV), 

False Discovery Rates (FDR), the Area Under the Curve of the 

Receiver Operating Characteristics (ROC), and classifier 

accuracy were employed to evaluate the performance of 

classification learner. In the case of MLA-supervised 

classifiers, the generated categorical predictions may be 

evaluated using a confusion matrix, also known as an error 

matrix, as shown in Figure 6. 

A confusion matrix provides a tabularized representation of 

the classification model's performance. The confusion matrix 

has the same number of rows and columns as the number of 

classes in the provided dataset. 

The numbers in each matrix cell indicate the counts of class 

predictions for samples assigned to a specific category. The 

confusion matrix plot is used to understand how each class of 

the currently selected classifier is performed. It can be viewed 

after training the model from the plots section of the 

classification learner tab. The confusion matrix assists in 

identifying the areas in which the classifier has performed 

poorly. True Positive Rates (TPR) and False Negative Rates 

(FNR) were used to see how the classifier performed per true 

class. The TPR is the proportion of correctly classified 

observations per true class, while the FNR is the proportion of 

incorrectly classified observations per true class, as presented 

in Figure 7. Eqns. (5)-(6) provide a mathematical expression 

for the TPR and FNR, respectively [26]: 

True Positive Rates (TPR)=
TP

TP+FN
(5) 

False Negative Rates (FNR) =
FN

TP + FN
(6) 

TP=true positives, FN=false  negatives, and FP=false 

positives. 

Figure 5. Training/testing data split model 

Figure 6. Confusion matrix for five classes of machine 

learning model 
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Figure 7. The classifier performance per true class using  

True Positive Rates (TPR) and False Negative Rates (FNR) 

If false positives play an essential role in the classification 

issue, plot results were presented per predicted class instead of 

true class to investigate False Discovery Rates. Select the 

Positive Predictive Values (PPV) and False Discovery Rates 

(FDR) options to see results per predicted class. The positive 

predictive value, or PPV, indicates the percentage of 

observations properly identified for each predicted class. The 

false discovery rate, or FDR, is the fraction of poorly 

categorized observations for each predicted class. The Positive 

Predictive Values are shown in blue for the points in each class 

that was properly predicted, and the False Discovery Rates are 

displayed in orange for each class that was not correctly 

predicted. Figure 8 shows the classifier performance per 

predicted class using the Positive Predictive Values (PPV) and 

False Discovery Rates (FDR) options [21]. 

The Positive Predictive Values (PPV) and False Discovery 

Rates (FDR) are generally expressed as follows [26]: 

Positive Predictive Values (PPV)=
TP

TP+FP
(7) 

False Discovery Rates (FDR)=
FP

TP+FP
(8) 

TP=true positives, FN=false negatives, and FP=false 

positives. 

A Receiver Operating Characteristic (ROC) curve, which is 

a standard statistical tool, was used to evaluate the 

performance of the models by plotting sensitivity (TPR) and 

1-specificity (FPR) on the y-axis and the x-axis, respectively

calculated using Eqns. (9)-(10). The Area Under the Curve

AUC measures the entire two-dimensional area underneath the

ROC curve from (0,0) to (1,1), as shown in Figure 9. The

values of AUC vary from 0 to 1. A model with 100% incorrect

predictions has an AUC of 0.0, whereas one with 100%

accurate predictions has an AUC of 1.0 [27].

sensitivity=
TP

TP+FN
(9) 

1-specificity=
TN

TN+FP
(10) 

TP=true positives, FN=false negatives, and FP=false 

positives. 

The value of FPR and TPR falls within the range [0, 1], and 

the green circle in the top left corner of Figure 10 indicates the 

best classification a classifier can achieve. Since then, (FPR, 

TPR) equal to (0.0,1.0) demonstrates that this classifier can 

correctly classify all data without making any false. The area 

under the ROC curve (AUC) is under the red curve [28]. 

The right angle to the upper left of the plot indicates a 

perfect outcome with no misclassified points. A poor result 

that is no better than random is a line at 45 degrees. The AUC 

number measures the overall quality of the classifier [26]. 

The final step in model development is the validation 

performance, calculated using model accuracy, using 30% of 

the dataset (testing data). Accuracy is a statistical metric that 

indicates how effectively a classifier can identify the different 

classes accurately and predict the unlabeled data. It is possible 

to compute the accuracy using the formula of Eq. (11), which 

refers to the percentage of true results (both true positive and 

true negative) in the dataset [29]. 

Accuracy =
TP+TN

TP+TN+FP+FN
(11) 

Figure 8. The classifier performance per predicted class 

using the Positive Predictive Values (PPV) and False 

Discovery Rates (FDR) 

Figure 9. Area under the ROC curve [27] 
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Figure 10. ROC curve [28] 

3. RESULTS AND DISCUSSIONS

3.1 Assessment of models' predictive capability 

A compression analysis is carried out for the predictive 

ability of the following five supervised machine learning 

algorithms: Ensemble Boosted Trees; Naive Bayes (NB); 

Support Vector Machines (SVM); Multi-Layer Perceptron 

(MLP), and k-Nearest Neighbours (kNN) was applied to the 

task of supervised classification using spatially constrained 

remotely sensed data. The performance of predictive models 

is evaluated using the metrics mentioned in section 2.5 of 

predictions evaluation. 

3.1.1 Performance evaluation of Ensemble Boosted Trees-

logic-based learners 

Ensemble learning is a machine learning approach that 

involves training several learners to solve the same problem. 

Unlike traditional machine learning algorithms that attempt to 

learn a single hypothesis from training data, ensemble methods 

try to create and combine several theories. In data mining, 

classification algorithms can process significant information 

simultaneously. It is possible to establish assumptions about 

categorical class names, categorize information based on 

training sets and class labels, and classify newly obtained data 

using this method, mainly used for grouping purposes [30, 31]. 

In this case, the number of learners was equal to (30) with the 

learner type of decision tree. The maximum number of splits 

was (20) used to fit the model on the training set and evaluate 

it on the testing set. The accuracy of this model for training 

data is 72.3%. The confusion matrix plot is presented in Figure 

11 to understand how the currently selected classifier is 

performed in each class and to identify the areas where the 

classifier has performed poorly. 

The columns represent the predicted class, while the rows 

indicate the true (actual) class. The diagonal cells show where 

the true class and predicted class are matched. If the diagonal 

cells in this pattern are blue, the classifier correctly identifies 

the data in this true class, while classes with orange color are 

misclassified. On the other hand, the proportion of correctly 

classified observations per true class (TPR) and the proportion 

of incorrectly classified observations per true class (FNR) are 

presented in Figure 12. The last two columns on the right 

illustrate a percentage summary per true class. The correctly 

identified wells with pumping rates below 3 l/sec indicated as 

class 1 (very poor) are 47, as shown in Figure 11, while the 

misclassified classes are 4. 

As a result, the TPR and FNR equal 92.2% and 7.8%, 

respectively, as presented in Figure 12 and calculated from 

Eqns. (5)-(6). In Figure 13, the result is plotted per predicted 

class instead of true class to investigate the False Discovery 

Rates FDR, the fraction of observations that were not properly 

categorized for each predicted class. Since the true positives 

(TP) observations are 47 well and false positives (FP) 

observations are 6 wells per predicted class. The Positive 

Predictive Values (PPV) and False Discovery Rates (FDR) are 

calculated as in Eqns. (7)-(8), which equals 88.7% and 11.3%, 

respectively. 

The Receiver Operating Characteristic (ROC) curve 

represents the model's performance after training. The ROC 

curve displays the provided trained classifier's true positive 

and false positive rates. The optimal solution is a right angle 

that reaches the upper left corner of the plot since there are no 

misclassified points. A poor result may be found below a line 

sloped at 45 degrees, referred to as the line of a random guess. 

The number that represents the Area Under the Curve is a 

measurement of the overall quality of the classifier. The larger 

area under curve values indicates better classifier performance. 

The AUC for the Ensemble Boosted Trees model is equal to 

(0.98), as presented in Figure 14. 

Figure 11. Confusion matrix of Ensemble Boosted Trees 

model 

Figure 12. Ensemble Boosted Trees model performance per 

true class using True Positive Rates (TPR) and False 

Negative Rates (FNR) 
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Figure 13. Ensemble Boosted Trees model performance per 

predicted class using the Positive Predictive Values (PPV) 

and False Discovery Rates (FDR) 

Figure 14. ROC curve of the Ensemble Boosted Trees model 

Figure 15. Confusion matrix of testing data for 

the Ensemble Boosted Trees model 

Finally, the model is tested using the 30% of remaining data 

that is not involved in model building and training. The 

accuracy of the Ensemble Boosted Trees model is calculated 

using Eq. (11) from the confusion matrix of the testing data as 

the percentage of true results in the dataset's diagonal cells 

(true positive and true negative) to the total number of (107) 

testing wells, which is equal to 89.7%, as presented in Figure 

15, where R stands for the confusion matrix of the testing data 

and (ans) denotes the calculated accuracy value. 

3.1.2 Performance evaluation of support vector machine 

(SVM) algorithms 

By using kernel functions, the Support Vector Machine 

(SVM) can locate nonlinear decision boundaries [32]. There 

are two primary steps. In the first step, the inputted original 

data are initially transformed into a space with a higher 

dimension using the kernel function (polynomial, Gaussian, 

radial basis function, exponential radial function, Multi-Layer 

Perceptron, etc.). The second step is searching for a 

hyperplane that linearly separates data in the new space [33]. 

In the current study, medium Gaussian SVM was applied for 

training data; the kernel function used for data transforming 

into the higher dimension to generate the Gaussian surface 

makes the data linearly separable. The accuracy of this model 

for training data is 72.7%. The performance of the SVM 

classification learning model was evaluated using the 

confusion matrix and the statistical metrics: True Positive 

Rates (TPR), False Negative Rates (FNR), Positive Predictive 

Values (PPV), False Discovery Rates (FDR), and AUC are 

presented in Figure 16. TPR and PPV should be high, and FNR 

and FDR should be low for better performance. The AUC of 

the SVM is (0.99). On the other hand, the SVM classifier's 

accuracy in the case of testing data was 77.6%. 

Figure 16. Performance of the SVM classification learning 

model: (a) confusion matrix in the form of observations 

number; (b) TPR and FNR ratio; (c) PPV and FDR (d) ROC 

curve 

3.1.3 Performance evaluation of Naive Bayes (NB)-statistical 

learning algorithms 

The methods in this category include Linear Discriminant 

Analysis (LDA) and Quadratic Discriminant Analysis (QDA), 

which employ density estimation strategies to identify linear 

(or quadratic) combinations of variables that optimally divide 

groups into separate categories [34]. The Gaussian Naive 

Bayes classifier was used for training data in this study. It is 

used for continuous numerical features. The distribution of 
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continuous values is assumed to be Gaussian/normal 

distribution; it gives a bell-shaped curve that is symmetric 

about the mean of the feature values. And therefore, the 

probabilities are computed based on Gaussian distribution. 

The performance of the Naive Bayes (NB) classifier was 

evaluated, as presented in Figure 17. 

The accuracy of this model for training data is 66.5%. 

Figure 17 (b) shows that the True Positive Rate (TPR) for class 

1 is 100%, indicating a perfect outcome with no misclassified 

points; however, the TPR for classes 3 and 5 is lower than the 

(FNR); therefore, the data must be trained using another 

classifier that provides better performance. 

The AUC of the Naive Bayes classifier is equal to 0.99. In 

comparison, the accuracy of the current classifier for testing 

data is 75.7%. 

Figure 17. Performance of the Naive Bayes classification 

learning model: (a) confusion matrix of observations number; 

(b) TPR and FNR ratio; (c) PPV and FDR; (d) ROC curve

3.1.4 Performance evaluation of Multi-Layer Perceptron 

(MLP)-Artificial Neural Networks (ANN) 

Perceptron is an algorithm for supervised learning 

consisting of four major components: input values, weights 

and biases, net sum, and an activation function; Figure 18 

presents these principal components, a weighted sum of inputs 

followed by an activation function that can be generalized to 

the form of: 

y
i
=fk( ∑ WiXii ) (12) 

where, Wji represents the weight that may be adjusted for the 

ith instance and Xi represents one of the variables that are 

supplied. The activation function, denoted by fk, may take the 

form of any nonlinear function, such as a step function or a 

sigmoidal function [23]. 

The trained MLP neural network of five class classification 

was formed by an input layer with seven neurons representing 

the seven data features of the thematic maps for the affecting 

factors of the groundwater potential map, two hidden layers 

with five neurons in each layer, and an output layer with five 

neurons. The output layer performs the required task, such as 

prediction and classification. The target of the network was 

indicated by the neurons that are output. The neurons in the 

MLP were trained with the backpropagation learning 

algorithm, and the hyperbolic tangent function is the activation 

function of the hidden layers. The softmax transfer function 

was used inside the output layer. Because of its ability to 

convert input data into probability, this transfer function is 

often used in the output layer of classified Artificial Neural 

Networks (ANN). The softmax normalizes an input value into 

values that follow a probability distribution totaling up to 1. It 

is preferred in the multi-class classification of the neural 

network model because the output values are in the range 

[0,1], unlike the binary classification, which can only accept 

the value 0 or 1. In the case of small or negative inputs, the 

softmax turns it into a small probability, and if the input is 

large, it turns it into a large probability, but it will always 

remain between 0 and 1 [35]. 

The accuracy of correct classified classes is 91.7% for 

(100000) epoch/iterations; the training confusion matrix of the 

MLP neural network is shown in Figure 19.  

The rows represent the predicted neural network class (the 

output class), whereas the columns represent the actual class 

(target class). The observations that have been successfully 

categorized are shown by the diagonal cells. The observations 

that were not correctly categorized are shown by the off-

diagonal cells. Each cell displays the overall number of 

observations and a percentage of the total observations. The 

percentage numbers shown in green reflect the proportion of 

correctly classified observations to the total observations. 

In contrast, the percentages displayed in red represent the 

proportion of data incorrectly classified. The column on the far 

right of Figure 19 displays the percentages of all the predicted 

samples to belong to each class that was correctly and 

incorrectly classified. These metrics are often called the 

precision (or positive predictive value) for correctly classified 

classes and the false discovery rate for the incorrectly 

classified classes. The row at the bottom of the graph shows 

the proportion of samples properly and wrongly identified for 

each target class. Recall (or true positive rate) and false 

negative rate are common names for these statistics. The total 

accuracy is shown in the cell located in the plot's bottom right 

corner (91.7%). 

Acceptable results are achieved due to the almost complete 

straightening ROC curve for classes 3 and 4, as presented in 

Figure 20. 

When the area under the ROC curve is closer to the value 1 

or when the ROC curve straightened at the top of the graph in 

the case of 100% of TPR (sensitivity) and 100% of FPR 

(specificity), performance levels are considered to be at their 

highest. Hence, the performance of classifications developed 

by ANN provides a perfect result for classes 1, 2 and 5. Finally, 

the model is tested using a 30 % testing dataset to calculate the 

model accuracy, which was 79.4 %. 

Figure 18. Structure of proposed five-class MLP neural 

network 
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Figure 19. Training confusion matrix of the MLP neural 

network 

Figure 20. Training ROC curve for MLP neural network 

model 

3.1.5 Performance evaluation of k-Nearest Neighbours (kNN)-

instance-based learners 

The k-Nearest Neighbors (kNN) method is a non-

parametric supervised learning technique. In this study, we 

investigate the impact of distance metrics while using kNN as 

the classifier for image classification.  Non-parametric 

algorithms mean it makes no assumptions about the data 

distribution [36]. When working with KNN, the distance 

between two data points is determined by a similarity measure, 

also known as a distance function. The Euclidean distance was 

used in this model, generated from a generalized metric known 

as Minkowski distance. As p=2, Minkowski distance is 

specific to Euclidean distance. The majority vote of the closest 

sample classes identifies the sample's class [34]. 

The weighted kNN with the number of neighbors equal to 

(10) was used to train the dataset. The accuracy of the trained

model is 93.0%. Figure 20 shows the current model's

performance. The total number of misclassified cells is (17)

knowing the total number of the trained dataset is (242).

The wells of classes 1 and 2 are perfectly classified (100%) 

of TPR and (0%) of FNR, while for classes 3, 4 and 5, the TPR 

was equal to (88.9%, 90.6%, and 89.5%) respectively. On the 

other hand, the kNN classifier's accuracy in the testing phase 

was equal to 90.7%. 

4. GROUNDWATER MAPPING USING INSTANCE-

BASED LEARNERS-KNN

The best classifier for accurate groundwater potential zone 

mapping was determined by comparing the predictive abilities 

of five machine-learning techniques using the classifier's 

performance accuracy and some metrics, including True 

Positive Rates (TPR), False Negative Rates (FNR), Positive 

Predictive Values (PPV), False Discovery Rates (FDR), and 

the Area Under the Curve of the Receiver Operating 

Characteristics (ROC). The k-Nearest Neighbours (kNN)-

instance-based learners are the best machine learning models 

in the training and testing phase due to their classification 

accuracy (93.0% and 90.7%), respectively. In addition, the 

TPR is much higher than FNR, which indicates better 

performance for the kNN classifier. From the ROC curve 

presented in Figure 21 (d), it can be noticed that the area under 

curve AUC that measures the entire two-dimensional area 

underneath the ROC curve is 1 with (false positive rate, true 

positive rate) equal to (0,1), which indicates 100% accurate 

predictions. Thus, the groundwater potential map shown in 

Figure 22 was created using this model. Also, Figure 23 shows 

the percentage of groundwater areal distribution for the very 

poor, poor, moderate, good, and very good groundwater zones: 

(5.58%, 4.24%, 35.69%, 42.12%, and 12.37%), respectively. 

Figure 21. Performance of k-Nearest Neighbors (kNN) 

model: (a) confusion matrix of observations number; (b) TPR 

and FNR ratio; (c) PPV and FDR (d) ROC curve 

Figure 22. GPM using the k-Nearest Neighbours (kNN) 

classifier 
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Figure 23. Percentage of areal distribution for groundwater 

potential zones (GWPZ) 

5. CONCLUSIONS

The groundwater potential zones (GWPZs) in the southern 

desert of Iraq along the Najaf and Muthanna governorates are 

identified in this study, applying remote sensing (RS), 

geographic information system (GIS), and analytical hierarchy 

process (AHP) methods. With the help of published maps for 

soil and main groundwater aquifers units, Rs data (satellite 

images and STRM DEM), data from groundwater wells, and 

assigned weights and ranks for groundwater potentiality 

influencing factors and their respective classes using the AHP 

technique, thematic layers of aquifer unit types, transmissivity, 

lineaments density, slope, soil type, land use and cover, and 

drainage density were prepared. The prepared thematic layers 

were used as input variables for MLAs, and the collected data 

from (349) groundwater wells were used to train and evaluate 

the five developed hybrid ML models. The True Positive Rates 

(TPR), False Negative Rates (FNR), Positive Predictive 

Values (PPV), False Discovery Rates (FDR), the Area Under 

the Curve (AUC) of the Receiver Operating Characteristics 

(ROC), and the accuracy of the classifier are used to assess the 

performance of ML models. According to the analysis of ML 

models and based on their accuracy matrices, the results show 

that all developed models are highly predictive, but the k-

Nearest Neighbors (kNN) model is the most effective at 

identifying areas with significant groundwater potential with 

an accuracy of 90.70%, followed by Ensemble Boosted Trees-

Logic-Based Learners, Multi-Layer Perceptron (MLP)-

Artificial Neural Networks (ANN), Support Vector Machine 

(SVM), and Naive Bayes (NB)-Statistical Learning 

Algorithms with validation accuracy of (89.7%, 79.4%, 77.6%, 

and 75.7%) respectively. In addition, the total number of 

misclassified cells is (17) in the kNN model, given that the 

training dataset size is (242). Class 1 and 2 wells are ideally 

rated (100% TPR and 0% FNR), while classes 3-5 had TPRs 

of 89%, 90%, and 89.5%. 

Consequently, a five-class groundwater potential map is 

created using the k-Nearest Neighbors (kNN): (very poor) for 

pumping rates below 3 l/sec, (poor) for pumping rates between 

4 and 6 l/sec, (moderate) for pumping rates between 7 and 9 

l/sec, (good) for pumping rate between 10 and 14 l/sec and 

(very good) for pumping rates above 14 l/sec. According to the 

findings, there are five different groundwater potential zones 

(GWPZ): very poor (4281.69Km2), poor (3253.47Km2), 

moderate (27385.90Km2), good GWPZ (32319.82Km2), and 

very good (9491.84Km2). 

The developed hybrid model can accurately predict the state 

of groundwater potential zones and allows the opportunity to 

characterize the behavior of a groundwater source by 

integrating the effect of the set of influencing factors 

represented by the seven thematic maps with their respective 

effect weights. Also, it can be modified with new data. Also, 

the process used in the present research could be applied and 

evaluated in other areas to produce GPMs. In brief, GPMs 

might greatly assist water resource managers and planners in 

understanding water resources' conditions, exploitation, and 

conservation measures. 
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SRTM Shuttle radar topography mission 

RS Remote sensing 

GIS Geographic information system 

AHP Analytical hierarchy process 

GPM Groundwater potential map 

GWPZ Groundwater potential zone 

MLAs Machine learning algorithms 

NB Naive Bayes 

SVM Support Vector Machines 

MLP Multi-Layer Perceptron 

ANN Artificial Neural Networks 

kNN k-Nearest Neighbours

GPM Groundwater potential map

GWPZ Groundwater potential zone

TPR True Positive Rates

FNR False Negative Rates

PPV Positive Predictive Values

FDR False Discovery Rates

AUC Area under curve

ROC Receiver Operating Characteristics

LDA Linear discriminant analysis

QDA Quadratic discriminant analysis
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