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Accurate metastasis prediction in breast cancer (BC) patients is crucial for timely treatment, 

thereby reducing life-threatening risks. Traditional methods involve manual observation of 

whole slide images (WSIs) to identify tumor cells, necessitating extensive expertise and 

resulting in a time-consuming process. Recently, deep learning techniques have been 

employed for precise tumor cell detection. However, automatic detection methods face 

challenges such as limited availability of large datasets and the ambiguity between cancer 

cell structures and normal tissue. This paper proposes a novel deep stacked ensemble 

architecture to address these challenges. The proposed model incorporates three pre-trained 

models, namely RESNET50, EfficientNet B3, and DenseNet121, with single, double, and 

triple fully connected layers for each architecture, yielding nine models. Among these, three 

heterogeneous models were selected for the stacking ensemble. The performance of these 

models and the deep stacked ensemble was investigated and compared using the 

CAMELYON 17 challenge dataset, which contains lymph node WSIs of BC patients. 

Results demonstrate that the deep stacked ensemble outperforms individual models. In this 

prediction task, recall is more critical than precision; thus, the trade-off between recall and 

precision was also examined. 
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1. INTRODUCTION

Breast cancer (BC) metastasis is a primary cause of 

increased mortality rates among BC patients [1]. Early 

detection of BC is vital for prolonging patient survival, but 

identifying breast tumors at the initial stage can be a 

challenging task. Many women do not undergo regular 

mammogram check-ups, and palpation may only detect 

tumors after significant growth [1]. Consequently, most BC 

patients are diagnosed beyond the initial stage. Metastasis 

refers to the recurrence of cancer, where secondary tumors 

form from the primary tumor, spreading cancer cells to other 

body parts such as the brain, liver, bone, and lungs [2]. 

Accurate prediction of metastasis occurrence can facilitate 

proper medication and ultimately extend patient lifespan. By 

analyzing tumor cells in lymph nodes, metastasis prediction 

becomes possible. Small lymph node samples are typically 

examined for tumor cells on whole slide images (WSIs) 

through a microscope. However, feature extraction for 

classification presents numerous challenges, particularly due 

to the similarities between cancer cell structures and normal 

tissue. Conventional feature extraction methods are generally 

unsuitable for metastasis recognition. Recently, convolutional 

neural networks (CNNs) have demonstrated their ability to 

automatically extract features for various image recognition 

tasks [3], including cancer cell recognition. In this study, we 

propose a deep learning (DL) approach using CNNs for the 

automatic feature extraction of cancer cells. Our contributions 

are as follows: 

• We develop a novel deep stacked ensemble for

predicting metastasis in BC patients with high recall,

following a systematic procedure.

• We select base classifiers in a manner that optimizes

recall with the stacked ensemble.

• We examine the trade-off between recall and

precision, aiming to minimize the number of false

negatives in metastasis prediction to save BC

patients' lives.

This paper is organized as follows: Section 2 presents 

preliminaries, Section 3 reviews the relevant literature, Section 

4 introduces the proposed deep stacked ensemble and 

discusses the diversity measure and systematic approach, 

Section 5 describes the dataset and methodology, Section 6 

presents results and analysis, Section 7 compares the 

performance of the proposed architecture and base classifiers, 

and Section 8 concludes the paper. 

2. PRELIMINARIES

In this section, we introduce the basic concepts of learning 

methods relevant to our study. 

2.1 Deep Learning (DL) 

DL is a subset of machine learning that involves neural 

networks with hundreds of deep layers and numerous 

parameters. When trained with large datasets, DL networks 
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can significantly improve performance. CNNs [4] are 

particularly suitable for image classification applications. 

 

2.2 Ensemble 

 

Ensemble learning is a machine learning technique that 

enhances model metrics by combining the results of two or 

more models [5]. In this study, we implement a stacked 

ensemble approach. The process of generating a deep stacked 

ensemble involves three steps: (i) generating base classifiers, 

(ii) selecting the best base classifiers that maximize recall with 

a diversity measure, and (iii) developing an ensemble of base 

classifiers through aggregation at the meta-classifier level. 

 

2.3 Resnet-50 

 

The ResNet-50 model consists of five stages, each featuring 

a convolution block and an identity block. Both the 

convolution block and the identity block contain three 

convolution layers. In the final convolution layer, the output is 

added to the main input [6]. 

 

2.4 Efficient Network B3 (EfficientNet B3)  

 

EfficientNet B3 is a CNN that uniformly scales all 

dimensions of depth, width, or resolution using a scaling 

method and a compound coefficient. Module 1 comprises 

depth-wise convolution, batch normalization, and activation, 

while Module 2 includes Module 1, zero padding, and another 

instance of Module 1. Finally, Module 3 consists of global 

average pooling, rescaling, and convolution. Each slide is 

divided into patches of size 256x256, and the model is trained 

with patch-level annotations, ultimately providing slide-level 

classification. If any patch in the slide is classified as 1, the 

slide is considered metastatic. 

 

2.5 DenseNet 121 

 

DenseNet (Dense Convolutional Network) is a CNN that 

deepens the network by implementing shorter connections 

between layers. In DenseNet, each layer connects with all 

deeper layers in the network [7]. 

This study considers three base models (ResNet 50, 

DenseNet 121, and EfficientNet B3) and their ensemble. 

ResNet effectively addresses the vanishing gradient problem, 

while DenseNet avoids this issue by employing shorter 

connections between layers. The EfficientNet architecture is 

designed with minimal parameters to maximize model speed 

compared to other architectures. 

 

 

3. LITERATURE REVIEW 

 

Breast cancer metastasis detection can be done by PET scan, 

analysing the Lymph nodes and identifying the Circulating 

Tumour Cells (CTC) in blood. These procedures are done by 

the pathologists who should have good expertise and also takes 

much time. Recently, deep learning methods gained lot of 

attention for accurate image recognition. These methods detect 

features in clinical images that human specialists rarely notice. 

The main hurdle to implement automation to detect the cancer 

cells from biopsy images is data set. Li et al. [7] in their work 

illustrated the designing of novel data augmentation method 

Random Center Cropping (RCC) to increase the data set to 

train the model effectively. Variety of DL models were tested 

to detect the cancer cells in WSI images [8]. RESNET50, 

Efficient Net B3, Dense Net 121 and Boosted Efficient Net-

B3 are compared to predict and classify the lymph node 

metastasis of breast cancer patients in terms of accuracy, AUC, 

Specificity and Sensitivity. From their work it is evident that 

with boosted EfficientNet-B3 the overfitting issue is reduced 

to a great extent on training images. Also this architecture has 

a performance improvement of more than 1% when compared 

to other architectures considered [8]. Due to the huge size of 

WSI images, it is difficult to give it as input to the model. 

Wang et al. [9] in their work have done patch level 

classification with Deep segmentation network (DSNet), 

Density based spatial clustering of applications with noise 

(DBSCAN) to detect metastases in slide level and finally Deep 

regional metastases segmentation (DRMS) to detect 

metastases in patient level. Accurate classification is demand 

for prediction of metastasis, for this Lin et al. [10] proposed a 

novel method with anchor layers for model conversion, for 

metastasis detection with basic VGG16 architecture. Zheng et 

al. [11] used US and shear Wave Elastography (SWE), images 

with ResNet50, ResNet101, Inception V3, and VGG19, 

ResNet50 yielded AUC of 0.902. Hu et al. [12], proposed 

Combined Faster RCNN and Deep Lab as a cascade to detect 

ROI. Fused Xception and DenseNet-121 models for 

classification, obtained ROI Accuracy as 97.13% and 

Classification Accuracy as 93.53%. Das et al. [13], proposed 

Deep Multiple Instance Learning (MIL) based CNN, yield 

Accuracy with CNN as 88.78 and with MIL CNN as 88.81. 

Hirra et al. [14] implemented Google Net model with some 

convolutional, pooling layers and inception layers and yield 

Accuracy as 86%. Wang et al. [15] done the Deep- learning 

based analysis framework for microscopy images for detection 

of cancer cells. He et al. [16] presented different metrics to 

evaluate the model. Jangam and Annavarapu [17] illustrated 

the transfer learning from the scratch. While classifying, false 

negatives should be minimum to give proper treatment to BC 

patients, for that Mehra [18] implemented stacked ensemble to 

improve recall. The main bottleneck in applying AI for 

computational pathology is annotation of large data sets. To 

avoid this problem Schmidt et al. [19] implemented Multiple 

Instance Learning (MIL) and Semi Supervised Learning (SSL) 

approaches. Marini et al. [20] implemented Semi-supervised 

training of deep convolutional neural networks. Chen et al. [21] 

implemented Weakly Supervised Histopathology Image 

Segmentation with Sparse Point Annotations. 

 

 

4. PROPOSED MODEL 

 

4.1 Systematic approach for the generation of a proposed 

deep stacked ensemble 

 

There are three steps in the generation of proposed deep 

stacked ensemble. They are generation, selection and 

classification [22]. In the first phase, a group of base classifiers 

are obtained which are of diverse architectures. These are 

basically generated from pre-trained models. This is done by 

including variable number of fully connected layers in each 

pre-trained model. The base classifiers differ from each other 

by the number of fully connected layers, at least by one. 

In the second phase, based on high recall, the base 

classifiers are selected. With these, deep stacked ensemble 

model is developed. Nevertheless, in metastasis prediction the 
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objective is to minimize the false negatives. So, the selection 

metrics used is recall. In the third phase the meta classifier is 

fed with outputs of the base classifiers. 

 

4.2 Proposed deep stacked ensemble 

 

Three heterogeneous classifiers with high recall and 

accuracy are taken. Three pre-trained DL models were 

considered viz... RESNET-50-1, EfficientNetB3-1 and 

Densenet121-1. Each model forms three base classifiers. 

Figure 1 shows pre-trained DL model with one fully-

connected layer. The (3×256×256) input is mapped to a 

column vector of 1000 rows. This column vector is converted 

another column vector having number of rows equal to number 

of classes (two in this case). Here sigmoid activation function 

is used. To avoid over fitting of model, a dropout layer is 

incorporated. 

As shown in Figure 2 the other base classifier is designed 

with two fully connected layers. The (3×256×256) input is 

mapped to a column vector of 1000 rows and later converted 

into 500 rows and uses a Relu activation function. This column 

vector is converted another column vector having number of 

rows equal to number of classes (two in this case). Here 

sigmoid activation function is used. A dropout layer is used in 

this part also. As shown in Figure 3 the other base classifier is 

designed with three fully connected layers. The (3×256×256) 

input is mapped to a column vector of 1000 rows and later 

converted into 500 rows later 250 rows and uses a Relu 

activation function. This column vector is converted another 

column vector having number of rows equal to number of 

classes (two in this case). Here sigmoid activation function is 

used. A dropout layer is used in this part also. Figure 4 shows 

the proposed architecture in which RESNET-50-1, 

EfficientNetB3-1 and Densenet121-1 architecture outputs are 

applied to the meta layer, average of the predictions is done at 

meta layer [23, 24]. 

 

 
 

Figure 1. Base model with one fully connected layer 

 

 
 

Figure 2. Base model with two fully connected layers 

 

 
 

Figure 3. Base model with three fully connected layers 

 
 

Figure 4. Proposed deep stacked ensemble 

 

 

5. EXPERIMENTAL DATASET AND 

METHODOLOGY 

 

5.1 Dataset and data augmentation techniques 

 

The proposed deep stacked ensemble was evaluated on 

Camelyon17 challenge Data set: This dataset has 400 whole 

slide images (WSI) collected from different medical centers 

[25]. The dataset consists of tumor slides which have 

metastases, normal slides and test slides which may or not 

have metastases. 

Sample image is shown in Figure 5(a), the red colour 

indicates the cancer cells and Figure 5 (b) indicates the process 

of obtaining patches from WSI. The dataset is available at 

https://camelyon17.grand-challenge.org/Data. 

 

 
 

Figure 5(a). Whole slide image 

 

● Dataset size: 8364 patches from 400 images 

● Number of Metastasis -positive patches: 4062 

● Number of Metastasis -negative patches: 4302 

● Training data set size: 5576 patches 

● Validation data set size: 1394 patches 

● Testing data set size: 1394 patches. 

 

 
 

Figure 5(b). Process of obtaining patches from WSI 
 

5.2 Model training and classification process 

 

For training, first in the models data augmentation is used 

to increase the number of samples and the input images are 

pre- processed as per the model requirement. Then the pre- 
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processed images are applied to the base model of the 

architecture followed by the global average pooling. Finally 

applied to the prediction layer with sigmoid activation 

function whose value exists in the range of (0,1). Trained the 

model over 3 different network architectures viz., ResNet50, 

Efficient Net B3 and DenseNet 121, with different number of 

fully connected layers, 1, 2 and 3. Here global average pooling 

(GAP) layer performs the average of each feature from the 

previous layers. The use of GAP reduces or avoids over fitting 

problem. 

For prediction the sliding window technique is used with a 

window size of 64x64 to perform prediction over the entire 

image/slide. For each window over the slide, prediction of the 

probability of having cancer or tumor is done. After that it will 

verify whether the prediction probability is below or above the 

threshold value chosen. For example, if the threshold value is 

0.5 i.e., if prediction value is above 0.5 then it will be 

considered as the slide has metastasis or else not. Based on the 

classified prediction values, the heatmap is obtained which 

provides the information regarding the presence of the tumor 

in the slide. Based on the heatmap classification was done. For 

efficient training DL models need large datasets. Size of the 

data set can be enlarged with the data augmentation techniques, 

used techniques in this paper were given below. 

1. Random Rotation: By choosing angle randomly the image 

was rotated. 

2. Random Horizontal Flip: With a given probability the 

image was flipped horizontally. 

● Random Rotation angle range: [-20◦, 20◦] 

● Probability of Random Horizontal Flip: 0.2. 

Initially batch size was taken as for and after doubled till 

memory error was faced. As the size of the batch increases 

memory requirement also increases. Finally, batch size was 

chosen to satisfy the memory condition. 

In this experiment number of epochs taken were 30, 1e-3 as 

learning rate and 16 as batch size 

 

5.3 Evaluation Metrics for Proposed Architecture 

 

TN=True Negatives TP=True Positives FP=False Positives 

FN=False Negatives 

• Precision (P): It is the fraction of positive predictions that 

positive. 

P=TP / TP+FP 

• Recall (R): It is the fraction of positive samples that are 

predicted as positive. 

R=TP / TP+FN 

• F1 Score: F1 Score is the harmonic mean of precision and 

recall. 

F1 Score=(2×P×R)/ P+R 

• Accuracy(A): Accuracy is the fraction of the total correct 

predictions. 

A=TP+TN / TP+FP+FN+TN 

 

 

6. EXPERIMENTAL RESULTS 

 

6.1 Analysing the performance of architectures 

 

The evaluation of the model was done on CAMELYON 17 

challenge dataset containing lymph node WSI of BC patients. 

The notation used is: a) Model-1 denotes the model with a 

single fully connected layer and a sigmoid layer b) Model-2 is 

the model with two fully connected layers along with a 

sigmoid layer, and c) Model-3 is the model with three fully 

connected layers along with a sigmoid layer. The: ResNet-50, 

DenseNet-121 and Efficient net- B3 are different models used. 

Total 9 base classifiers are formed with three DL models, 

among 9, three heterogeneous base classifiers are selected 

based on high recall in each DL model to form deep stacked 

ensemble. Desnet121-1, EfficientNetB3-1 and ResNet50-1 

were selected. Figure 4 shows the deep Stacked Ensemble 

implementation. 

****Algorithm to select base models for deep stacked 

Ensemble**** 

Input: Pretrained Models base 1, base2 and base 3 r1, r2, r3- 

Metrics of three ResNet models 

d1, d2, d3- Metrics of three DenseNet models e1, e2, e3- 

Metrics of three EfficientNet models 

 

x- accuracy/Recall 

1. base1<-max(r1_x, r2_x, r3_x) 

2. base2<-max(d1_x, d2_x, d3_x) 

3. base3<-max(e1_x, e2_x, e3_x) 

4. model_names<-[base1, base2, base3]  

5. el<-[] 

6. models<-[model_names] 

7. for i in models do: 

8. i<-load_model(i) 

9. el<-el.append(i) 

10. end 

11. training_input<-preprocess(training_input) 

12. for i,models in enumerate(el) do: 

13. for l in model.layers do: 

14. l.trainable<-False 

15. l.name<-'ensemble_'+string(i+1)+l.name 

16. end 

17. end 

18. en_inputs=[model_input for model in el] 

19. en_ouputs=[model_output for model in el] 

20. m<-concatenate(en_outputs) 

21. m<-add_fully_connected_layers 

22. ens_model<-model(en_inputs,m) 

23. ens_model<-model_train(ens_model) 

 

The proposed model could correctly classify 1310 i.e., 1132 

as true positives and 178 as true negatives patches out of the 

1394 patches. Thus, for the proposed model, the accuracy and 

F1 score are 0.9613 and 0.8837, respectively. Table 1 presents 

experimental results of the proposed model, and that of 

heterogeneous base classifiers. The observations for the 

experiments conducted on CAMELYON 17 Dataset [25] are 

also presented. From Table 1 it is observed that the recall of 

the proposed model is higher than all base classifiers. Also, 

when compared to base classifiers the F1 score for this model 

is also high. 

 

Table 1. The experiment results for the proposed model 

 

Model 

Metrics 

AUC Loss Accuracy Recall Precision 
F1-

Score 

Desnet121-1 0.9769 0.1583 0.9397 0.9082 0.7295 0.8091 

EfficientNetB3-1 0.9688 0.1566 0.9497 0.8622 0.8478 0.8549 

ResNet50-1 0.9711 0.1086 0.9684 0.8214 0.8471 0.8340 

Proposed deep 

stacked Ensemble-

Recall 

0.9586 0.1157 0.9613 0.9103 0.8586 0.8837 
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Figure 6(a). Confusion matrix of deep stacked ensemble 

 

 
 

Figure 6(b). Generated AUC by stacking ensemble 

 

 
 

Figure 7(a). Confusion matrix of ensemble for precision 

 

 
 

Figure 7(b). Generated AUC by ensemble for precision 

 

Figure 6(a) shows the Confusion Matrix for Ensemble for 

recall has less false negatives predictions compared to 

remaining models for 0.5 threshold for given dataset. 

Figure 6(b) shows the Area Under the Curve for Stacking 

Ensemble for recall has high true positive rate when false 

positive rate as low. 

Figure 7(a) shows the Confusion Matrix for Ensemble for 

Precision, has less false positive predictions compared to 

remaining models for 0.5 threshold for given dataset. 

Figure 7(b) shows the Area Under the Curve for Stacking 

Ensemble has high true positive rate when false positive rate 

as low. 

Table 2. The experiment results for the ensemble model 

precision 

 

Model 
Metrics 

AUC Loss Accuracy Recall Precision F1-Score 

Desnet121-3 0.9610 0.1235 0.9663 0.8367 0.9162 0.8746 

EfficientNetB3-3 0.9373 0.2594 0.9613 0.8112 0.9034 0.8548 

ResNet50-2 0.9696 0.1307 0.9613 0.7653 0.8494 0.8052 

Ensemble-Precision 0.9624 0.1444 0.9648 0.8010 0.9401 0.8650 

 

Table 2 presents experimental results of the model for 

precision, and that of heterogeneous base classifiers. From 

Table 2 it is observed that the precision of the model is higher 

than all base classifiers. 

 

6.2 Performance analysis of the base classifiers 

 

Figure 8 shows the Area Under the Curve for ResNet-50 

with fully connected layer as 1 has high true positive rate when 

false positive rate as low. 

Figure 9 shows the Area Under the Curve for DenseNet121 

with fully connected layer as 2 has high true positive rate when 

false positive rate as low. 

Figure 10 shows the Area Under the Curve for Efficient Net 

B3with fully connected layer as 2 has high true positive rate 

when false positive rate as low. 

 

 
 

Figure 8. Generated AUC by ResNet-50architecture with 

fully connected layers as 1, 2 and 3 

 

 
 

Figure 9. Generated AUC by DenseNet121 architecture with 

fully connected layers as 1, 2 and 3 

 

 
 

Figure 10. Generated AUC by Efficient Net B3architecture 

with fully connected layers as 1, 2 and 3 
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Table 3. Performance analysis of ResNet-50 architecture 

with fully connected layers as 1, 2 and 3 

 

Model 
Metrics 

AUC Loss Accuracy Recall Precision F1-Score 

ResNet50- 
0.971 0.108 0.968 0.821 0.847 

0.83 

1 4 

ResNet50- 
0.969 0.130 0.961 0.765 0.849 

0.80 

2 5 

ResNet50- 
0.963 0.133 0.960 0.760 0.849 

0.80 

3 2 

 

Table 4. Performance analysis of Efficient Net 

B3architecture with fully connected layers as 1, 2 and 3 

 

Model 
Metrics 

AUC Loss Accuracy Recall Precision F1-Score 

EfficientNetB 

3-1 
0.9688 0.1566 0.9497 0.8622 0.8478 0.8549 

EfficientNetB 

3-2 
0.9570 0.1808 0.9577 0.8112 0.8785 0.8435 

EfficientNetB 

3-3 
0.9373 0.2594 0.9613 0.8112 0.9034 0.8548 

 

Table 3 shows the Performance analysis of ResNet-50 all 

three architectures, ResNet-50with fully connected layers as 1 

has the superior performance than other two in accuracy, recall 

and F1 score. 

Table 4 shows the Performance analysis of Efficient Net 

B3all three architectures, Efficient Net B3with fully connected 

layers as 1 has the superior performance in Recall than other 

two. Efficient Net B3with fully connected layers as 3 has the 

superior performance in Accuracy and Precision than other 

two. 

 

Table 5. Performance analysis of DenseNet121 architecture 

with fully connected layers as 1, 2 and 3 

 

Model 
Metrics 

AUC Loss Accuracy Recall Precision F1-Score 

Desnet1 21-1 0.976 0.158 0.939 0.908 0.729 0.809 

Desnet1 21-2 0.978 0.113 0.960 0.852 0.865 0.858 

Desnet1 21-3 0.961 0.123 0.966 0.836 0.916 0.874 

 

Table 5 shows the Performance analysis of DenseNet121 all 

three architectures, DenseNet121 with 1 fully connected layers 

as has the superior performance in recall than other two. 

DenseNet121 with fully connected layers as 3 has the superior 

performance in Accuracy, Precision and F1 score than other 

two. 

 

 

7. COMPARISON OF PROPOSED DEEP STACKED 

ENSEMBLE MODEL WITH BASE CLASSIFIERS 

 

Table 6 shows Performance Comparisons of individual base 

models and stacking Ensemble architectures, deep stacked 

Ensemble has superior performance in recall and F1 score with 

0.910 and 0.883. Ensemble for precision has high precision 

than other architectures, but here tradeoff between recall and 

precision was observed. ResNet50-1 has superior performance 

in accuracy than other models with 0.968. 

 

 

Table 6. Performance comparisons of individual base models and stacking ensemble 

 

Model 
Metrics 

AUC Loss Accuracy Recall Precision F1-Score 

ResNet50-1 0.971 0.108 0.968 0.821 0.847 0.834 

ResNet50-2 0.969 0.130 0.961 0.765 0.849 0.805 

ResNet50-3 0.963 0.133 0.960 0.760 0.849 0.802 

EfficientNet B3-1 0.968 0.156 0.949 0.862 0.847 0.854 

EfficientNet B3-2 0.950 0.180 0.957 0.811 0.878 0.843 

EfficientNet B3-3 0.937 0.259 0.961 0.811 0.903 0.854 

Desnet121-1 0.976 0.158 0.939 0.908 0.729 0.809 

Desnet121-2 0.978 0.113 0.960 0.852 0.865 0.858 

Desnet121-3 0.961 0.123 0.966 0.836 0.916 0.874 

Deep stacked 

0.958 0.115 0.961 0.910 0.858 0.883 Ensemble- 

Recall 

Ensemble- Precision 0.962 0.144 0.964 0.801 0.940 0.865 

Mobile Net V2 0.869 - 0.929 0.919 0.930 - 

 

 

8. CONCLUSION 

 

Minimization of false negatives is vital to predict the 

metastasis in the BC patients. In view of this, a deep stacked 

ensemble model is proposed in this paper. To design this pre- 

trained DL models with variable number of fully connected 

layers are used. This is done to achieve high recall and 

accuracy in prediction of the metastasis in the BC patients. 

Resnet-50, Dense Net 121, and Efficient Net-B3 models were 

used to develop deep stacked ensemble with systematic 

approach. The performance of proposed deep stacked 

ensemble model is observed to be higher than the base 

classifiers. Additionally, high recall is achieved on 

CAMELYON 17 dataset. The recall and precision trade-off 

were also observed. Further to reduce false positives and false 

negatives, weighted average of stacking ensemble and also 

boosting ensemble may be done. 
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