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The accurate denoising of acquired electrocardiogram (ECG) signals is a critical 

preprocessing step in data acquisition for both medical professionals and expert systems to 

make reliable assessments of cardiac health. In this study, we present an advanced denoising 

algorithm designed to mitigate the effects of additive white Gaussian noise (AWGN), which 

is known for its capacity to disrupt the entire frequency band within a signal. Our approach 

offers a novel integration of wavelet transform and Wiener filtering techniques. The 

proposed algorithm comprises a single-level discrete wavelet transform (DWT) 

decomposition followed by hard thresholding of the detail wavelet coefficients and the 

application of wavelet-domain Wiener filtering to the approximation coefficients. 

Subsequently, the inverse DWT is employed to generate an initial stage denoised signal. To 

further improve signal restoration quality, a median filter is utilized. Lastly, to recover R-

peaks affected during the previous stage, each R-peak and its adjacent samples are replaced 

with those from the denoised signal before median filtering. We compared the performance 

of our technique with three state-of-the-art methods and found that it is highly competitive 

with the recently published DWT-SBWT method. Our approach also significantly 

outperforms both the reference wavelet-thresholding technique and the GS-WT strategy, 

with gains of more than 1.5 dB in most cases of utilized input SNR levels. These findings 

demonstrate the efficacy of our proposed algorithm in reducing AWGN interference, 

enabling more accurate evaluations of human cardiac health. 
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1. INTRODUCTION

Electrocardiogram (ECG) signals are valuable 

physiological indicators of human heart health and the overall 

cardiovascular system. However, during the acquisition phase, 

ECG signals are often susceptible to various types of noise, 

such as baseline drift, powerline interference, electromyogram 

interference, electrode motion, and, in some cases, composite 

noise. To mitigate these corrupting noises, researchers can 

implement filtering techniques either during the acquisition 

process using analog filters, or in post-processing with digital 

filters employed in embedded systems like DSP-based 

physiological cards or personal computers. 

In the realm of digital filtering, numerous contributions 

have been made to address the noise reduction challenge, 

particularly in the context of additive white Gaussian noise 

(AWGN), which is especially difficult to eliminate due to its 

broad frequency distribution. Notable state-of-the-art methods 

have combined wavelet transform (WT) with Wiener filtering 

[1-3] and empirical mode decomposition (EMD) with Wiener 

filtering [4] to achieve effective results. However, these 

methods are often associated with high algorithmic 

complexity or substantial computational demands. 

Motivated by the success of these previous approaches, our 

study aims to reduce the complexity of the WT-Wiener filter 

combination and the computational time associated with the 

EMD-Wiener filter pairing by re-examining the WT-Wiener 

filter association in a simpler, yet efficient manner. 

The remainder of this paper is organized as follows: Section 

2 gives a literature review. Section 3 provides a careful 

explanation of the mathematical background related to the 

tools employed in our approach. Section 4 outlines the 

proposed methodology. Section 5 presents a comprehensive 

discussion of the results obtained through extensive 

simulations and includes a comparative study to position our 

technique among other powerful methods in the field. 

2. LITERATURE REVIEW

A considerable body of research has addressed the problem 

of denoising electrocardiogram (ECG) signals corrupted by 

additive white Gaussian noise (AWGN). In 1999, Donoho's 

soft and hard thresholding strategies were compared when 

applied to wavelet transform (WT) and wavelet-packet (WP) 

approaches with various threshold selection rules for different 

types of noise [5]. Subsequently, a combination of signal sub-

averaging and an optimal wavelet domain filter was proposed 

for AWGN reduction, which outperformed the classical sub-

averaging technique [6]. 

A two-stage denoising method incorporating Wiener 

filtering in the translation-invariant wavelet domain was 

introduced in the study [1], claiming superior performance 

compared to the Wiener filtering strategy in the wavelet 
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domain [2] and the well-known translation-invariant denoising 

technique [7]. In another study, it was concluded that the 

Daubechies mother wavelet with vanishing moments up to 

order 8 is the most appropriate for wavelet-based thresholding 

in ECG denoising in terms of root mean square error (RMSE) 

and peak preservation [8]. 

Several other wavelet-based denoising techniques have 

been proposed, including multiadaptive bionic wavelet 

transform (MABWT) [9], level-dependent S-median and 

difference in mean (DM)-S-median thresholding [10], and 

adaptive thresholding using kurtosis as a measure of 

Gaussianity [11]. Morphological filtering combined with 

wavelet thresholding has also been used for AWGN reduction 

[12], and wavelet soft thresholding has been employed as a 

preprocessing step for beat detection [13]. 

Alternative denoising methods have been developed as well, 

such as a combination of empirical mode decomposition 

(EMD) with soft wavelet thresholding [14], and an improved 

version of the study [2] for electro myopotential (EMG) noise 

reduction in ECG signals [3]. Non-local means (NLM) in the 

wavelet domain [15] and NLM applied to EMD 

decompositions [16] have been explored for better denoising 

of ECG records. Moreover, an adaptive, iterative Fourier 

decomposition was proposed for both synthetic and real ECG 

signals [17]. 

Recently, sparse-based methods have been applied to 

represent ECG signals as combinations of atoms from a given 

dictionary for denoising [18]. The statistical process control 

(SpcShrink) scheme, which discriminates contributing 

wavelet coefficients in the signal of interest from those of 

corrupting noise, has been proposed as well [19]. A 

comprehensive review of numerous powerful strategies can be 

found in study [20]. 

Other denoising methods include time domain 1-D Wiener 

filtering followed by FFT-based low pass filtering, Golay-

Savitzky smoothing, and R-peak recovery [21], as well as 

combinations of EMD, wavelet thresholding, adaptive mean 

filter smoothing, and R-peak recovery [22]. A comparative 

study of power-line interference suppression from ECG 

involving decomposition strategies and the Kalman filter 

framework has been reported in the study [23]. Additionally, 

a Teaching-Learning-Based Optimization (TLBO) Algorithm 

with a Type-2 Fuzzy Adaptive Filter for ECG signal denoising 

was presented in the study [24]. 

 

 

3. MATHEMATICAL BACKGROUND 

 

3.1 Wiener filter 

 

Wiener filter has been and remains to be among the most 

used methods to reduce additive white gaussian noise 

corrupting signals. It is based on the hypothesis that such noise 

is considered as stationary random process. It aims to 

minimize the quadratic errors between the original and the 

reconstructed signals.  

The Wiener filter is a low-pass filter which has not a unique 

cutting frequency (fc). Accordingly, it acts in the spatial 

domain, it means that fc can be found, adaptively, great in 

smooth (homogenous) regions and, conversely, small in 

highly detailed (textured) zones.  

It is worth noting that there are several possible 

implementations. Therefore, the adopted technique used in our 

strategy is the 2D adaptive Wiener filter proposed by Lim [25], 

in which a variant filter in spatial domain is used, and the 

additive noise is assumed to be zero mean white noise. In our 

case of 1D signal, the filtered signal y is deduced from the 

noisy version x according to the following expression: 

 

𝑦(n) = μx + (x(n) − μx)
vx

vx + vn

 (1) 

 

where, μx is the mean value of the region surrounding the nth 

sample of width equal to length of the chosen mask, vx is the 

local variance of x for the same region and vn is the variance 

of the additive white gaussian noise. It is noticeable that the 

ratio 
𝑣𝑥

𝑣𝑥+𝑣𝑛
 approaches 1 in highly detailed regions (in such 

case vn is considered neglectable compared to vx which leads 

to that the filtered y(n)  remains near to the noisy input 

sample  x(n) . However, in the homogenous regions (vx ≅
0) y(n) is tending to approach the local mean value. 

 

3.2 Discrete wavelet transform (DWT) 

 

Wavelet transform is considered as a powerful tool for 

signals decomposition. It aims to split the whole frequency 

range to several adapted frequency bands from coarsest to 

finest one according to adapted scales [5]. 

As it is well-known, the wavelet transform is of two types: 

The first category is the called continuous wavelet transform 

(CWT), however, the second type is named the discrete 

wavelet transform (DWT). In our case we are interested by the 

DWT intensively used for ECG signals denoising [1, 3-24]. 

Wavelet coefficients issued from DWT are of two types: 

Approximation coefficients (AJ,k) corresponding to the 

approximation band of the jth level and the detail coefficients 

(Dj,k) where j ∈ [1, J]. Explicitly stated, coefficients AJ and 

Dk are expressed by: 

 

𝐴𝐽, 𝑘 = ∮ 𝑥(𝑡)
+∞

−∞

1

√2𝐽
𝜙 (

𝑡 − 𝑘2𝐽

2𝐽
) (2) 

 

𝐷𝑗, 𝑘 = ∮ 𝑥(𝑡)
+∞

−∞

1

√2𝑗
ψ (

𝑡 − 𝑘2𝑗

2𝑗
) (3) 

 

𝑥(t) = ∑ ∑ Dj,k

+∞

k=−∞

J

j=1

ψj,k(t) + ∑ AJ,k

+∞

k=−∞

ϕJ,k(t) (4) 

 

where, ϕj,k(t)  and ψj,k(t)  are fatherlets and wavelets 

produced from father and mother waves respectively ϕ(t) and 

ψ(t). 

Note that Aj, k are of low frequency nature and Dj, k are the 

high frequency coefficients. Both coefficients are calculated 

rapidly based on the famous Mallat algorithm [26]. 

Additionally, one can report that there are two manners to 

split a signal by wavelet, the first called wavelet 

decomposition allowing to divide the wavelet-domain 

approximation band repeatedly until to reach a needed depth 

of decomposition, on the other hand, the second strategy, 

consists in the decomposition of both approximation and 

details bands oftentimes until to attain the requested depth of 

partitioning. For illustration Figure 1. shows the 

decomposition according to the two, above mentioned, 

schemes. 
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(a) Wavelet decomposition of depth 2 

 
(b) Wavelet packet of depth 2 

 

Figure 1. Decomposing a signal by wavelet to depth 2 

 

3.3 DONOHO’s hard and soft thresholding  

 

One of the most used strategies in denoising is the well-

established DONOHO’s wavelet based thresholding algorithm 

[27, 28]. In such method the most part of details coefficients 

less in absolute value then a threshold (THi) are considered as 

contributing coefficients in the noise signal that should be 

nullified. It is worth noting that THi means the corresponding 

threshold the ith wavelet band, accordingly, THi is expressed 

as follows [27]: 

 

THi =  σi√2. log (ni) (5) 

 

where:  ni is the corresponding length of the ith wavelet band 

and σi  is the related estimation of the unknown standard 

deviation of the AWGN corrupting noise which is given by: 

 

σi =  
median(|CDi |)

0.6745
 (6) 

 

Note that in the suggested strategy we used the DONOHO’s 

fixed threshold (called also the universal threshold), this fixed 

threshold is defined by:  

 

TH =  σ√2. log (N) (7) 

 

where: N is the signal length and σ is calculated in a same 

manner such in (6) except that the used band is CD1 band. 

There are two kinds of thresholding approaches that are 

hard and soft thresholding defined, respectively, by: 

 

Ther(CDj (k)) = {
CDj(k),   |CDj(k)| > 𝑇𝐻

0   ,   |CDj(k)| ≤ TH
 (8) 

 

and 

 

𝑇ℎ𝑒𝑟(𝐶𝐷𝑗(𝑘))

= {
𝑠𝑖𝑔𝑛(𝐶𝐷𝑗(𝑘)). (|𝐶𝐷𝑗(𝑘)|– 𝑇𝐻), 𝑖𝑓 |𝐶𝐷𝑗(𝑘)| > 𝑇𝐻

0  ,       𝑖𝑓   |𝐶𝐷𝑗(𝑘)|  ≤  𝑇𝐻
 

(9) 

 

where, Ther is the thresholding function.  

4. PROPOSED METHOD DESCRIPTION 

 

The corrupted ECG signal can be modeled by (10): 

 

x(n) = cx(n) + b(n) (10) 

 

where: 

x(n): is the noisy signal; 

cx(n): is the clean original signal to estimate; 

b(n): is the contaminating noise assume to be zero-mean 

and of σb
2  variance additive white Gaussian noise. 

The suggested technique can be summarized in the 

following steps: 

Step 1: 1-level depth DWT wavelet decomposition of the 

noisy signal x(n) to obtain approximation coefficients vector 

CA1(k) and details coefficients vector CD1(k). Note that the 

used mother wave is coif4 according to (2) and (3). 

Step 2: CD1(k)  thresholding according to DONOHO’s 

algorithm using the universal threshold using (5), (6), (7), (8) 

and (9).  

The suggested method is illustrated in Figure 2. 

 

 
 

Figure 2. Proposed denoising scheme 

 

Step 3: Wavelet-domain filtering use by application of 

Wiener filter on the approximation coefficients vector CA1(k) 

following (1). 

Step 4: Inverse DWT (IDWT) application to reconstruct the 

estimated restored signal cx̂(n) with respect to (4).  

Step 5: Median filtering of denoised signal dx(n) such in 

the study [29]. The chosen length of analysis window is 5. 

Step 6: Localization of R-peaks based on the first order 

differentiator dx(n) − dx(n − 1) mentioned in the study [30]. 

Step 7: If estimated SNRI ≥ 5 dB Replace Peaks and 

surrounding neighbors of mdx(n) by those of dx(n). 

Else keep dx(n) unchanged. 

Additionally, the proposed method is described in the 

following scheme: 

Note that, actually, the input SNR (SNRin) describing the 

power ratio of signal to noise is unknown. Consequently, 

based on the fact that ECG signal and the corrupting AWGN 

are decorrelated, the SNRin can be estimated based on (11), 

1213



(12): 

σx
2 = σcx

2 + σb
2 (11) 

It means, 

σcx
2 = σx

2 − σb
2 (12) 

where, σx
2 , σcx

2  and σb
2  are, respectively, the noisy ECG

variance, the unknown variance of the clean ECG signal to 

estimate and the variance of AWGN that can be estimated by 

(6) using CD1 band.

Finally, the SNRin can be expressed by (13):

SNRin = 20log10 (
σcx

σb

) (13) 

5. EXPERIMENTAL RESULTS AND DISCUSSION

In order to evaluate the efficiency of the suggested 

algorithm, we applied the method on the well-known 

ARRYTHMIA MIT-BIH database [31], which contains 48 

records each one is constituted of two channels of 11 bits 

resolution and sampled at a rate of 360 Hz. 

The quantitative used measures to evaluate performances of 

faced techniques to the proposed method are: 

MSE =
1

N
∑(cx̂(n) − cx(n))2

N

n=1

(14) 

SNROUT = 20log10(
σcx

√MSE
) (15) 

It is worth to note that we compared results of 3 state of the 

art recent and efficient algorithms against results provided 

from the suggested strategy. 

The first method [32] used the dataset1: 100.dat, 101.dat, 

102.dat, 103.dat, 104.dat, 105.dat and 106.dat. The chosen

levels of noise corruption are: -5 dB, 0 dB, 5dB, 10dB and 15

dB. The assessment of performance is achieved in term of the

average SNROUT of the dataset.

Additionally, the authors of the study [33] involved a more 

extended dataset2, compared to the first one which is: 100.dat, 

101.dat, 102.dat, 103.dat, 104.dat, 105.dat, 106.dat, 107.dat,

108.dat, 109.dat, 111.dat and 112.dat. In this case, the several

inputs SNR reflecting the power of noise contamination are: 0

dB, 5dB, 10 dB and 15 dB. Also, as previously, the used

evaluation measure is the average SNROUT of the dataset.

Finally, the wavelet-based thresholding is used in all 

following comparisons. The decomposition of wavelet is up to 

level 4 and the used mother wave is the bior4.4 (the CDF 9/7). 

The thresholding achieved is the hard universal one. 

In the first comparison, results of the study [32] and 

wavelet-based thresholding are reported in the Table 1. 

As that can be seen, results obtained from our approach 

report an enhancement of more than 1,5dB compared to the 

wavelet technique. However, reached results are very 

concurrent to those provided from DWT-SBWT as illustrated 

by Figure 3. 

Figure 3. Quantitative comparison between proposed and 

DWT-SBWT [32] methods 

Additionally, to demonstrate the effectiveness of the 

proposed algorithm when applied on specific different ECG 

signals of different shapes, a quantitative evaluation is given 

in Table 2. As one can notice, the denoising process is done 

efficiently for different levels of input SNRs that are similarly 

done as the work in the study [32] and obtained results are very 

comparable of those of the DWT-SBWT. Additionally, a 

qualitative (visual) inspection is shown in Figure 4, Figure 5 

Figure 6 and Figure 7. 

For more convincing, results of the proposed approach are 

faced to those of the study [32] and those of the wavelet-based 

thresholding. The achieved comparison is summarized in 

Table 3. 

From previous presented results, we can conclude that the 

suggested strategy is a valid concurrent of the state of the art 

algorithm of the study [32] and outperforms significantly the 

GS-WT [33] and the wavelet-based thresholding. Note the 

reported conclusion holds except for the case of input 

SNR=10dB where the improvement over the GS-WT is 

slightly lower than 1dB. 

Table 1. Comparative results according to the average SNROUT obtained from dataset1 records for different values of SNRin

ranging from -5dB to 15 dB 

𝐒𝐍𝐑𝐢𝐧 (dB) -5 0 5 10 15 

SNROUT of our approach 6.0703 10.3965 14.3076 17.9999 21.4464 

SNROUT of DWT-SBWT [32] 5.2528 9.7188 14.0847 18.0943 21.6649 

SNROUT of wavelet- thresholding 4,2664 8.4012 12.5424 16.0927 19.5915 

Table 2. Comparative results for the specific ECG records 

ECG signal 104.dat 101.dat 105.dat 113.dat

Specific Input SNR (dB) 2.6969 7.8013 10.3621 15.7915 

Proposed SNR out (dB) 11.8099 16.7338 18.0777 23.0077 

SNR out (dB) [32] 11.0800 16.1197 18.5830 22.6416 
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Figure 4. 104.dat SNRI=2.6969 dB, Proposed SNR out=11.8099dB 

 

 
 

Figure 5. 101.dat SNRI=7.8013dB, Proposed SNR out=16.7338dB 

 

 
 

Figure 6. 105.dat SNRI=10.3621dB, Proposed SNR out=18.0777dB 

 

 
 

Figure 7. 113.dat SNRI=15.7915dB, Proposed SNR out=23.0077dB 

 

Table 3. Comparative results according to the average SNROUT obtained from dataset2 records for different values of SNRin 

ranging from 0 dB to 15 dB 

 
Input SNR (dB) 0 5 10 15 

𝑆𝑁𝑅𝑂𝑈𝑇 of our approach 9.9866 14.2769 17.5920 21.0737 

SNROUT of GS-WT [33] 8.6300 12.5200 16.7300 19.6000 

SNROUT of wavelet-thresholding 8.4012 12.5424 16.0927 19.5915 
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6. CONCLUSION 

 

This work allowed us to re-explore the association of the 

wiener filter with the DONOHO’s wavelet thresholding 

applying the universal threshold. Obtained results are 

concurrent with those achieved in the most recent work of the 

study [32] and outperforms by more than 1.5dB the standard 

wavelet thresholding algorithm and the work of the study [33]. 

For the suggested association, the particularity highlighted 

by our work is that we obtain the best results by limiting the 

level of wavelet decomposition to 1-level unlike the most part 

of previous published works where fourth-level 

decomposition is frequently used for Arrythmia MIT-BIH 

database. 

As one of future directions of research, one can improve the 

R-peaks and surrounding areas detection and incorporate the 

suggested technique in a wearable system. 
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