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This paper presents an accelerated implementation of the Vector Directional Filter (VDF) 

on a Field Programmable Gate Array (FPGA) for real-time denoising of color images. The 

VDF effectively suppresses noise while preserving edges and fine details, making it ideal 

for a range of applications such as satellite and multispectral biomedical imaging. However, 

the filter's high computational complexity poses challenges for real-time processing. 

Existing solutions either fail to meet real-time execution requirements or compromise image 

quality through hardware implementation approximations. To overcome these challenges, 

we first model the VDF using C/C++ programming, and subsequently design an efficient 

floating-point hardware architecture employing the High-Level Synthesis (HLS) flow. 

Optimal directives are selected using the Xilinx Vivado HLS tool. The VDF architecture is 

then integrated as a coprocessor with the Cortex-A53 hardcore processor in the XCZU9EG 

FPGA. To enhance data bandwidth between software and hardware components, three 

Direct Memory Access (DMAs) units are utilized to transfer three image lines in parallel. 

Furthermore, internal memory is implemented on the XCZU9EG FPGA, providing 

increased flexibility for managing the restored image. The VDF Software/Hardware 

(SW/HW) design's robustness and accuracy are validated through experimental studies on 

the ZCU102 board. Our design accelerates the filtering process by 21 times, maintaining 

visual quality and effectively removing noise from color images compared to the VDF SW 

design. Additionally, our solution outperforms existing approaches in terms of filtered image 

quality and processing time, showing a 24% improvement in the worst-case scenario. 
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1. INTRODUCTION

Various applications, such as medical imaging and remote 

sensing, necessitate the processing of color images for 

accurate visual scene interpretation [1, 2]. Color images are 

created, edited, transmitted, and stored, often becoming 

corrupted by noise in the process. Noise degradation not only 

impairs the visual quality of images but also affects subsequent 

image processing tasks, such as edge detection and feature 

extraction [3, 4]. Consequently, numerous filters have been 

proposed for denoising color images while preserving image 

features and details [5-7]. Among these, nonlinear filters are 

particularly important due to their compatibility with the 

nonlinear human perception system and proven efficacy in 

eliminating noise without introducing significant distortion in 

color images [8, 9]. A prominent subclass of nonlinear vector 

filters is based on robust order-statistics, with the Vector 

Median Filter (VMF) [10] and the Vector Directional Filter 

(VDF) [11, 12] being the most well-known examples. 

The VDF operates directionally on image vectors, removing 

vectors with atypical directions in the RGB space and 

achieving optimal chromaticity estimations. As a result, the 

VDF better preserves chromaticity compared to the VMF [13-

15]. However, the VDF's directional processing requires 

complex mathematical operations, such as vector dot products, 

vector norms, and angle calculations. Additionally, the VDF 

operates in multidimensional space, demanding substantial 

computational resources and making real-time 

implementation challenging. Therefore, it is essential to 

reduce the VDF's computational complexity without 

compromising its noise removal capabilities. 

Various strategies have been employed by researchers to 

minimize the complexity of nonlinear filters. For instance, in 

the study [16], a software implementation of the VDF on the 

Texas Instruments DSP TMS320C6711 using floating-point 

operations is proposed, achieving a 320×320 image filtering 

time of 1342 at 150 MHz. In the study [17], the VDF algorithm 

is approximated for implementation on an Intel Pentium® 

processor running at 2.66 GHz, reducing processing time but 

sacrificing filtered image quality. Another study [18] presents 

a fixed-point Software/Hardware (SW/HW) implementation 

of the VDF employing approximations for the nonlinear 

function. The SW component is executed by the NIOS II 

softcore processor, resulting in a faster filtering process but 

decreased reconstructed image quality. In the study [19], 

sequential and parallel hardware architectures are developed 

for the Adaptive Vector Median Filter (AVMF) using an 

approximated method, with a relative inaccuracy of 0.01% 

compared to ideal SW implementations. However, the VDF 

implementations in the studies [16, 17] fail to satisfy real-time 

processing requirements, while the design in the study [18] 

leads to diminished denoised image quality. 

The density of Field Programmable Gate Arrays (FPGAs) 

has increased over time, enabling hardware implementation of 

complex applications across various fields, such as IoT 

systems [20], video processing [21, 22], and neural networks 

Traitement du Signal 
Vol. 40, No. 3, June, 2023, pp. 1251-1257 

Journal homepage: http://iieta.org/journals/ts 

1251

https://orcid.org/0000-0002-1314-7146
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400343&domain=pdf


 

[23]. To reduce the design complexity of FPGAs, High-Level 

Synthesis (HLS) flow can be employed instead of Low-Level 

Synthesis (LLS) flow, allowing for efficient exploration of an 

algorithm's design space and increased designer productivity 

[24, 25]. In this work, the HLS flow is utilized to develop an 

optimized VDF design and implement it within a SW/HW 

codesign environment. The proposed architecture aims to 

balance hardware resources and processing time while 

maintaining visual quality and effectively removing noise 

from color images. To achieve this, the Xilinx Vivado design 

tool is used to develop and integrate the HLS VDF design as a 

coprocessor with the ARM processor. The SW/HW design is 

implemented on the Zynq XCZU9EG FPGA and evaluated on 

the ZCU102 board. The general objective of the SW/HW 

codesign environment is to leverage the flexibility of the 

software component and the performance of the hardware 

component through parallelism and pipeline techniques. 

The remainder of this paper is organized as follows: Section 

2 provides an overview of the VDF. Section 3 details the HLS 

flow used to generate the VDF hardware design. Section 4 

discusses the implementation of the VDF within the SW/HW 

environment, while Section 5 presents the experimental 

findings. Finally, Section 6 concludes the paper. 

 

 

2. VDF OVERVIEW 

 

The VDF works on the direction of the color vectors with 

the purpose of removing vectors with atypical directions. The 

output vectors (𝑦(𝑛)) of the VDF are determined by Eq. (1) 

[11]. 

 

𝑦(𝑛) = 𝐴𝑟𝑔𝑚𝑖𝑛(∝𝑖) (1) 

 

The function Argmin determines the value that minimizes 

the angle between all pixels in the filter window which are 

presented by 𝑥1, 𝑥2, … , 𝑥𝑁 (N presents the filter window size). 

Indeed, the angular distance (∝𝑖) related with an input pixel 𝑥𝑖 
from the filter window is calculated by Eq. (2) [11]. 

 

∝𝑖= ∑𝐴𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑁

𝑗=1

, 𝑖 = 1, 2, … , 𝑁 (2) 

 

where, 𝐴(𝑥𝑖 , 𝑥𝑗)  represents the angle between two input 

vectors 𝑥𝑖 = (𝑅𝑖 , 𝐺𝑖 , 𝐵𝑖), 𝑥𝑗 = (𝑅𝑗, 𝐺𝑗 , 𝐵𝑗) as illustrated by Eq. 

(3) [11]. 

 

𝐴(𝑥𝑖 , 𝑥𝑗) = arccos (
𝑥𝑖𝑥𝑗

𝑇

‖𝑥𝑖‖. ‖𝑥𝑗‖
) (3) 

 

Thus, the output of the VDF is the vector 𝑥(1) from the input 

vectors which related to the lowest weighted angular distance 

∝(1)∈ {∝(1)≤∝(2)≤ ⋯ ≤∝(𝑁)} . However, the vector 𝑥(1)  is 

obtained by 𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑁). 

 

 

3. HLS DESIGN FOR THE VDF 

 

A number of HLS tools have recently been introduced, 

including the Xilinx Vivado HLS tool, which allows users of 

a software languages (e.g., C/C++, SystemC) to produce 

various hardware designs for any algorithm. Indeed, the 

Vivado HLS tool allows for the use of a variety of directives 

to produce an optimal design. For example, the RESOURCE 

directive is used to optimize the implementation of the array 

by using the memories or registers. On the other hand, the 

PIPELINE directive can be applied to the loop iterations to 

decrease the latency time and increase the throughput. 

Figure 1 illustrates the HLS design of the VDF created 

through the Vivado HLS V18.1 from the C/C++ software code. 

Figure 2 presents the principles of the VDF design. Indeed, 

various directives (e.g., RESOURCE, PIPLINE, and 

PARTITION) are applied to the VDF code to produce 

different VDF hardware designs to be implemented on the 

Zynq XCZU9EG FPGA. Nevertheless, Table 1 and Figure 3 

illustrate the FPGA resources, which are presented by the 

number of Flip-Flops (FFs), Look-up-table (LUTs), DSP, and 

memory blocks (BRAMs). On the other hand, Figure 3 

presents the clock cycle number. By the way, our objective is 

to choose the best design that enables us to reduce the 

hardware resources and accelerate the processing time of the 

VDF algorithm. 

 

 
 

Figure 1. HLS design of the VDF 

 

As shown in Figure 1, the VDF design gets three RGB 

pixels from three image lines at the same time. Once the filter 

window (3×3 pixels) is constructed, the process of filtering the 

noisy RGB pixel is started by computing the angle Aij (xi, xj) 

between two pixels. After that, the angular distance αi 

associated with an input xi is calculated based on Eq. (2). The 

comparator is then used to calculate the RGB pixel related to 

the minimum weighted angular distance once the nine angular 

distances are available. In the end, the filtered pixel is stored 

in the internal RAM memory to restore the image. This process 
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is repeated through the loop iteration until all pixels in the 

N×N noisy color image are filtered, as depicted in Figure 2. 

 

Table 1. Design summary for the VDF architectures 

 

 LUTs FFs 
BRAM_1

8K 
DSP48E 

Design 1 16142 (5%) 7512 (1%) 122 (1%) 35 (6%) 

Design 2 17928 (6%) 9757 (1%) 120 (1%) 41 (6%) 

Design 3 
364985 

(133%) 

109746 

(20%) 
184 (18%) 338 (10%) 

Design 4 
98403 

(35%) 

34942 

(6%) 
121 (13%) 1001 (6%) 

 

 
 

Figure 2. Principle of the VDF design 

 

 
 

Figure 3. Hardware resources of the VDF 

 

In the beginning, the VDF algorithm is synthesized through 

Vivado HLS V18.1 without using any directives. The 

synthesis results of design 1 for the VDF show that this design 

needs 1% of FFs, 5% of LUTs, 1% of DSPs, and 6% of 

BRAMs, as depicted in Figure 3. Furthermore, as seen in 

Figure 4, 2133306378 clock cycles are required to restore a 

noisy image. As a result of these observations, it appears that 

the clock cycle number is unusually high. Thus, to reduce this 

number, the filter window is divided into 24-bit register blocks 

for parallel data access by using the PARTITION directive. In 

this case, design 2 is created, which allows a small decrease of 

1% of clock cycles and an increase of 10% of the LUTs. It is 

apparent that the cycle number is usually high. But it is 

preferred to use the PARTITION directive to increase the 

performance of the PIPELINE directive by allowing 

simultaneous access to the data. Thus, design 3 is created by 

applying the PIPELINE directive to loop 3, which is presented 

in Figure 1. In fact, this loop needs more time than loops 1 and 

2. Nevertheless, the synthesis results of design 3 show a 

dramatic reduction in the clock cycle number by 99% relative 

to design 2, as depicted in Figure 4. But this design exceeds 

the number of LUTs available on the FPGA, as reported in 

Figure 3. Indeed, by using the PIPELINE directive, the 

synthesis tool can pipeline the loop and execute multiple 

iterations in parallel, which improves the overall throughput 

and performance of the circuit. But, pipelining a loop requires 

additional hardware resources such as registers, adders, and 

multiplexers, which leads to increased overall resource 

utilization of the design. So, by using the PIPELINE directive, 

design 3 made extensive use of hardware resources, which 

resulted in exceeding the number of LUTs available in the 

FPGA. The RESOURCE directive, on the other hand, is a 

feature in HLS tools that is used to guide the HLS tool in 

making resource allocation decisions during the synthesis 

process and ensure generating an optimized design in terms of 

area cost. Therefore, design 4 is created by adding the 

RESOURCE directive to implement the 3×3 filter window 

using the memory block and also optimize the FPGA cost. 

From Figures 3 and 4, we can see that design 4 provides a gain 

of 68% of FFs, 73% of LUTs, 28% of DSPs, and 34% of 

BRAMs, but with a decrease of 93% of the clock cycles 

compared to design 3. Thus, it is clear that the use of the 

RESOURCE directive can ensure a significant improvement 

in hardware resource allocations. Further, design 4 gives a gain 

of 99% in clock cycles while increasing the amount of 

hardware resources by 72% of FFs, 82% of LUTs, and 88% of 

DSPs in comparison to design 2, as shown in Figures 3 and 4, 

respectively. Consequently, design 4 provides a compromise 

between the hardware resources and the processing time and 

presents the best design for the VDF. 

 

 
 

Figure 4. Clock cycles of the VDF 
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4. IMPLEMENTATION OF THE VDF 

 

The SW/HW implementation of the VDF is realized on the 

Zynq XCZU9EG FPGA. This FPGA implements the ARM 

Cortex-A53 as a hardcore processor in the Processing System 

(PS) part. This processor is a 64-bit Harvard RISC processor 

clocked at 1.2GHz, where the sizes of the L1 and L2 cache 

memories are 32KB and 1MB, respectively. The PS employs 

the industry-standard AXI (Advanced eXtensible Interface) 

interface to connect with the Programmable Logic (PL) part. 

By the way, two interfaces are provided by the standard AXI, 

which are the AXI4-Lite and the AXI4-Stream [26, 27]. 

The SW/HW design suggested for the VDF is shown in 

Figure 5. The VDF coprocessor and the DDR memory are 

connected utilizing three Direct Memory Access (DMA1, 

DMA2, and DMA3) through the AXI-Stream interface, as 

depicted in Figure 5. 

 

 
 

Figure 5. SW/HW architecture for the VDF 

 

 
 

Figure 6. 3×3 RGB filtering window 

In fact, our objective is to increase the data throughput by 

transferring three image lines simultaneously to construct the 

3×3 filter window (Figure 6). For that, DMA1 is set up in write 

and read modes. In contrast, DMAs 2 and 3 are only set up in 

read mode. Therefore, when the filter window is constructed 

through these three DMAs, the VDF coprocessor starts 

looking for the RGB pixel associated with the least weighted 

angular distance and saves it in the internal memory to restore 

the image. As seen in Figure 6, the next filter window is 

created by adding only three RGB pixels. Thus, each pixel 

filtered by the VDF will be stored in the internal memory to 

construct the whole image, which is then transferred to the PS 

part through the DMA1. 

 

 

5. RESULTS AND DISCUSSION 

 

The SW/HW VDF design is implemented and assessed on 

the ZCU102 board [28]. The Vivado tool V18.1 establishes the 

FPGA resources of the proposed design on the Zynq 

XCZU9EG FPGA. According to Figure 7, our design uses 

37227 (7%) FFs, 87210 (32%) LUTs, 338 (13%) DSP blocks, 

and 63 (7%) BRAMs. 

 

 
 

Figure 7. SW/HW VDF design resources 

 

Figure 8 presents the evaluation flow of the SW/HW 

codesign system. In fact, according to this figure, the 

developed VDF C/C++ code is compiled in standalone mode 

by the Xilinx Software Development Tool Kit (SDK) by using 

the hardware specification imported from the Xilinx Vivado 

tool as a bitstream file (.bit). The generated software binary 

file (.elf) is uploaded with the bitstream file to the FPGA. The 

SD card is used to store the contaminated images with noise 

and collect the filtered images, which are provided by our 

SW/HW codesign system. However, the header file "ff. h" is 

added to the software code (C/C++) to create a file system on 

the SD card, as depicted in Figure 9. Figure 10 illustrates the 

instructions employed to read and write data from and to an 

SD card. Therefore, as shown in Figure 11, four lines of C/C++ 

code are added to our VDF code to control the read and write 

data between the VDF coprocessor and the DDR memory 

using three DMAs. In fact, the addresses of the 1st line, 2nd line, 

and 3rd line of the image are provided to the DMA1, DMA2, 

and DMA3, respectively, to transfer image pixels in parallel to 

the VDF coprocessor. Besides, when the filtered image is 

ready, the DMA1 commences to transfer the filtered pixels to 

the DDR memory. 

The SW/HW VDF design's performance is measured with 

regard to the image quality and the processing time. For that, 

the SD card is used to store various test standard color images 
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(e.g., Sailboat, Lena, Mandrill, Monalisa, and Peppers). These 

images have a resolution of 256×256 pixels and are corrupted 

by 3% "salt and pepper" impulsive noise and Gaussian noise 

with σ=5. These noises may appear during transmission, 

scanning, medical imaging, and other processes. Additionally, 

the ARM cortex-A53 processor's timer is employed to 

measure the processing time. In fact, the timer module in the 

Cortex-A53 includes four 64-bit timers, which can be used to 

measure time intervals through the header file "xtime_l.h". 

This file provides access to the 64-bit physical timer counter 

via the XTime_GetTime() function to read the current value of 

the XTime timer before and after calling function(). Then, the 

time is computed by subtracting the start time from the end 

time and dividing by the number of timer ticks per second. 

Besides, image quality is assessed using commonly used 

objective metrics [29, 30], such as the Peak Signal to Noise 

Ratio (PSNR) and the Normalized Color Difference (NCD). 

Tables 2 and 3 show the processing time and image quality 

(NCD and PSNR metrics) of the SW and SW/HW designs of 

the VDF. As represented in Table 2, the VDF SW/HW design 

may accelerate the restoration of the image by 21 times 

compared to the SW design, allowing for a 95% decrease in 

processing time. As illustrated in Table 3, the improvement in 

processing time is obtained with no change in image quality 

between the SW and SW/HW designs in terms of PSNR and 

NCD for impulsive and Gaussian noises. Furthermore, it is 

justified by subjective measurement, as seen in Figure 12. In 

fact, there is no visible distinction between images restored by 

the SW and those restored by the SW/HW design. We may 

conclude from the experiment findings that the SW/HW 

design is more performant than the SW design, despite the fact 

that floating-point is employed for the hardware VDF 

implementation via the HLS flow, demonstrating the 

correctness of the proposed VDF SW/HW design. 

 

 
 

Figure 8. Evaluation flow of the SW/HW codesign system 

 
 

Figure 9. File management by the “ff. h” library 

 

 
 

Figure 10. Instructions for read/write data from/to SD card 

 

 
 

Figure 11. Control read/write data by the DMAs from the 

DDR memory 

 

Table 4 compares the performance of the VDF design to that 

of the literature. We can observe from the table that our 

solution outperforms [16] and [17], which provide software 

implementations of the VDF on the DSP 

TMS320C6711@150MHz and the Intel Pentium@2.66GHz, 

respectively. Furthermore, our design outperforms [18] in 

processing time and image quality. In fact, [18] presents a 

fixed-point SW/HW architecture for the VDF, which employs 

the NIOS II processor to process the software part and the 

VHSIC (Very Speed Hardware Description Language) 

Hardware Description Language (VHDL) for HW 

implementation. Thus, our design allows a reduction of 24% 

in processing time relative to [18], despite the fact that it uses 

a floating-point implementation. 

 

Table 2. Processing time measurement for the VDF designs 

 
 SW SW/HW 

Processing time (ms) 1500 72 
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Table 3. Measurement of the NCD and PSNR for VDF designs 

 

Images 

Impulsive noise Gaussian noise 

NCD PSNR (dB) NCD PSNR (dB) 

SW SW/HW SW SW/HW SW SW/HW SW SW/HW 

Sailboat 0.10337 0.10337 25.46 25.46 0.11035 0.11035 25.97 25.97 

Lena 0.04135 0.04135 28.84 28.84 0.05443 0.05443 29.16 29.16 

Mandrill 0.08286 0.08286 21.12 21.12 0.09092 0.09092 21.06 21.06 

Monalisa 0.02998 0.02998 29.35 29.35 0.05901 0.05901 28.29 28.29 

Peppers 0.05358 0.05358 27.61 27.611 0.05775 0.05775 30.65 30.65 

 

Table 4. Performance comparison of various VDF designs 

 
Ref. Size of image Processing time (ms) Specifications Implementation 

[18] 176×144 41 NIOS II/VDF@70MHz Fixed-point 

[16] 320×320 1342 DSP TMS320C6711@150MHz 

Floating-point 

[17] 512×512 306 Intel pentium@2.66GHz 

Proposed design 

176×144 31 

A53@1.2GHz/VDF@100MHz 256×256 72 

512×512 226 

 

 
 

Figure 12. (1) Original images, (2) noise intensity (3%), restored images with (3) SW and (4) SW/HW designs 

 

 

6. CONCLUSIONS 

 

The SW/HW implementation of the VDF is proposed in this 

study. An optimal VDF HW architecture is developed via the 

HLS flow using Vivado HLS V18.1. By the way, numerous 

directives (PARTITION, RESOURCE, and PIPELINE) are 

integrated in the VDF C++ code. Then, in the SW/HW 

codesign environment, this architecture is incorporated as a 

coprocessor with the ARM Cortex-A53 hardcore processor. 

The AXI-stream is used by DMA to increase data bandwidth 

between the VDF coprocessor and the DDR memory. In the 

end, the performance study on the ZCU102 board shows that 

the SW/HW design reduces the processing time by 95% when 

compared to the SW design with the same filtered image 

quality and outperforms the solution proposed in the literature. 
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