
Accelerated FPGA-Based Vector Directional Filter for Real-Time Color Image Denoising

with Enhanced Performance

Turki M. Alanazi

Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia

Corresponding Author Email: tmanazi@ju.edu.sa

https://doi.org/10.18280/ts.400343 ABSTRACT

Received: 12 January 2023

Accepted: 30 April 2023

This paper presents an accelerated implementation of the Vector Directional Filter (VDF)

on a Field Programmable Gate Array (FPGA) for real-time denoising of color images. The

VDF effectively suppresses noise while preserving edges and fine details, making it ideal

for a range of applications such as satellite and multispectral biomedical imaging. However,

the filter's high computational complexity poses challenges for real-time processing.

Existing solutions either fail to meet real-time execution requirements or compromise image

quality through hardware implementation approximations. To overcome these challenges,

we first model the VDF using C/C++ programming, and subsequently design an efficient

floating-point hardware architecture employing the High-Level Synthesis (HLS) flow.

Optimal directives are selected using the Xilinx Vivado HLS tool. The VDF architecture is

then integrated as a coprocessor with the Cortex-A53 hardcore processor in the XCZU9EG

FPGA. To enhance data bandwidth between software and hardware components, three

Direct Memory Access (DMAs) units are utilized to transfer three image lines in parallel.

Furthermore, internal memory is implemented on the XCZU9EG FPGA, providing

increased flexibility for managing the restored image. The VDF Software/Hardware

(SW/HW) design's robustness and accuracy are validated through experimental studies on

the ZCU102 board. Our design accelerates the filtering process by 21 times, maintaining

visual quality and effectively removing noise from color images compared to the VDF SW

design. Additionally, our solution outperforms existing approaches in terms of filtered image

quality and processing time, showing a 24% improvement in the worst-case scenario.

Keywords:

nonlinear filter, vector directional filter,

color image, noise reduction, SW/HW

codesign, FPGA

1. INTRODUCTION

Various applications, such as medical imaging and remote

sensing, necessitate the processing of color images for

accurate visual scene interpretation [1, 2]. Color images are

created, edited, transmitted, and stored, often becoming

corrupted by noise in the process. Noise degradation not only

impairs the visual quality of images but also affects subsequent

image processing tasks, such as edge detection and feature

extraction [3, 4]. Consequently, numerous filters have been

proposed for denoising color images while preserving image

features and details [5-7]. Among these, nonlinear filters are

particularly important due to their compatibility with the

nonlinear human perception system and proven efficacy in

eliminating noise without introducing significant distortion in

color images [8, 9]. A prominent subclass of nonlinear vector

filters is based on robust order-statistics, with the Vector

Median Filter (VMF) [10] and the Vector Directional Filter

(VDF) [11, 12] being the most well-known examples.

The VDF operates directionally on image vectors, removing

vectors with atypical directions in the RGB space and

achieving optimal chromaticity estimations. As a result, the

VDF better preserves chromaticity compared to the VMF [13-

15]. However, the VDF's directional processing requires

complex mathematical operations, such as vector dot products,

vector norms, and angle calculations. Additionally, the VDF

operates in multidimensional space, demanding substantial

computational resources and making real-time

implementation challenging. Therefore, it is essential to

reduce the VDF's computational complexity without

compromising its noise removal capabilities.

Various strategies have been employed by researchers to

minimize the complexity of nonlinear filters. For instance, in

the study [16], a software implementation of the VDF on the

Texas Instruments DSP TMS320C6711 using floating-point

operations is proposed, achieving a 320×320 image filtering

time of 1342 at 150 MHz. In the study [17], the VDF algorithm

is approximated for implementation on an Intel Pentium®

processor running at 2.66 GHz, reducing processing time but

sacrificing filtered image quality. Another study [18] presents

a fixed-point Software/Hardware (SW/HW) implementation

of the VDF employing approximations for the nonlinear

function. The SW component is executed by the NIOS II

softcore processor, resulting in a faster filtering process but

decreased reconstructed image quality. In the study [19],

sequential and parallel hardware architectures are developed

for the Adaptive Vector Median Filter (AVMF) using an

approximated method, with a relative inaccuracy of 0.01%

compared to ideal SW implementations. However, the VDF

implementations in the studies [16, 17] fail to satisfy real-time

processing requirements, while the design in the study [18]

leads to diminished denoised image quality.

The density of Field Programmable Gate Arrays (FPGAs)

has increased over time, enabling hardware implementation of

complex applications across various fields, such as IoT

systems [20], video processing [21, 22], and neural networks

Traitement du Signal
Vol. 40, No. 3, June, 2023, pp. 1251-1257

Journal homepage: http://iieta.org/journals/ts

1251

https://orcid.org/0000-0002-1314-7146
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400343&domain=pdf

[23]. To reduce the design complexity of FPGAs, High-Level

Synthesis (HLS) flow can be employed instead of Low-Level

Synthesis (LLS) flow, allowing for efficient exploration of an

algorithm's design space and increased designer productivity

[24, 25]. In this work, the HLS flow is utilized to develop an

optimized VDF design and implement it within a SW/HW

codesign environment. The proposed architecture aims to

balance hardware resources and processing time while

maintaining visual quality and effectively removing noise

from color images. To achieve this, the Xilinx Vivado design

tool is used to develop and integrate the HLS VDF design as a

coprocessor with the ARM processor. The SW/HW design is

implemented on the Zynq XCZU9EG FPGA and evaluated on

the ZCU102 board. The general objective of the SW/HW

codesign environment is to leverage the flexibility of the

software component and the performance of the hardware

component through parallelism and pipeline techniques.

The remainder of this paper is organized as follows: Section

2 provides an overview of the VDF. Section 3 details the HLS

flow used to generate the VDF hardware design. Section 4

discusses the implementation of the VDF within the SW/HW

environment, while Section 5 presents the experimental

findings. Finally, Section 6 concludes the paper.

2. VDF OVERVIEW

The VDF works on the direction of the color vectors with

the purpose of removing vectors with atypical directions. The

output vectors (𝑦(𝑛)) of the VDF are determined by Eq. (1)

[11].

𝑦(𝑛) = 𝐴𝑟𝑔𝑚𝑖𝑛(∝𝑖) (1)

The function Argmin determines the value that minimizes

the angle between all pixels in the filter window which are

presented by 𝑥1, 𝑥2, … , 𝑥𝑁 (N presents the filter window size).

Indeed, the angular distance (∝𝑖) related with an input pixel 𝑥𝑖
from the filter window is calculated by Eq. (2) [11].

∝𝑖= ∑𝐴𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑁

𝑗=1

, 𝑖 = 1, 2, … , 𝑁 (2)

where, 𝐴(𝑥𝑖 , 𝑥𝑗) represents the angle between two input

vectors 𝑥𝑖 = (𝑅𝑖 , 𝐺𝑖 , 𝐵𝑖), 𝑥𝑗 = (𝑅𝑗, 𝐺𝑗 , 𝐵𝑗) as illustrated by Eq.

(3) [11].

𝐴(𝑥𝑖 , 𝑥𝑗) = arccos (
𝑥𝑖𝑥𝑗

𝑇

‖𝑥𝑖‖. ‖𝑥𝑗‖
) (3)

Thus, the output of the VDF is the vector 𝑥(1) from the input

vectors which related to the lowest weighted angular distance

∝(1)∈ {∝(1)≤∝(2)≤ ⋯ ≤∝(𝑁)} . However, the vector 𝑥(1) is

obtained by 𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑁).

3. HLS DESIGN FOR THE VDF

A number of HLS tools have recently been introduced,

including the Xilinx Vivado HLS tool, which allows users of

a software languages (e.g., C/C++, SystemC) to produce

various hardware designs for any algorithm. Indeed, the

Vivado HLS tool allows for the use of a variety of directives

to produce an optimal design. For example, the RESOURCE

directive is used to optimize the implementation of the array

by using the memories or registers. On the other hand, the

PIPELINE directive can be applied to the loop iterations to

decrease the latency time and increase the throughput.

Figure 1 illustrates the HLS design of the VDF created

through the Vivado HLS V18.1 from the C/C++ software code.

Figure 2 presents the principles of the VDF design. Indeed,

various directives (e.g., RESOURCE, PIPLINE, and

PARTITION) are applied to the VDF code to produce

different VDF hardware designs to be implemented on the

Zynq XCZU9EG FPGA. Nevertheless, Table 1 and Figure 3

illustrate the FPGA resources, which are presented by the

number of Flip-Flops (FFs), Look-up-table (LUTs), DSP, and

memory blocks (BRAMs). On the other hand, Figure 3

presents the clock cycle number. By the way, our objective is

to choose the best design that enables us to reduce the

hardware resources and accelerate the processing time of the

VDF algorithm.

Figure 1. HLS design of the VDF

As shown in Figure 1, the VDF design gets three RGB

pixels from three image lines at the same time. Once the filter

window (3×3 pixels) is constructed, the process of filtering the

noisy RGB pixel is started by computing the angle Aij (xi, xj)

between two pixels. After that, the angular distance αi

associated with an input xi is calculated based on Eq. (2). The

comparator is then used to calculate the RGB pixel related to

the minimum weighted angular distance once the nine angular

distances are available. In the end, the filtered pixel is stored

in the internal RAM memory to restore the image. This process

1252

is repeated through the loop iteration until all pixels in the

N×N noisy color image are filtered, as depicted in Figure 2.

Table 1. Design summary for the VDF architectures

 LUTs FFs
BRAM_1

8K
DSP48E

Design 1 16142 (5%) 7512 (1%) 122 (1%) 35 (6%)

Design 2 17928 (6%) 9757 (1%) 120 (1%) 41 (6%)

Design 3
364985

(133%)

109746

(20%)
184 (18%) 338 (10%)

Design 4
98403

(35%)

34942

(6%)
121 (13%) 1001 (6%)

Figure 2. Principle of the VDF design

Figure 3. Hardware resources of the VDF

In the beginning, the VDF algorithm is synthesized through

Vivado HLS V18.1 without using any directives. The

synthesis results of design 1 for the VDF show that this design

needs 1% of FFs, 5% of LUTs, 1% of DSPs, and 6% of

BRAMs, as depicted in Figure 3. Furthermore, as seen in

Figure 4, 2133306378 clock cycles are required to restore a

noisy image. As a result of these observations, it appears that

the clock cycle number is unusually high. Thus, to reduce this

number, the filter window is divided into 24-bit register blocks

for parallel data access by using the PARTITION directive. In

this case, design 2 is created, which allows a small decrease of

1% of clock cycles and an increase of 10% of the LUTs. It is

apparent that the cycle number is usually high. But it is

preferred to use the PARTITION directive to increase the

performance of the PIPELINE directive by allowing

simultaneous access to the data. Thus, design 3 is created by

applying the PIPELINE directive to loop 3, which is presented

in Figure 1. In fact, this loop needs more time than loops 1 and

2. Nevertheless, the synthesis results of design 3 show a

dramatic reduction in the clock cycle number by 99% relative

to design 2, as depicted in Figure 4. But this design exceeds

the number of LUTs available on the FPGA, as reported in

Figure 3. Indeed, by using the PIPELINE directive, the

synthesis tool can pipeline the loop and execute multiple

iterations in parallel, which improves the overall throughput

and performance of the circuit. But, pipelining a loop requires

additional hardware resources such as registers, adders, and

multiplexers, which leads to increased overall resource

utilization of the design. So, by using the PIPELINE directive,

design 3 made extensive use of hardware resources, which

resulted in exceeding the number of LUTs available in the

FPGA. The RESOURCE directive, on the other hand, is a

feature in HLS tools that is used to guide the HLS tool in

making resource allocation decisions during the synthesis

process and ensure generating an optimized design in terms of

area cost. Therefore, design 4 is created by adding the

RESOURCE directive to implement the 3×3 filter window

using the memory block and also optimize the FPGA cost.

From Figures 3 and 4, we can see that design 4 provides a gain

of 68% of FFs, 73% of LUTs, 28% of DSPs, and 34% of

BRAMs, but with a decrease of 93% of the clock cycles

compared to design 3. Thus, it is clear that the use of the

RESOURCE directive can ensure a significant improvement

in hardware resource allocations. Further, design 4 gives a gain

of 99% in clock cycles while increasing the amount of

hardware resources by 72% of FFs, 82% of LUTs, and 88% of

DSPs in comparison to design 2, as shown in Figures 3 and 4,

respectively. Consequently, design 4 provides a compromise

between the hardware resources and the processing time and

presents the best design for the VDF.

Figure 4. Clock cycles of the VDF

1253

4. IMPLEMENTATION OF THE VDF

The SW/HW implementation of the VDF is realized on the

Zynq XCZU9EG FPGA. This FPGA implements the ARM

Cortex-A53 as a hardcore processor in the Processing System

(PS) part. This processor is a 64-bit Harvard RISC processor

clocked at 1.2GHz, where the sizes of the L1 and L2 cache

memories are 32KB and 1MB, respectively. The PS employs

the industry-standard AXI (Advanced eXtensible Interface)

interface to connect with the Programmable Logic (PL) part.

By the way, two interfaces are provided by the standard AXI,

which are the AXI4-Lite and the AXI4-Stream [26, 27].

The SW/HW design suggested for the VDF is shown in

Figure 5. The VDF coprocessor and the DDR memory are

connected utilizing three Direct Memory Access (DMA1,

DMA2, and DMA3) through the AXI-Stream interface, as

depicted in Figure 5.

Figure 5. SW/HW architecture for the VDF

Figure 6. 3×3 RGB filtering window

In fact, our objective is to increase the data throughput by

transferring three image lines simultaneously to construct the

3×3 filter window (Figure 6). For that, DMA1 is set up in write

and read modes. In contrast, DMAs 2 and 3 are only set up in

read mode. Therefore, when the filter window is constructed

through these three DMAs, the VDF coprocessor starts

looking for the RGB pixel associated with the least weighted

angular distance and saves it in the internal memory to restore

the image. As seen in Figure 6, the next filter window is

created by adding only three RGB pixels. Thus, each pixel

filtered by the VDF will be stored in the internal memory to

construct the whole image, which is then transferred to the PS

part through the DMA1.

5. RESULTS AND DISCUSSION

The SW/HW VDF design is implemented and assessed on

the ZCU102 board [28]. The Vivado tool V18.1 establishes the

FPGA resources of the proposed design on the Zynq

XCZU9EG FPGA. According to Figure 7, our design uses

37227 (7%) FFs, 87210 (32%) LUTs, 338 (13%) DSP blocks,

and 63 (7%) BRAMs.

Figure 7. SW/HW VDF design resources

Figure 8 presents the evaluation flow of the SW/HW

codesign system. In fact, according to this figure, the

developed VDF C/C++ code is compiled in standalone mode

by the Xilinx Software Development Tool Kit (SDK) by using

the hardware specification imported from the Xilinx Vivado

tool as a bitstream file (.bit). The generated software binary

file (.elf) is uploaded with the bitstream file to the FPGA. The

SD card is used to store the contaminated images with noise

and collect the filtered images, which are provided by our

SW/HW codesign system. However, the header file "ff. h" is

added to the software code (C/C++) to create a file system on

the SD card, as depicted in Figure 9. Figure 10 illustrates the

instructions employed to read and write data from and to an

SD card. Therefore, as shown in Figure 11, four lines of C/C++

code are added to our VDF code to control the read and write

data between the VDF coprocessor and the DDR memory

using three DMAs. In fact, the addresses of the 1st line, 2nd line,

and 3rd line of the image are provided to the DMA1, DMA2,

and DMA3, respectively, to transfer image pixels in parallel to

the VDF coprocessor. Besides, when the filtered image is

ready, the DMA1 commences to transfer the filtered pixels to

the DDR memory.

The SW/HW VDF design's performance is measured with

regard to the image quality and the processing time. For that,

the SD card is used to store various test standard color images

1254

(e.g., Sailboat, Lena, Mandrill, Monalisa, and Peppers). These

images have a resolution of 256×256 pixels and are corrupted

by 3% "salt and pepper" impulsive noise and Gaussian noise

with σ=5. These noises may appear during transmission,

scanning, medical imaging, and other processes. Additionally,

the ARM cortex-A53 processor's timer is employed to

measure the processing time. In fact, the timer module in the

Cortex-A53 includes four 64-bit timers, which can be used to

measure time intervals through the header file "xtime_l.h".

This file provides access to the 64-bit physical timer counter

via the XTime_GetTime() function to read the current value of

the XTime timer before and after calling function(). Then, the

time is computed by subtracting the start time from the end

time and dividing by the number of timer ticks per second.

Besides, image quality is assessed using commonly used

objective metrics [29, 30], such as the Peak Signal to Noise

Ratio (PSNR) and the Normalized Color Difference (NCD).

Tables 2 and 3 show the processing time and image quality

(NCD and PSNR metrics) of the SW and SW/HW designs of

the VDF. As represented in Table 2, the VDF SW/HW design

may accelerate the restoration of the image by 21 times

compared to the SW design, allowing for a 95% decrease in

processing time. As illustrated in Table 3, the improvement in

processing time is obtained with no change in image quality

between the SW and SW/HW designs in terms of PSNR and

NCD for impulsive and Gaussian noises. Furthermore, it is

justified by subjective measurement, as seen in Figure 12. In

fact, there is no visible distinction between images restored by

the SW and those restored by the SW/HW design. We may

conclude from the experiment findings that the SW/HW

design is more performant than the SW design, despite the fact

that floating-point is employed for the hardware VDF

implementation via the HLS flow, demonstrating the

correctness of the proposed VDF SW/HW design.

Figure 8. Evaluation flow of the SW/HW codesign system

Figure 9. File management by the “ff. h” library

Figure 10. Instructions for read/write data from/to SD card

Figure 11. Control read/write data by the DMAs from the

DDR memory

Table 4 compares the performance of the VDF design to that

of the literature. We can observe from the table that our

solution outperforms [16] and [17], which provide software

implementations of the VDF on the DSP

TMS320C6711@150MHz and the Intel Pentium@2.66GHz,

respectively. Furthermore, our design outperforms [18] in

processing time and image quality. In fact, [18] presents a

fixed-point SW/HW architecture for the VDF, which employs

the NIOS II processor to process the software part and the

VHSIC (Very Speed Hardware Description Language)

Hardware Description Language (VHDL) for HW

implementation. Thus, our design allows a reduction of 24%

in processing time relative to [18], despite the fact that it uses

a floating-point implementation.

Table 2. Processing time measurement for the VDF designs

 SW SW/HW

Processing time (ms) 1500 72

1255

Table 3. Measurement of the NCD and PSNR for VDF designs

Images

Impulsive noise Gaussian noise

NCD PSNR (dB) NCD PSNR (dB)

SW SW/HW SW SW/HW SW SW/HW SW SW/HW

Sailboat 0.10337 0.10337 25.46 25.46 0.11035 0.11035 25.97 25.97

Lena 0.04135 0.04135 28.84 28.84 0.05443 0.05443 29.16 29.16

Mandrill 0.08286 0.08286 21.12 21.12 0.09092 0.09092 21.06 21.06

Monalisa 0.02998 0.02998 29.35 29.35 0.05901 0.05901 28.29 28.29

Peppers 0.05358 0.05358 27.61 27.611 0.05775 0.05775 30.65 30.65

Table 4. Performance comparison of various VDF designs

Ref. Size of image Processing time (ms) Specifications Implementation

[18] 176×144 41 NIOS II/VDF@70MHz Fixed-point

[16] 320×320 1342 DSP TMS320C6711@150MHz

Floating-point

[17] 512×512 306 Intel pentium@2.66GHz

Proposed design

176×144 31

A53@1.2GHz/VDF@100MHz 256×256 72

512×512 226

Figure 12. (1) Original images, (2) noise intensity (3%), restored images with (3) SW and (4) SW/HW designs

6. CONCLUSIONS

The SW/HW implementation of the VDF is proposed in this

study. An optimal VDF HW architecture is developed via the

HLS flow using Vivado HLS V18.1. By the way, numerous

directives (PARTITION, RESOURCE, and PIPELINE) are

integrated in the VDF C++ code. Then, in the SW/HW

codesign environment, this architecture is incorporated as a

coprocessor with the ARM Cortex-A53 hardcore processor.

The AXI-stream is used by DMA to increase data bandwidth

between the VDF coprocessor and the DDR memory. In the

end, the performance study on the ZCU102 board shows that

the SW/HW design reduces the processing time by 95% when

compared to the SW design with the same filtered image

quality and outperforms the solution proposed in the literature.

REFERENCES

[1] Rashid, N., Berriri, K., Albekairi, M., Kaaniche, K., Ben

Atitallah, A., Khan, M.A., El-Hamrawy, O.I. (2022).

New real-time impulse noise removal method applied to

chest x-ray images. Diagnostics, 12(11): 2738.

https://doi.org/10.3390/diagnostics12112738

[2] Said, Y., Atri, M., Albahar, M.A., Ben Atitallah, A.,

Alsariera, Y.A. (2023). Scene recognition for visually-

impaired people’s navigation assistance based on vision

transformer with dual multiscale attention. Mathematics,

11(5): 1127. https://doi.org/10.3390/math11051127

[3] HosseinKhani, Z., Hajabdollahi, M., Karimi, N.,

Soroushmehr, R., Shirani, S., Najarian, K., Samavi, S.

(2018). Adaptive real-time removal of impulse noise in

medical images. Journal of Medical Systems, 42: 1-9.
https://doi.org/10.1007/s10916-018-1074-7

[4] Gökcen, A., Kalyoncu, C. (2020). Real-time impulse

noise removal. Journal of Real-Time Image Processing,

17: 459-469. https://doi.org/10.1007/s11554-018-0791-y

[5] Smolka, B. (2018). Robust sharpening vector median

filter. In 2018 International Automatic Control

Conference (CACS). IEEE, pp. 1-6.

https://doi.org/10.1109/CACS.2018.8606777

1256

[6] Roy, A., Singha, J., Manam, L., Laskar, R.H. (2017).

Combination of adaptive vector median filter and

weighted mean filter for removal of high‐density impulse

noise from colour images. IET Image Processing, 11(6):

352-361. https://doi.org/10.1049/iet-ipr.2016.0320

[7] Roy, A., Manam, L., Laskar, R.H. (2018). Region

adaptive fuzzy filter: An approach for removal of

random-valued impulse noise. IEEE Transactions on

Industrial Electronics, 65(9): 7268-7278.

https://doi.org/10.1109/TIE.2018.2793225

[8] Ahamed, B.B., Yuvaraj, D., Priya, S.S. (2019). Image

denoising with linear and non-linear filters. In 2019

International Conference on Computational Intelligence

and Knowledge Economy (ICCIKE). IEEE, pp. 806-810.

https://doi.org/10.1109/ICCIKE47802.2019.9004429

[9] Solovyeva, E. (2017). Cellular neural network as a non-

linear filter of impulse noise. In 2017 20th Conference of

Open Innovations Association (FRUCT). IEEE, pp. 420-

426. https://doi.org/10.23919/FRUCT.2017.8071343

[10] Astola, J., Haavisto, P., Neuvo, Y. (1990). Vector median

filters. Proceedings of the IEEE, 78(4): 678-689.

https://doi.org/10.1109/5.54807

[11] Trahanias, P.E., Venetsanopoulos, A.N. (1993). Vector

directional filters-a new class of multichannel image

processing filters. IEEE Transactions on Image

Processing, 2(4): 528-534.

https://doi.org/10.1109/83.242362

[12] Lukac, R., Smolka, B., Plataniotis, K.N.,

Venetsanopoulos, A.N. (2004). Selection weighted

vector directional filters. Computer Vision and Image

Understanding, 94(1-3): 140-167.

https://doi.org/10.1016/j.cviu.2003.10.013

[13] Celebi, M.E., Kingravi, H.A., Aslandogan, Y.A. (2007).

Nonlinear vector filtering for impulsive noise removal

from color images. Journal of Electronic Imaging, 16(3):

033008-033008. https://doi.org/10.1117/1.2772639

[14] Chanu, T.R., Singh, T.R., Singh, K.M. (2021). A survey

on impulse noise removal from color image. Turkish

Journal of Computer and Mathematics Education

(TURCOMAT), 12(13): 4274-4295.

[15] Vishnu Tej, Y., James Stephen, M., Prasad Reddy,

P.V.G.D., Choppala, P. (2022). A novel methodology for

denoising impulse noise in satellite images through

isolated vector median filter with k-means clustering.

International Journal of Engineering Trends and

Technology, 70(8): 272-283.

https://doi.org/10.14445/22315381/IJETT-V70I8P229

[16] Domínguez, L.C., Ponomaryov, V.I. (2005). Nonlinear

filters for colour imaging implemented by DSP. In 2005

2nd International Conference on Electrical and

Electronics Engineering. IEEE, pp. 81-84.

https://doi.org/10.1109/ICEEE.2005.1529578

[17] Celebi, M.E. (2009). Real-time implementation of order-

statistics-based directional filters. IET Image Processing,

3(1): 1-9. https://doi.org/10.1049/iet-ipr:20080080

[18] Atitallah, A.B., Boudabous, A., Khriji, L., Masmoudi, N.

(2013). Reconfigurable architecture of VDF filter for

multidimensional data. International Journal of Circuit

Theory and Applications, 41(10): 1047-1058.

https://doi.org/10.1002/cta.1815

[19] Ben Atitallah, A., Abid, I., Boudabous, A., Loukil, H.

(2021). A new hardware architecture of the adaptive

vector median filter and validation in a

hardware/software environment. International Journal of

Circuit Theory and Applications, 49(8): 2329-2347.

https://doi.org/10.1002/cta.3000

[20] Zhang, X., Ramachandran, A., Zhuge, C., He, D., Zuo,

W., Cheng, Z., Rupnow, K., Chen, D. (2017). Machine

learning on FPGAs to face the IoT revolution. In 2017

IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), pp. 894-901.

https://doi.org/10.1109/ICCAD.2017.8203875

[21] Alanazi, T.M., Atitallah, A.B. (2022). Unified FPGA

design for the HEVC dequantization and inverse

transform modules. Computers, Materials & Continua,

71(3). https://doi.org/10.32604/cmc.2022.022988

[22] Kthiri, M., Le Gal, B., Kadionik, P., Atitallah, A.B.

(2013). A very high throughput deblocking filter for H.

264/AVC. Journal of Signal Processing Systems, 73:

189-199. https://doi.org/10.1007/s11265-013-0744-4

[23] Chen, Y., He, J., Zhang, X., Hao, C., Chen, D. (2019).

Cloud-DNN: An open framework for mapping DNN

models to cloud FPGAs. In Proceedings of the 2019

ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pp. 73-82.

https://doi.org/10.1145/3289602.3293915

[24] Ben Atitallah, A., Kammoun, M., Ali, K.M., Ben

Atitallah, R. (2020). An FPGA comparative study of

high‐level and low‐level combined designs for HEVC

intra, inverse quantization, and IDCT/IDST 2D modules.

International Journal of Circuit Theory and Applications,

48(8): 1274-1290. https://doi.org/10.1002/cta.2790

[25] Ye, H., Jun, H., Yang, J., Chen, D. (2023). High-level

synthesis for domain specific computing. In Proceedings

of the 2023 International Symposium on Physical Design,

pp. 211-219. https://doi.org/10.1145/3569052.3580027

[26] Atitallah, A.B., Kammoun, M., Atitallah, R.B. (2020).

An optimized FPGA design of inverse quantization and

transform for HEVCdecoding blocks and validation in an

SW/HW environment. Turkish Journal of Electrical

Engineering and Computer Sciences, 28(3): 1656-1672.

https://doi.org/10.3906/elk-1910-122

[27] Atitallah, M.A.B., Kachouri, R., Atitallah, A.B., Mnif, H.

(2022). An efficient HW/SW design for text extraction

from complex color image. CMC-Computers, Materials

& Continua, 71(3): 5963-5977.

https://doi.org/10.32604/cmc.2022.024345

[28] UltraScale, X.Z. (2019). Xilinx Zynq

UltraScale+MPSoC ZCU102 evaluation kit. MPSoC

ZCU102 Evaluation Kit.

[29] Ben Atitallah, A. (2022). A new adaptive filter to remove

impulsive noise in color images. IEEJ Transactions on

Electrical and Electronic Engineering, 17(7): 1048-1053.

https://doi.org/10.1002/tee.23594

[30] Russo, F. (2014). Performance evaluation of noise

reduction filters for color images through normalized

color difference (NCD) decomposition. International

Scholarly Research Notices, 2014.

http://dx.doi.org/10.1155/2014/579658

1257

