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In recent years, retinal disorders have grown to be a serious public health issue. Retinopathy 

of Prematurity (ROP) and Diabetic Retinopathy (DR) are the foremost factors of vision 

impairments in children and youngsters correspondingly. These illnesses develop gradually 

and have no visible symptoms. To avoid vision damage, it is crucial to identify these 

conditions quickly and receive the appropriate medication. Therefore, a completely 

automated approach for identifying retinal disorders is needed. It is designed to reduce 

human contact for the identification of Diabetic Retinopathy (DR) and Retinopathy of 

Prematurity (ROP) while maintaining the excellent accuracy of the classification. This paper 

presents an enhanced deep learning model LeNet-5 for retinal disease categorization 

framework. To achieve the desired findings, the DeepLabv3+ based blood vessel 

segmentation is carried out. After segmenting the retinal vessels, the features relevant to DR 

and ROP are extracted using dual channel based Capsule Network (CapsNet). After that, 

LeNet-5 receives the CapsNet feature map for categorization. To increase the deep learning 

classifier’s performance, the Deep Convolutional Generative Adversarial Network 

(DCGAN) based data augmentation technique is implemented. The system evaluated in 

MESSIDOR and private datasets obtained 99.29% and 99.12% accuracy for DR and ROP 

classification. When the attained results are compared with other existing techniques, it is 

seen that more successful findings are achieved.  
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1. INTRODUCTION

Retinal-based disorders can cause blurry vision and 

occasionally total blindness, are growing more prevalent 

among people of all ages and diminish the eye's capacity to see 

clearly [1-3]. Analyzing lesions and retinal structures 

including the blood vessels, fovea, macular region, optic cup, 

and Optic Disc (OD) can reveal important information about 

some of the main retinal illnesses and help with diagnosis. 

Some of the major eye conditions that can lead to blindness if 

not properly diagnosed are cataract, Retinopathy of 

Prematurity (ROP), Diabetic Macular Edema (DME), Age-

related Macular Degeneration (AMD), Diabetic Retinopathy 

(DR), and glaucoma [4-6]. Such retinal disorders are typically 

detected by screening procedures that require considerable 

skill and professional attention. 

DR is caused by the negative effects of diabetes on the eyes, 

while ROP is a defective blood vessel growth in the retina of 

premature babies or low birth weight babies. These disorders 

should be detected early on because their symptoms can be 

minor and create serious issues. Vision loss could happen if it 

is not addressed quickly. Only qualified ophthalmologists are 

capable of conducting the testing procedures needed to 

diagnose these disorders [7-10]. They examine and assess the 

retinal images that were collected to identify any anomalies. 

Even for experienced ophthalmologists, the procedure may 

take time. In the meantime, the issue of delayed disease 

identification may be made worse by the increased amount of 

patients with eye problems [11-14]. In contrast, the computer-

aided automatic diagnosis model demonstrates considerable 

aptitude in resolving the aforementioned shortcomings, and a 

number of solutions have been put out in this field where deep 

learning appears to offer impressive outcomes [15, 16]. It has 

been demonstrated that deep learning algorithms perform 

better than traditional methods. It has outperformed all 

traditional image analysis techniques in a variety of computer 

vision and image analysis applications. To build automated 

computer-aided methods with applications in numerous fields, 

a number of deep-learning algorithms have been created to 

evaluate medical images [17-20]. The diagnosis of different 

eye illnesses like DR and ROP is one of the areas where we 

can use these algorithms. 

Therefore, in this work, the effective deep learning-based 

technique LeNet-5 is implemented to classify Diabetic 

Retinopathy (DR) and Retinopathy of Prematurity (ROP). 

LeNet's design was quite straightforward; it only had 5 layers 

but produced results that were more accurate. To perform the 

classification, segmentation of blood vessels is an important 

concept. For this, DeepLabv3+ based technique is applied to 

segment the blood vessels from the retinal fundus images. It 

attains improved semantic segmentation accuracy, 

significantly lowers the cost of network training and 

processing complexity. Then, the features of the images are 

extracted by the dual-channel CapsNet. In order to address the 

drawbacks of CNN brought on by pooling, transformation 

matrices are employed in CapsNet to encode the inherent 

spatial relationship between a part and a whole of an image. 

These concepts have strengthened the CapsNet. To increase 
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the classifier's performance and to avoid overfitting, the 

dataset images are increased by Deep Convolutional 

Generative Adversarial Network (DCGAN). 

·To achieve DR grading and ROP classification, LeNet-5 

based effective deep learning technique structure is applied 

with the dual channel CapsNet based feature extractor. 

· To achieve effective classification performance, 

DeepLabV3+-based segmentation technique is implemented.  

·To train the deep learning model efficiently and increase 

the dataset images, Deep Convolutional Generative 

Adversarial Network (DCGAN) based data augmentation 

technique is applied. 

·The proposed approach exhibits better results than the 

existing techniques for the classification of Diabetic 

Retinopathy and Retinopathy of Prematurity on the 

MESSIDOR and private datasets. 

The remaining portion of this paper is organized as follows. 

In section 2, the existing techniques are reviewed. Section 3 

illustrates the proposed methodology, while the results and 

discussion are presented in Section 4. Section 5 illustrates the 

conclusion and future works. 

 

 

2. LITERATURE REVIEW 

 

Many image classification algorithms were created in 

previous decades to assess the severity of DR and ROP using 

fundus pictures. Below is a detailed review of a few of them.  

Using retinal fundus pictures, numerous researchers have 

worked on DR segmentation and detection. For instance, Maiti 

et al. [21] offered a deep learning method utilizing a modified 

neural network for autonomously identifying and segmenting 

the optic disc from fundus pictures. The VGG16 framework 

was utilized as an encoder in this study, and the decoder was 

built with a symmetric structure to the encoder for improved 

object segmentation. Yet, the vanishing gradient problem is 

one of the main issues with this network. That lessens the 

effectiveness of this strategy. 

Abdelmaksoud et al. [22] recommended the conventional 

and DL approaches to accurately detect DR grades 

automatically using various colour fundus pictures. To begin 

with, they used a number of pre-processing methods to boost 

the image's quality. The segmentation process was then 

implemented using a customized U-Net DL model. Gray Level 

Run Length Matrix (GLRLM) was then used to extract the key 

characteristics from the image, which were then fed into the 

Support Vector Machine (SVM) classifier. Yet, low sensitivity 

(86%) attained by this network indicates the detection of 

inaccurate solutions. 

By combining the benefits of cell membrane structures, Xue 

et al. [23] developed a dynamic membrane structure with 

hybrid architectures. For pixel-wise segmentations of Optic 

Disk (OD), Exudates (EXs), and Micro aneurysms (Mas) in 

DR, they designed a Mask R-CNN within every new 

membrane structure. Yet, the lesions' visualization is of low 

quality. 

To identify zones I, II, and III with segmentation of the optic 

disc and blood vessels, Agrawal et al. [24] suggested a method 

using an ensemble of "U-Network" and "Circle Hough 

Transform". The created model is general and was practiced 

on mixed photos of various sizes. With photos of varying sizes 

taken by two separate imaging systems, it identifies zones. 

Nevertheless, this article does not report on identifying zones 

I and II in ROP pictures with and without macula. 

Nisha et al. [25] presented the computer-based analysis 

system for the objective evaluation of severe illness in ROP. 

The suggested system starts out with a preliminary 

segmentation phase based on adaptive filtering, connection 

analysis, and picture fusion. The research suggests the use of 

new retinal properties, such as vessel density and leaf node 

count, to supplement the regularly utilized features, such as 

tortuosity and breadth. It depicts the irregular growth of the 

blood vessels. However, this approach focuses on applying 

image processing techniques to calculate only one or two kinds 

of characteristics. Henceforth, it fails to extract further crucial 

features. 

A basic model of OD segmentation built around the 

attention gate is presented by Abaei Kashan et al. [26]. At the 

beginning, the photos were gathered, analyzed, and then fed 

into a brand-new deep convolutional neural network 

composed of attention-in-skip connections. A two-stage 

convolutional network makes up the architecture. In the initial 

phase, the raw image and image features are divided into two 

separate branches, each of which produces a different output. 

To move into the post-processing stage and find the area 

connected to the OD, the outputs were concatenated. The 

overall performance of this effort is strong. However, it results 

in a high number of false positives and inaccurate boundary 

tracing around the optic disc area. 

Cao et al. [27] created the unified weakly supervised 

domain adaptation system with three parts. They are attention 

based multi-instance learning, instance progressive 

discriminator, and domain adaptation. An attention 

mechanism and a multi-instance learning strategy were 

employed to model the relationship between the patches and 

images in the target domain. In the meantime, it uses a jointly 

learning technique that combines all knowledge that is 

accessible from the source and target domains. Using the 

massive EyePACS dataset and the Messidor dataset, they 

evaluated how well the suggested paradigm for DR grading 

performed. However, the performance of the models is 

substandard. Because they had not suggested any technique to 

handle the imbalanced data problem. 

Kalyani et al. [28] designed a modified capsule network for 

the identification and categorization of diabetic retinopathy. 

The features were first retrieved from the fundus images using 

convolution and the primary capsule layer, and the class 

capsule layer and softmax layer were subsequently employed 

to assess the images belonging to a particular class. They did 

not employ any segmentation techniques. For feature 

extraction, the entire retinal pictures were used. As a result, 

undesirable traits are also extracted. 

A quadrant ensemble automatic DR grading method using 

the InceptionResnet-V2 based deep network was proposed by 

Bhardwaj et al. [29]. The data augmentation stage in the 

developed framework was combined with quadrant cropping, 

optical disc localization, and histogram equalization to 

enhance network performance. However, it did not manifest 

the neovascularization of the optic disc. 

For ROP detection, Peng et al. [30] presented the three-

stream parallel framework including EfficientNetB2, 

DenseNet121 and ResNet18 for feature extraction. It gathered 

rich and varied high-level features. Afterwards, the features 

from three streams were deeply combined by concatenation 

and convolution process. An ordinal classification technique 

was finally used in the classification stage. But this framework 

is computationally expensive due to the three feature 

extractors. 
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3. PROPOSED METHODOLOGY 

 

The developed structure includes of five stages such as 

image pre-processing, image augmentation, vessel 

segmentation, extraction of important features, and 

classification. Initially, the input retinal images are obtained 

from the dataset and then the preprocessing and data 

augmentation tasks are applied on them. Afterward, 

segmentation of the optic disc and vessels in the retina is done. 

Then, feature extraction using dual channel CapsNet is 

performed. In this network, one channel detects the vessel 

centerlines and the vascular tree structure and then extracts 

characteristics for ROP classification based on the tortuosity 

and dilatation of the vessels and another channel extracts the 

features from the blood vessels for DR classification. At last, 

the combined features are sent to the classifier to perform the 

classification. Figure 1 depicts the proposed framework's 

overall structure. 

 

 
 

Figure 1. System architecture of the proposed system 

 

3.1 Pre-processing 

 

Preprocessing an image is crucial for enhancing input 

image’s quality because poor quality images may affect the 

overall network performance. Moreover, it is critical to make 

sure that all the images are uniform and have their attributes 

upgraded. Every fundus image in the dataset has been scaled 

to 256×256 pixels and transformed to a greyscale format. Then 

the contrast of the fundus images is improved by Contrast 

Limited Adaptive Histogram Equalization (CLAHE). 

Gaussian filter is then applied to the images to remove the 

noise. 

 

3.2 Data augmentation using DCGAN 

 

An overview of the GAN-based image generation process 

is provided in this section. Deep Convolutional Generative 

Adversarial Network (DCGAN) is employed for this purpose. 

In this network, two deep convolutional neural networks are 

used as the generator and discriminator. Four convolutional 

layers are included in the generator phase. 8 kernels are 

included in the first three layers and one kernel is included in 

the last layer. The size of all the kernels in the generator is 3×3 

and a stride of 1×1. The Discriminator component has four 

convolutional layers with 8, 16, 32, and 64 kernels with 2×2 

kernel size and 2×2 stride. A convolutional strided layer was 

introduced to replace the max pooling layer. The outputs of the 

convolutional layers are concatenated by the flattening process, 

producing a vector with 3000 dimensions. The generator is 

created to generate images, to trick the discriminator. It 

requires a randomized input, such as 100-element random 

vector with 100 entries distributed randomly between 0.0 and 

1.0 range. The generator receives this randomized input and 

creates the image using two-dimensional transposed 

convolution. Furthermore, transposed convolutional layers are 

used in the network to perform up sampling. Batch 

Normalization (BN) and LeakyReLU (LReLU) activation are 

used to further process the output of each transposed 

convolution layer except the last layer. After the convolutional 

layers, Batch Normalization aids in controlling the extracted 

features, while the LeakyRELU activation function protects 

against the vanishing gradient problem. 

LeakyReLU activation function eliminates negative outputs 

while directly mapping positive inputs to outputs defined in 
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F(x)=max(0, x). Similar in operation, LeakyReLU only 

reduces negative values by a factor of 0.01 rather than 

eliminating them entirely. LeakyReLU's definition can be 

found in the following equation. 
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where, +0
, −  stands for Positive and Negative valued output 

ranges respectively. 

The discriminator then uses the created image to determine 

if it is a part of the original dataset or not. In other words, it 

distinguishes between real images and false (made) ones. The 

generator's settings are changed, and the procedure is repeated 

if the discriminator concludes that the created image is 

fraudulent. In this manner, the generator makes continuous 

adjustments to its settings until the images it produces are 

undetectable to the discriminator from the images of the 

original dataset. 

 

3.3 DeepLabv3+ based segmentation 

 

The DeepLabV3+ was created based on the DeepLabV3 

framework of the previous generation. It utilized atrous 

convolution for feature extraction of the image at any 

resolution and enhancing the Atrous Spatial Pyramid Pooling 

(ASPP) module which aims to detect convolutional features at 

multiple scales by using various atrous convolution rates. The 

encoder and decoder are two separate components of this 

network. The feature map's dimensionality is decreased and 

features are extracted by the encoder. To acquire the final 

semantic segmentation results, the decoder is mostly utilized 

which recovers feature map’s resolution and edge information. 

Initially, the input image from DR Dataset is given to the 

encoder for vessel segmentation. After the obtained vessel 

segmentation map from the decoder part, the ROP image is 

given to the encoder section for further process. In this 

segmentation, the optic disc and vessels are segmented from 

the image. 

The final few convolutional layers of the encoder's 

convolutional operation are substituted with the whole 

convolution to expand the receptive area while maintaining the 

feature map’s resolution. To gather multi-scale semantic 

contextual data, the ASPP module included in DeepLabv3+ 

employs dilation convolution at various speeds. By using 

variable sampling rates, this approach resamples feature maps 

produced by the encoder. Next, the outputs are combined after 

a parallel convolution filter is applied to the feature maps at 

various atrous rates. The ASPP module consists of a max-

pooling layer running in parallel with 3×3 convolutions with 

dilation rates of 6, 12, and 18 were employed. Batch 

normalization is also present to normalize data after each 

operation. In order to compress and integrate the acquired 

feature maps in every branch, a 1×1 convolution is utilized in 

the final step. 

The decoding portion of the framework has a 

straightforward structure. A high-dimensional feature map 

with 256 channels is the ultimate result of the network's 

encoding section which is forwarded to the decoder part. Then 

the up sampling process is conducted using bilinear 

interpolation and the low-level features are concatenated with 

the same resolution. The network utilizes 1×1 convolution of 

the low-level features to minimize channels before the feature 

concatenation. The concatenated features are refined using a 

3×3 convolution, and the final result is obtained by restoring 

the concatenated features to the size of the original picture 

using bilinear interpolation based up sampling process (4 

times). DeepLabv3+ produces appropriate semantic 

segmentation results by utilizing these novel components. 

 

3.4 Dual CapsNet based feature extraction 

 

Dual channel based Capsule Network (CapsNet) is applied 

for the feature extraction of segmented images. Through two 

feature extraction modules, this network extracts the deep 

features from the segmented retinal pictures. Contrary to 

standard CNN, CapsNet represents feature intensity using 

vectors rather than scalars, effectively enhancing the 

representation and utilization of available information. Two 2-

D capsule network channels, fully connected deep neural 

network, and a fusion network are all components of this 

design. One channel of 2-D capsule network is used for the 

feature extraction of DR segmented images and another one is 

used for the feature extraction of ROP segmented images. All 

the features are combined after fusion in Fusion Caps Module, 

a fully connected deep neural network layer. This fusion is 

used as input to the reconstruction layer. 

The first two layers in this architecture include 16 and 32 

kernels with 5×5 size and a stride of 1. The output from the 

second layer is subjected to maximum pooling with a stride of 

two. In the third layer, 128 filters with a stride of 1 and 9×9 

kernel size are present. The primary capsule (PrimaryCaps) is 

the fourth layer which includes32 distinct capsules. Each 

capsule has a filter applied with a stride of 2 and a filter size 

of 9×9. Every Primary capsule utilizes a convolutional process 

(16 convolution channels, 2 filters per convolution, and ReLU 

activation), with 2 convolutional units each having a 3×3 

kernel and a stride of 2. Using the dynamic routing algorithm 

technique, the capsules in the PrimaryCaps are forwarded to 

the RetinoCaps layer. Every capsule's unique opinions are 

calculated using the trainable weights, W by using dynamic 

routing. Assume that the 8-dimensional primary capsule’s 

index is i ∈ [1, NPC], 16 dimensional output capsule’s index is 

j ∈ [1, Nclass] and the dimension of 8 × 16 is Wij. The following 

equation provides the primary capsule's unique viewpoint on 

the output capsule's j: 

 

DC
ijWiuiju =ˆ  (2) 

 

here, ui denotes the ith primary capsule. We obtain an output 

block of shape Nclass×16 for each primary capsule i. Another 

sort of weight, known as routing weights, b, with the 

dimension of NPC×Nclass is taken into account for the operation 

of dynamic routing. They are utilized to combine many 

viewpoints to create the final output capsule. The different 

viewpoints are combined to create the RetinoCaps output 

using the coupling coefficients cij which is defined from the 

following equation. 

 


=

k ikb

ijb
ijc

)exp(

)exp(
 (3) 

 

Two size 16 capsules are present in the RetinoCaps, and 

each of them receives information from the PrimaryCaps layer. 

Concatenation is utilized to combine the outputs from two 
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RetinoCaps. Concatenating the result of two feature maps is 

produced by the network from two input images. The 

concatenated feature matrix is then supplied to the 

reconstruction sub-network (decoder layer), which is made up 

of three fully connected layers: the first two layers contain 

ReLU activation function and final one has softmax activation. 

The dimensions of these layers are 512, 1024 and 2304 

respectively. 

3.5 LeNet-5 based classification 

The feature maps obtained from the Dual channel CapsNet 

are passed to the LeNet-5 network for classification. LeNet is 

an easy-to-use and powerful algorithm for grayscale photos. 

Furthermore, it decreases structural complexity and raises the 

likelihood of real-time processing. There are eight layers in all 

in the LeNet-5. The input layer, two convolution layers, one 

fully linked layer, two subsampling layers, and an output layer 

are the layers that make up this structure. In this network, the 

subsampling layer is the network used for pooling. 

The input layer of LeNet-5 receives the feature maps for 

further processing. Between the convolution layer and the 

fully connected layer, a dropout layer is added with a dropout 

rate of 0.8 to prevent overfitting. The convolutional layer's 

kernel size is set to be 5×5 and the subsampling layer's kernel 

size is 2×2. To minimize parameter training, the fully 

connected layer decreases the amount of neurons from 120 to 

84. The input feature matrix is then decreased in two

dimensions by two times based on the 2×2 pool size using the

feature selection technique in the subsampling layer while

maintaining the primary properties of the data. Eq. (4)

illustrates the expression of the pooling layer, where pool (.)

denotes the maximum pooling operation. Typically, the output

of the lth layer is defined as 𝑎𝑛
𝑙  while the output of the previous

layer is written as 𝑎𝑛
𝑙−1, where n refers the nth sample:

)( 1−= l
n

l
n apoola (4) 

The last layer in this structure is fully connected layer. The 

ReLU activation function in every neuron is used to connect 

the neurons of preceding layer. Then the result of these 

neurons is sent to the output layer, which can incorporate local 

information with the ability to distinguish between classes. As 

a result, the fully connected layer plays a part in traditional 

classifiers. The output of fully connected lth layer is shown in 

Eq. (5). In that, bl is the offset term and convolutional kernel 

is denoted by wl. 

)1( lbl
nalwfl

na +−= (5) 

The final output layer is softmax layer. This layer selects the 

output class which has maximum probability. This function is 

shown in the following equation. 

)1( max LbL
naLwsoftv

n
L
na +−== (6) 

𝜊𝑛
𝑣 (n=1, 2, 3, ……, N; v=1, 2, 3, ……., V) is the resulting

probability of nth instance for v classes. If 𝑡𝑛
𝑣  indicates the

predicted result probability of nth instance n v classes, then the 

local and global error formula of nth sample, En is given in the 

following equations. 

2
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Finally, the softmax layer produces the output based on the 

maximum probability of the classes. In the proposed work, DR 

classification is the multi-class classification problem (0, 1, 2, 

3) which contains four classes and ROP is the binary 

classification (0, 1) problem. At last, the classifier produces 

maximum probability based result.

4. RESULTS AND DISCUSSION

To analyze the effectiveness of the proposed system, 

numerous investigations are carried out on the DR and ROP 

datasets. This section presents various tests that illustrate the 

objective and quantitative outcomes of the suggested strategy 

for choosing the most instructive retinal samples, segmenting 

blood vessels, and categorizing DR and ROP. These 

experimental steps are carried out utilizing a variety of 

statistical metrics, which are further discussed in the following 

sections. The Keras framework, which is based on Tensor 

Flow, and the Python programming language were used to 

create the proposed system. All tests were conducted using a 

2 GB NVIDIA GeForce 930 MX graphics card. Eighty percent 

of the datasets were used for training, while twenty percent 

were used for testing. The suggested networks are trained over 

100 iterations using the Adam optimizer with a batch size of 8, 

and an L2 regularization of 0.0005. 

4.1 Datasets description 

4.1.1 Messidor dataset 

The dataset comprises of 1200 retinal fundus colour images 

that were collected by three ophthalmologic institutions in the 

cities Brest, Etienne, and Paris of the country France. This is 

done by utilizing a colour video 3CCD (Charge-Coupled 

Devices) camera installed on a Topcon TRC-NW6 Non-

Mydriatic Retinal Camera with a 45 degree field of view. At 

2304*1536, 2240*1488, or 1440*960 pixels, images were 

captured in 8 bits per colour plane (R, G, and B). In this dataset, 

the images are categorized into four labels. They are Normal, 

Mild, Moderate and Severe. 

4.1.2 ROP dataset 

The ROP Collaboration Group consists of 30 hospitals 

spread across China, was responsible for collecting the ROP 

photos. Five professional children ophthalmologists 

individually labeled the images taken throughout the screening 

method as "Disease" and "Not Diseased." The pictures were 

captured by RetCam 3 or 2 by a skilled technician. This data 

set is available on IEEE data port. In this dataset, the images 

are categorized into two labels. They are disease and non-

disease. Disease category includes 8244 images and 11298 

images are included in non-disease category. 

4.2 Segmentation outcome 

To analyze the efficiency of the suggested technique for DR 

and ROP segmentation, the experiments are conducted on the 
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basis of the two tasks. In the first task, the performance of DR 

segmentation is analyzed. In the second task, the performance 

of ROP segmentation is evaluated. The performance metrics 

named Positive Predictive Value (PPV), Sensitivity (SEN), 

and Dice Similarity Coefficient (DSC) were used for this 

assessment. The similarity between the predicted and Ground 

Truth (GT) is measured using DSC. The percentage of correct 

positive predictions versus both correct and faulty positive 

predictions is known as PPV. The true positive rate is known 

as SEN.DSC is a quantitative indicator used to analyse the 

similarities between 2 sets of data. 

 

FNFPTP

TP
DSC

++


=

2

2

, 

FPTP

TP
PPV

+
=

, FNTP

TP
SEN

+
=  

(9) 

 

where, TP=True Positive, FP=False Positive, FN=False 

Negative are the parameters used for performance assessment 

in the classification of classes.
 

 

Task 1: DR segmentation 

The proposed approach divides the tiny blood vessels that 

are most suitable for classification. The fundus image's minute 

details, including the branch of blood vessels, are not skipped 

throughout the segmentation process. The greyscale 

conversion has a significant impact on how well the proposed 

approach segments data. The image's grey scale conversion 

allowed for the acquisition of the minute blood vessel features. 

Figure 2 displays the segmentation model's visualization 

outcomes. 

 
Levels of DR Original Image Segmentation Image 

Normal 

  

Mild 

  

Moderate 

  

Severe 

  

 

Figure 2. Segmentation results of DR 

 

To evaluate the DR segmentation task, several traditional 

semantic segmentation techniques are utilized. The 

comparisons of the quantitative results are shown in Table 1 

and the graphical representation of this table is shown in 

Figure 3. 

 

Table 1. Comparison of DR segmentation results 

 
Techniques DSC (%) PPV (%) SEN (%) 

VGG-16 [21] 93.73 - 96.59 

U-Net [22] 82.7 80 86 

Mask R-CNN [23] 96.7 - 98.1 

M-Net [31] 94.63 - 96.19 

Proposed 98.56 98.78 99.23 

 

 
 

Figure 3. Comparison of SEN and DSC performance metrics 

 

The M-Net shows better results than the traditional U-Net 

in terms of DSC and SEN. Moreover, the result of VGG-16 is 

also similar to the M-Net with 93.73% DSC and 96.59% SEN. 

However, these results are slightly lower than the Mask R-

CNN technique. It achieves 96.7% DSC and 98.1% SEN 

which reveals that this technique contains a high percentage of 

true positive pixels. Even though these values are lower than 

our proposed approach which attains 98.56% DSC, 98.78% 

PPV, and 99.23% Sensitivity. 

Furthermore, the segmentation results are refined by the 

suggested segmentation algorithm's efficient decoder, which 

also boosts feature density and enhances the receptive field. 

Additionally, conditional random fields can be used to 

increase classification accuracy. As a result, the suggested 

technique produces more effective segmentation results than 

other methods that were compared. 

 

Task 2: ROP segmentation 

In the ROP segmentation process, the blood vessels and the 

optic disc segmentation are performed. In this segmentation, 

the proposed approach segments blood vessels to their fine 

detail which improves the performance of the classifier to 

achieve the best results. Similarly, the optic disc segmentation 

is accomplished and the obtained results are close to the 

ground truth images. The quantitative results of ROP 

segmentation compared to other standard approaches are given 

in Table 2. 

 

Table 2. Comparison of ROP segmentation results 

 
Techniques DSC (%) PPV (%) SEN (%) 

U-Net [24] 84.4 - - 

Otsu Thresholding [25] 72.29 - 73.85 

Attention Gate-Unet [26] 94.22 - - 

SCIRD-TS [32] 85 - - 

Proposed 98.45 98.86 99.12 
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For ROP segmentation, the performance of SCIRD-TS and 

Traditional U-Net is very similar and achieves 85% and 84.4% 

DSC values respectively. In this process, the proposed solution 

has a sensitivity of 99.12% and a PPV of 98.86%. It describes 

our method produce superior segmentation results. Compared 

to all the other methods, the Attention Gate-Unet provides 

better DSC value (94.22%). However, it is not higher than the 

proposed approach’s DSC value (98.45%). 

 

 
 

Figure 4. Comparison of DSC values in ROP segmentation 

 

The line graph shown in Figure 4 represents the comparison 

of DSC values. From the image, it is observed that the 

performance of Otsu thresholding is very poor compared to 

other deep neural networks. It reveals that the performance of 

deep neural networks is better than traditional techniques. 

 

4.3 Classification results 

 

To analyze the effectiveness of the proposed approach for 

DR and ROP classification, the experiments are conducted on 

the basis of the two tasks. In the first task, the performance of 

DR classification process is analyzed. In the second task, the 

performance of ROP classification process is evaluated. The f-

score, recall, specificity, precision, and accuracy of the 

proposed approach were computed individually for each 

dataset. These metrics are computed based on false negatives, 

false positives, true negatives, and true positives values. When 

a clinically-labeled image is correctly categorized, true 

positive is recorded, and when it is inaccurate, a false negative 

F2 is recorded. Similar to this, when a healthy retina is 

correctly categorized as abnormal, it results in a false positive 

and a true negative. 

 

Task 1: DR classification 

In this classification process, the DR is classified into four 

categories; they are Severe, Moderate, Mild and Normal. For 

the Messidor dataset, the f1-score, specificity, sensitivity, 

precision, and accuracy of the proposed system with data 

augmentation were estimated to be 99.33%, 99.22%, 99.30%, 

99.76%, and 99.29%respectively. The DCGAN based data 

augmentation technique reduced overfitting and increased the 

performance of the classifier. The obtained quantitative results 

are shown in Table 3. 

From the above table, it is observed that the proposed 

approach classified the DR images and obtained efficient 

results for all classes. In all the four classes, the proposed 

approach classified moderate class images with high accuracy 

(99.86%) compared to all other classes. However, in terms of 

other metrics, the normal class images have obtained better 

results with 99.91% precision, 99.67% sensitivity, 99.56% 

specificity and 99.89% f1-score. The graphical representation 

of this multi-class DR classification comparison is shown in 

Figure 5. 

 

 
 

Figure 5. Comparison of four classes in DR classification 

 

To fully assess our model, Table 4 compares our suggested 

methodology with a number of current standard techniques 

that were applied to the Messidor dataset. The suggested 

strategy outperforms existing methods in experiments 

conducted on the Messidor database, showing superior 

performance in both deep learning and traditional 

classification methods. Additionally, it shows that our method 

works well for DR grading issues involving multiple classes. 

It seems that our method performs favorably when compared 

to the prior state-of-the-art, despite the fact that the 

experimental setting in these techniques is a little different. 

The comparison of proposed approach with other 

techniques in terms of accuracy is shown in Figure 6. From the 

figure, it is observed that the performance of traditional 

CapsNet and ResNet-50 is superior to other techniques such as 

WADNet and Quadrant-based Ensemble InceptionResnet-V2 

(QEIRV2). However, the proposed system achieves 99.29% 

accuracy which is higher than all the other techniques. It shows 

the capacity of our proposed approach in multi-class 

classification of DR. 

 

 
 

Figure 6. Accuracy comparison of DR classification 
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Table 3. Multi-class classification results of DR 

 
Classes Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F-score (%) 

Normal 99.45 99.91 99.67 99.56 99.89 

Mild 98.98 99.74 99.14 98.96 98.86 

Moderate 99.86 99.54 98.97 98.87 99.67 

Severe 98.87 99.86 99.43 99.51 98.9 

 

Table 4. Comparison of classification results of DR 

 
Techniques Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F-score (%) 

WADNet [27] 94.9 - 92.7 95.7 - 

CapsNet [28] 97.98 95.62 96.11 - 95.82 

QEIRV2 [29] 93.3 - - - - 

ResNet-50 [33] 99.16 99.72 99.16 99.16 - 

Proposed 99.29 99.76 99.30 99.22 99.33 

 

Task 2: ROP classification 

The ROP classification is the binary class classification 

problem and the obtained results are shown in Table 5. 

Afterward, the classifier results are compared with the existing 

methods and it is shown in Table 6. 

As seen from Table 6, the proposed classifier achieves 99.12% 

accuracy, 98.89% precision, 98.97% sensitivity, 99.32% 

specificity, 99.56% F-score respectively. These results show 

that the proposed approach achieves the highest values than 

other standard machine and deep learning techniques. The 

important cause to achieving these results is DCGAN based 

data augmentation approach. It provides a high number of 

training samples which is advantageous to model training, 

particularly for the highly sophisticated deep network. 

 

Table 5. Binary classification results of ROP 

 
Classes Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F-score (%) 

ROP 98.93 98.85 98.89 99.23 99.49 

Non-ROP 99.31 98.92 99.05 99.41 99.63 

 

Table 6. Comparison of ROP classification results 

 
Techniques Dataset Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F-score (%) 

DNN [30] Private 98.27 90.92 90.55 - 90.43 

SVM [34] Private - - 95 93 - 

Q-SVM [35] Private 93.2 95.1 89.7 96.1 92.3 

CNN [36] Private - - 94 - - 

Proposed Private 99.12 98.89 98.97 99.32 99.56 

 

 
 

Figure 7. Comparison of sensitivity in ROP classification 

 

In terms of sensitivity, the Support Vector Machine (SVM) 

and Convolutional Neural Network (CNN) attain comparable 

values. The accuracy of Q-SVM (93.2%) is lower than Deep 

Neural Network (DNN) (98.27%). Although the precision 

value of Q-SVM (95.1%) is higher than DNN (90.92%). From 

the results, it is identified that the classification of deep 

learning network is better than machine learning. Compared to 

CNN and DNN, the sensitivity of CNN (94%) is greater than 

DNN (90.55%). Visual illustration of sensitivity comparison 

is displayed in Figure 7. 

 

4.4 Data augmentation evaluation 

 

Table 7 provides an overview of how data augmentation 

influenced the performance of the proposed classifier. It is 

clear from the table that applying the data augmentation 

technique enhances classifier performance. 

 

Table 7. Analysis of data augmentation technique 

 
Classification With DCGAN (%) Without DCGAN (%) 

DR Accuracy 99.29 98.56 

ROP Accuracy 99.12 98.41 

 

With the DCGAN-based data augmentation strategy, the 

classifier achieves 99.29% accuracy during DR categorization. 

It accomplishes only 98.56% without DCGAN. Similarly, the 

system uses data augmentation approaches to achieve 99.12% 

accuracy in ROP categorization. In comparison to training 

images without data augmentation, the quantity of samples for 

training produced by this method is much higher. By using this 

data augmentation technique, different sets of training samples 
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are generated for each epoch. Therefore, the proposed 

classifier perform better and attain maximum reliability in 

both categories by the use of the DCGAN based data 

augmentation approach. 

 

 

5. CONCLUSION 

 

Retinal diseases like DR and ROP are the life-altering 

conditions that affects many people and creates vision 

impairment. Therefore, automatic screening of DR and ROP 

is very essential. For this, a deep learning structure is 

developed for segmentation and classification of DR and ROP. 

The proposed methods training was conducted with the 

augmented dataset and obtained significant results for all the 

performance metrics. The proposed model delivers 99.29% 

accuracy, 99.76% precision, 99.30% sensitivity, 99.22% 

specificity and 99.33% F1-score for DR classification and the 

ROP classification attains the 99.12% accuracy, 98.89% 

precision, 98.97% sensitivity 99.32% specificity, and 99.56% 

f1-score respectively. Moreover, the segmentation 

performance of the proposed technique is also satisfactory and 

attains the best results. In the future, this work will be extended 

to locate other vision problems like cataract detection and 

glaucoma detection with a transfer learning approach. 
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